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Abstract: With the rapid growth of shipping volumes, ship navigation and path planning have
attracted increased attention. To design navigation routes and avoid ship collisions, accurate ship
trajectory prediction based on automatic identification system data is required. Therefore, this study
developed an encoder–decoder learning model for ship trajectory prediction, to avoid ship collisions.
The proposed model includes long short-term memory units and an attention mechanism. Long
short-term memory can extract relationships between the historical trajectory of a ship and the
current state of encountered ships. Simultaneously, the global attention mechanism in the proposed
model can identify interactions between the output and input trajectory sequences, and a multi-head
self-attention mechanism in the proposed model is used to learn the feature fusion representation
between the input trajectory sequences. Six case studies of trajectory prediction for ship collision
avoidance from the Yangtze River of China and the eastern coast of the U.S. were investigated and
compared. The results showed that the average mean absolute errors of our model were much
lower than those of the classical neural networks and other state-of-the-art models that included
attention mechanisms.

Keywords: ship trajectory prediction; AIS data; neural network; attention mechanism;
encoder–decoder model

1. Introduction

Since 2002, the International Maritime Organization (IMO) has required that all sea-
going ships (>300 GT) and passenger ships are equipped with an onboard automatic
identification system (AIS) [1]. This is a transmission and communication technology that
enables a ship to transmit AIS information to other ships. This information includes the ship
identity, location, speed, and course; that is, the ship navigation behavior and status [2–4].
Based on these data, ships can effectively avoid collisions with other ships. Decisions about
collision avoidance must comply with the collision avoidance rules formulated by the IMO,
which have been noted in the Convention on the International Rules for the Prevention of
Collisions at Sea (COLREGs) [5]. The risk of collision is specified in the COLREGs, which is
assessed based on the estimated closest point of approach. The distance closest point of
approach and time closest point of approach are used as indicators of collision risk. If these
two values are less than the threshold, a risk of ship collision is considered [6]. Therefore,
it is necessary to accurately predict the trajectory of ships, to help with ship navigation
planning and collision warning [7,8].
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Ship trajectory prediction methods can be divided into two main categories. In most
traditional methods [9–17], ship trajectory prediction usually requires professional knowl-
edge of different application scenarios [18]. In recent methods, machine-learning models
are trained based on AIS data, to provide decision-making support to ship navigation and
path planning. Support vector machines (SVM) [19], clustering algorithm [20], multi-layer
perceptron (MLP) [21], back-propagation neural network (BPNN) [22,23], and long short-
term memory (LSTM) [24–26] are widely used in ship trajectory prediction. During the
last decade, there has been a dramatic increase in ship trajectory prediction studies based
on deep learning [27]. Among them, recurrent neural networks (RNN) [28] and LSTM are
particularly popular. However, most studies have considered for route planning macro
design. However, studies of collision avoidance from a micro perspective are required.

To address the above issues, this paper proposes an encoder–decoder model for ship
trajectory prediction for collision avoidance, which uses a sequence-to-sequence (Seq2Seq)
structure and multi-attention mechanism [29–31]. The main advances of this study in the
field of machine learning and ship navigation can be divided into two aspects.

First, this study is the first to introduce state-of-the-art attention mechanisms into the
field of navigation trajectory prediction, to effectively capture the potential information
and correlations in the AIS series data. Second, this study applied the proposed model
to case studies of ship collision avoidance, to demonstrate its effectiveness and efficiency.
We performed experiments with six case studies of trajectory prediction for ship collision
avoidance on the Yangtze River of China and the eastern coast of United States. The results
showed that the mean absolute error (MAE) of our model in trajectory prediction was
much lower than those of the classical models, such as back-propagation neural networks
(BPNN) and LSTM. Furthermore, our model also outperformed other state-of-art models
with attention mechanisms for trajectory prediction.

The remainder of this paper is organized as follows: Section 2 reviews related work
in the field of ship trajectory prediction. Section 3 summarizes the trajectory prediction
model studied in this paper and introduces data preprocessing. In Section 4, we apply
the proposed prediction method to real data of AIS and summarize the results. Section 5
discusses our conclusions and future work.

2. Literature Review
2.1. Trajectory Prediction Based on Kinematics Models

Regarding kinematics models, most studies directly used the current position and sailing
speed of the ship to estimate its future position and then used the constant speed and ground
heading values to predict the future position of the ship [9,10]. These studies also described
the uncertainty of the future position of ships based on statistical models [11–13]. On the other
hand, ship trajectory prediction can be considered a typical time-series problem; therefore,
Kalman filters [14,15] and Markov models [16,17] are used. Perera et al. [15] proposed an
extended Kalman filter to formulate the ship position, speed, and acceleration, to predict its
trajectory under noisy conditions. Guo et al. [17] divided the designated sea area into grids,
with the state of ship position, speed, and direction, and then used a K-order hidden Markov
model to establish the state transition matrix for prediction.

2.2. Trajectory Prediction Based on Machine Learning Techniques

Classical machine-learning methods, such as SVM [19] and clustering algorithm [20],
are widely used in ship trajectory prediction. They have improved prediction efficiency
and accuracy. At the beginning of the 2000s, Hinton et al. proposed a multi-hidden-layer
neural-network model [32]; deep-learning methods have shown advanced performance
in the field of machine learning. In trajectory prediction, deep-learning methods have
achieved higher prediction accuracy than MLP [21] and BPNN [22]. Since RNN [28]
and LSTM [33] have become the most representative prediction methods for time-series
classification and prediction models, a large number of studies have applied them to ship
trajectory prediction [24–26]. Based on a RNN, the encoder–decoder model is considered
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the standard method for Seq2Seq prediction tasks, because of its excellent performance
in machine translation [30] and speech recognition [34], which can also be applied to
trajectory prediction [35]. The Seq2Seq model based on an attention mechanism [31,36,37]
has proven its effectiveness in a wide range of prediction tasks. Several studies have
applied attention-mechanism-based models to the field of ship trajectory prediction [38–41].
Capobianco et al. [41] proposed an attention-based recursive encoder–decoder architecture
to solve the trajectory prediction problem of applying uncertainty quantification to a case
study in the maritime field.

In comparison with previous studies, the model proposed in this study introduces
multiple-attention modules of global attention and multi-head self-attention. The global
attention mechanism is used to combine the trajectory history and current state information
to obtain hidden information from within sequences, and the multi-head self-attention
mechanism can capture the spatiotemporal correlations between sequence-feature data, to
perform feature fusion for generating new feature representations, as well as effectively
capturing potential information and correlations contained in the ship position sequence.

3. Methodology
3.1. Problem Statement

During marine traffic encounters, an AIS can obtain the state of interaction between
the target ship and the surrounding ships. The state of the ship at time t can be expressed
as st = (LONt, LATt, SOGt, COGt), where LON, LAT, SOG and COG represent longitude,
latitude, speed, and heading, respectively. st−1 − st represents the change in relative
position and state information from t-1 to time t. The spatial position of the encounter ship
can be expressed as s′t, where st − s′t represents the relative position and navigation status
information from the encounter ship to the target ship.

As shown in Figure 1, the ship state information at t is used as input to the prediction
model, and the location information at t+1 after t is used as the model output. Therefore,
we can formulate Output = f(Input), where f(.) represents the prediction function of the
ship trajectory obtained using our model.

Figure 1. Overview explanation of trajectory prediction.

3.2. Methodology Design of Ship Trajectory Prediction

To solve the trajectory prediction of ships in an encounter situation, we add the relative
position and navigation status information of the trajectory of the observed ship and the
trajectories of the surrounding ships to our prediction framework. In this study, a sequence
model is used to determine the impact of the relative positional changes of the observed
ship and the ship sailing on the future navigation trajectory of the observed ship. The
attention mechanism is used to dynamically adjust the weight of the sequence information
to help the model focus on the important position change information, to dynamically
adjust the prediction in the sequence prediction process.

This study proposes a new trajectory prediction structure that uses AIS data to train
the model, as shown in Figure 2. The model is composed of three modules: Module 1
is an AIS data processing module, which can effectively improve the data quality and



J. Mar. Sci. Eng. 2023, 11, 1530 4 of 21

model execution efficiency. Module 2 is the trajectory prediction model developed in this
study, which is a deep-learning prediction model with an encoder–decoder structure and
an attention mechanism. The encoder structure is a multi-layer LSTM, and the decoder
consists of an RNN, a multi-layer LSTM, and a self-attention mechanism, which is described
in detail in Section 3.3. The training data from Module 1 are used as input to Module 2 to
train the prediction model. Finally, Module 3 is a prediction and validation module. Its
main function is to apply the test data of Module 1 to optimize the parameters and verify
the prediction model of Module 2.

Figure 2. Overview of the proposed trajectory prediction model.

3.3. Design of the Encoder–Decoder Learning Model

The encoder of the proposed model is an LSTM neural network, which maps the input
influence onto the sequential context representation. Based on the attention mechanism,
the hidden state sequence encoder is combined with the information representation of
the context. The decoder of the proposed model is a feature fusion layer that extracts the
potential relationships of future ship trajectory state information from the historical and
current state information. The weighted representation between the feature vectors of each
trajectory is then input into the RNN, so that it can obtain the information representation of
the correlation between features in each future prediction step. The RNN in the decoder has
a multi-layer structure, to improve the learning ability of the internal sequence information
representation. The overall structure is shown in Figure 3.

Figure 3. Overview of our model.

3.3.1. LSTM-Based Sequence to Sequence

The Seq2Seq model consists of an encoder and a decoder. The two units use a recursive
neural network (RNN or LSTM) to encode the input as a vector representation and then
use another sequential network to decode it. The main task of the encoder is to read the
sequence and pass the discovered rules to the decoder. The decoder decodes the received
rule information to generate an output sequence.
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Figure 4 shows the classic Seq2Seq model architecture.

• x1to xt represent the input sequence characteristic information of the model;
• h1to ht are the outputs of each circulating neural network cell;
• y1 and y2 represent the label sequence of the model output;
• The variable C between the encoder and decoder represents the sequence information

representation obtained by passing the input feature sequence information through
the encoder.

Figure 4. Seq2seq model architecture.

The RNN is a feature extractor of global information from the sequence and can be
used to process the sequence data. In the RNN, neurons can accept information from other
neurons and also their own information, to form a loop structure, as shown in Figure 5a.
Here, the gradient disappeared due to the long input sequence.

(a) Structure of the RNN cell. (b) LSTM cell structure.

Figure 5. Structure of the recurrent neural network cell. The symbol xt represents the input informa-
tion of the RNN at the current time step t, ht−1 represents the hidden state of time step t− 1, and ht

represents the output information of time step t.

To solve the problem of the vanishing gradient, a gating mechanism for forgetting
the previously accumulated information is required. An LSTM is a type of RNN based on
a gating mechanism. Compared with the traditional RNN, an LSTM introduces a gating
mechanism to control the speed of information accumulation. Through the forgetting gate,
input gate, and output gate, it forgets the previous information and simultaneously adds
new information, which effectively solves the loss of learning information caused by a
gradient explosion or disappearance. The unit structure is shown in Figure 5b. The notation
σ represents the sigmoid activation function, ht−1 is the output of the previous LSTM unit,
xt indicates the state information of the input at the current time, and Ct−1 is the internal
state of the memory unit in the last moment. Each memory block has three gates to control
the path of the information transmission.

a. Forget gate. ht−1, Ct−1, and xt are used as inputs to calculate the amount of informa-
tion ft (value is between 0 and 1) to be forgotten.

ft = σ(W f · [ht−1, xt] + b f ) · Ct−1 (1)

b. Input gate. The input information it and candidate status C̃t can be obtained by
the inputs ht−1 and xt with a sigmoid function and tanh function, respectively. To
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calculate it · C̃t, we need to update the information and forgotten information Ct−1 · ft,
and then obtain a new state Ct. The specific Equations are (2)–(4).

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = it · C̃t + Ct−1 · ft (4)

c. Output gate. ht−1 and xt are input to the sigmoid function to obtain the output
information Ot. The product of the output information and activated value of the
current updated state is the information carried by the internal state at the current
time ht as the output information at time t.

Ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = Ot · tanh(Ct) (6)

Equations (1)–(6) introduce the operation of the LSTM unit in detail. The output
function of the LSTM unit can be expressed as follows:

ht = LSTMUnit(xt, ht−1, θ) (7)

where the LSTMUnit(·) function represents the operation rules forget, input, and output in
Equations (1)–(6); and θ represents the parameters in the LSTM unit.

3.3.2. Attention Mechanism

The attention mechanism module is used in the decoder of the model, to improve the
information resource allocation of the model. This can enable the model to dynamically
adjust the weights of serial information and allow it to focus on important positions to
achieve dynamic adjustment of the weights during the prediction process. The structure of
the attention mechanism is shown in Figure 6.

Figure 6. Attention mechanism structure.

Keys = values = ht(t ∈ {1, . . . , N}) are the outputs of all LSTM unit sequences in the
encoder at all times, and query = h′ is the output of the LSTM layer in the decoder. First, the
correlation between h′ and ht is calculated using the attention-scoring function s(·). The
calculation formula of h′ is h′ = LSTMUnit(Xt, ht, θ

′
).

The models commonly used as s(·) are additive models, such as point product models
or scaling point product models.In this study, a scaling point product model is selected as
the score function. It can make better use of a matrix product in the process of matrix oper-
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ation and can effectively solve the decrease in the softmax function gradient. D represents
the dimension of the input vector.

s(ht, h′) =
hT

t h′√
D

(8)

The softmax function is used to map the output value of the score function between 0
and 1, and the attention distribution of h′ with respect to ht is obtained, αt, which indicates
the degrees of input vector at t. Finally, αt is the weight, and ht is the weighted sum of the
corresponding positions.

αt = so f tmax(s(ht, h′)) =
exp(s(ht, h′))

∑N
j=1 exp(s(hj, h′))

(9)

att(H, h′) =
N

∑
t=1

αtht, H = [h1, . . . , hN ] (10)

3.3.3. Feature Fusion Layer

To model the potential relationships of the ship trajectory information between the
historical state and current state, we propose a feature fusion layer. Its structure is shown
in Figure 7a. This layer consists of two parts: a multi-layer perceptron (MLP) and a multi-
head self-attention (MHSA) mechanism. The MLP is used for linear mapping of the input
sequence information. The MHSA is used for calculating and selecting multiple information
points from the input information in parallel (see Figure 7b). The original structure of
the self-attention mechanism is shown in Figure 6, which is set as Keys = Values = Query.
The MHSA can obtain the dependency information at the input stage, connect the input
information, and extract the important features from the input data. Simultaneously, these
features are spliced with the linear mapping information, which is extracted by the MLP
from the input data. The calculation formulas are given as follows:

MHatt = σ

(
WMH

(
concat

(
att
(
(K, V), Q

)
i

)))
, f or i = 1, . . . , d (11)

M = σ(Wm · X) (12)

F = concat(MHatt, M) (13)

where σ, WMH , and Wm are the activation function in the full connection layer and weight
parameters, respectively. The concat(·) function is used to connect multiple arrays with-
out changing the existing array values. The subscript i of the attention function is the
head number of the self-attention mechanism, where K = V = Q = X. Finally, X is the
position and status information of the observed ship at time t, the previous k times, and the
encounter ship.
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(a) Structure of the feature fusion layer. (b) Multi-head attention mechanism structure.

Figure 7. Structure of the feature fusion layer and multi-head attention mechanism.

4. Numerical Experiments
4.1. Data Description

The AIS data used in this study were mainly collected from onboard AIS equipment in
the Yangtze River delta region of China and the eastern coastal region of the United States.
In this experiment, we collected a large amount of AIS data and selected six case studies of
collision avoidance from the two regions. The research subject data from each region were
collected on different dates. Table 1 provides detailed information about the collected data,
and Figure 8 shows the specific location of each collision avoidance case.

In the experiment, the navigation trajectory sequence was sequentially sampled with
a set sliding window length, where 60% and 40% of the samples were randomly divided
into training and testing sets. The processing of experimental datasets for each situation
was the same. The training set was used to train and determine the weights, deviation,
and other parameters of the model. After training, the test set was used to evaluate the
proposed model and other comparison models.

4.2. Setting of Experiments
4.2.1. Criterion of Model Evaluation

The mean square error (MSE) was used as the loss function to quantify the difference
between the predicted and real values. After completing the model construction, we used
the MAE and average displacement error based on the Haversine distance (HADE) to
evaluate the model. These are calculated as follows:

MSE =
1
p

p

∑
l=i

(Yi − ŷi)
2 (14)

MAE =
1
p

p

∑
l=i
|Yi − ŷi| (15)

HADE =
1
p

p

∑
l=i

2r arcsin

√sin2(
ˆlati − lati

2
) + cos ˆlati cos lati sin2(

ˆloni − loni
2

)

 (16)

where p is the total number of AIS data samples for training or testing, ŷi is the estimated
value of the ship trajectory longitude and latitude, Yi is the measured value of the navigation
longitude and latitude of the ship, r is the Earth’s radius, ˆlati and ˆloni represent the
predicted latitude and longitude, and lati and loni represent the true latitude and longitude,
respectively. In the experiment, the ship status information containing the first 10 time
steps of the current time t was used as input to the model, and the geographic location
information of the 10 time steps after the current time t was predicted as the output.
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(a) (b)

Figure 8. Two routes of the case ships; the red line represents the navigation trajectory of the obser-
vation ship; the black line represents the navigation trajectory of the opposite ship. (a) Navigation
trajectory of collision avoidance for ships in Yangtze River delta. (b) Navigation trajectory of collision
avoidance for ships in the eastern coastal area of the United States.

Table 1. Collision avoidance cases of experimental ship trajectories from different areas.

Water Area MMSI Number of AIS Points Date References

Yangtze River Delta

413450480 2124 1 February 2019

Figure 8a

413425610 1529

414386000 912 28 June 2019312958000 786

413556520 257 2 January 2022413585000 207

Eastern Coastal Area
of the United States

367185680 1440 2 February 2019

Figure 8b

304604000 823

372821000 1180 31 December 2021311000375 669

316001635 1112 2 January 2022316044371 1440

4.2.2. Model Parameter Setting

The Adam adaptive learning rate optimization algorithm [42] was used to update
the network parameters of the model structure. In the LSTM layer part of the sequence
information extraction, the number of LSTM layers was between one to three. The number
of hidden units in each layer of the LSTM searching for the optimal value was taken
from [32, 320]. The serial batch size in the experiment was 512, the number of training
simulations was 200, and the number of heads for the multi-head self-attention mechanism
was 2. To prevent model overfitting, a dropout mechanism [43] and a regularization
term were used in the training process. The optimization range and optimization interval
granularity of each parameter and the parameter value ranges are shown in Table 2. After
the comparison experiment with multiple sets of super parameter selection, using the
encoder–decoder model based on the multi-module attention mechanism, the parameters
of two different trajectory regions (Situation 1 and Situation 2) were chosen as shown in the
last two columns of Table 2.
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Table 2. Model training parameters.

Parameters Optimization
Range

Interval
Granularity

Head-On
Situation 1

Head-On
Situation 2

Dropout rate (0.1, 0.5) 0.1 - -
Learning rate (0.0001, 0.1) 0.0001 0.002 0.002

No. of LSTM layers (1, 3) 1 3 3
No. of hidden cells (32, 320) 32 128 128
No. of MHSA head (2, 10) 1 2 2

Regularization parameter (0.01, 1) 0.01 0.001 0.001

4.2.3. Introduction of Baseline Methods

In the comparisons, we employed four baseline methods, as follows:

(1) The BPNN has the classic three layers: input layer, hidden layer, and output layer
(see Figure 9a). In its network structure, the neurons are connected from the input
layer to the output layer;

(2) LSTM is a classic sequence prediction model. The structure is shown in Figure 9b,
and the unit structure of each LSTM cell can be found in Figure 5b;

(3) DANAE, Denoising automatic encoders (DAE) were proposed by Vincent et al. [44]
and are used for prediction tasks, while DANAE is a deep denoising automatic
encoder used for attitude estimation [45,46];

(4) EncDec-ATTN is a deep learning method used for ship trajectory prediction based on
recurrent neural networks and was proposed by Capobianco et al. [28]. This method
can learn spatiotemporal correlations from historical ship mobility data and predict
future ship trajectories.

(a) BPNN (b) LSTM

Figure 9. The basic structure of the baseline method.

4.3. Prediction Analysis and Result Discussion
4.3.1. Analysis of Model Performance

MSE and MAE were used to evaluate the performance of the model, which was carried
out using a Windows 10 system with a 2.90 GHz i5 central processor and 32 GB of memory.
The model was coded using TensorFlow 2.4.0 in Python 3.8. The analyses of the prediction
performance of our model and those of the other two models are shown in Table 3.

Table 3 shows that our model had the lowest MSE, MAE, and HADE. In both regions,
the parameter number of the LSTM layer was 3, the number of hidden units was 128,
the learning rate was 0.002, and the regularization parameter was 0.001. For Head-on
Situation 1 from the Yangtze River, the MSE and MAE of the latitude predicted by our
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model were 2.8857 × 10−5 and 0.0042, respectively, and the MSE and MAE of the longitude
were 2.5220 × 10−5 and 0.0041, respectively. For Situation 2 from the eastern coastal
area, the MSE and MAE of the latitude predicted by our model were 3.8907 × 10−5 and
0.0044, respectively, and the MSE and MAE of the longitude were 3.0541 × 10−5 and 0.0042,
respectively. Comparing with the experimental results of the other models, our model and
EncDec-ATTN consistently outperformed the classic network models not using attention
mechanisms. Moreover, the evaluation scores of our model decreased by 27.5% and
21.4%, respectively, compared with EncDec-ATTN, which indicated a greater advantage
for trajectory prediction in this experiment. HADE reflects the displacement error of the
predicted position of a ship from its true position in real scenarios, as shown in Figure 10.
In terms of the prediction performance of the ship trajectories, our model had the lowest
MSE and MAE values. Meanwhile, the HADE was also lower than that of the other
prediction models.

Table 3. Comparison with the performance index of classic models.

Model Position MSE MAE HADE Optimal Parameter

Head-on Situation 1
from Yangtze River delta

BPNN LON 3.1854 × 10−4 0.0110 1256.0985 3, (128, 64, 32), 0.01, 0.002
LAT 3.2575 × 10−4 0.0113

LSTM LON 1.4240 × 10−4 0.0093 1072.9199 3, (128, 128, 128), 0.01, 0.002
LAT 1.5876 × 10−4 0.0096

DANAE LON 1.2190 × 10−4 0.0074 890.1905 3, (128, 64, 10), 0.001, 0.002
LAT 1.5209 × 10−4 0.0085

EncDec-ATTN LON 4.5361 × 10−5 0.0051 612.8078 2, (128, 128), 0.002, 0.001
LAT 5.4565 × 10−5 0.0057

Our Model LON 2.5220 × 10−5 0.0041 480.3572 3, (128, 128, 128), 0.002, 0.001
LAT 2.8857 × 10−5 0.0042

Head-on Situation 2
from eastern coastal area

of the United States

BPNN LON 3.8615 × 10−4 0.0197 1366.2123 3, (128, 64, 32), 0.01, 0.002
LAT 3.6022 × 10−4 0.0190

LSTM LON 1.9693 × 10−4 0.0107 1045.1206 3, (128, 128, 128), 0.01, 0.002
LAT 1.6729 × 10−4 0.0105

DANAE LON 9.1580 × 10−5 0.0077 670.2299 3, (128, 64, 10), 0.001, 0.002
LAT 9.7660 × 10−5 0.0082

EncDec-ATTN LON 5.8020 × 10−5 0.0058 493.7096 2, (128, 128), 0.002, 0.001
LAT 5.0178 × 10−5 0.0056

Our Model LON 3.0541 × 10−5 0.0042 422.7494 3, (128, 128, 128), 0.002, 0.001
LAT 3.8907 × 10−5 0.0044

4.3.2. Discussion of the Prediction Results

To further evaluate the prediction ability, a comparison of the prediction results of the
different prediction methods at different time steps is shown in Figures 11 and 12. The
model prediction was evaluated according to the error between the predicted results and
the actual longitude and latitude.

In Head-on Situation 1 from the Yangtze River, as shown in Figure 11a,c, where two
ships meet and avoid each other, the first ship is sailing along the planned route, and the
course is relatively stable. We observed that all models could predict accurately under
relatively simple sailing conditions. As shown in Figure 11b, when the first ship began to
change course, the quality of the trajectory prediction generated by our model was much
lower than that of the other models.
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(a) Longitude MSE of two situations. (b) Longitude MAE of two situations.

(c) Latitude MSE of two situations. (d) Latitude MAE of two situations.

(e) HADE of two situations.

Figure 10. Results comparison of the MSE, MAE, and HADE. Brown and blue-green represent the
evaluation indicators for Situations 1 and 2 from different areas, respectively. The green dots represent
the average values.

In Head-on Situation 2 from the eastern coastal region, as shown in Figure 12a–d,
during the initial sailing phase with the encounter ship, the first ship encountered the other
ship and changed the sailing course. At this time, the prediction results of BPNN, LSTM,
and DANAE have large errors. One benefit of the attention mechanism is that our model
can predict ship trajectories with less variance from the actual ship trajectories.

In previous studies [28,38–41], only a single attention mechanism was used to express
the historical trajectory and current state information of ships, mainly focusing on hidden
information within sequences. However, the correlation of information between the spa-
tiotemporal sequence features is often overlooked. Unlike in previous studies, the proposed
model introduces both global attention and multi-head self-attention mechanisms. The
global attention mechanism is used to combine the trajectory history and current state
information to obtain hidden information between sequences. The multi-head self-attention
mechanism can capture the spatiotemporal correlations between the sequence-feature data
and extract the fusion features, to generate a new feature representation. The two extracted
parts of this information are correlated, to predict the ship trajectory at the next time point.
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(a) (b) (c)

(d) (e) (f)

Figure 11. The prediction results for Head-on Situation 1. (a–c) Visualization of ship navigation
trajectory predicted at different time steps. (d–f) Error of predicted navigation trajectory at different
time steps. The “ground truth” in the legend represents the true values of the experimental sample.

(a) (b) (c)

(d) (e) (f)

Figure 12. The prediction results for Head-on Situation 2. (a–c) Visualization of the ship navigation
trajectory predicted at different time steps. (d–f) Error of the predicted navigation trajectory at
different time steps. The “ground truth” in the legend represents the true values of the experimen-
tal sample.
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4.3.3. Analysis of the Attention Mechanism with the Weight Score

Our model includes two attention modules: The global attention mechanism recog-
nizes the information interactions in the input sequence, and the multi-head self-attention
mechanism extracts the effective feature information of the output target in the input
sequence information. To explore the impact of the attention mechanism on model per-
formance, we compared the performance of the attention mechanism module with and
without the attention mechanism, as shown in Table 4.

Table 4. Comparison of the model performance with and without the attention mechanism.

Model Position MSE MAE HADE Optimal Parameter

Head-on Situation 1
from Yangtze River delta

Seq2Seq LON 9.0469 × 10−5 0.0075 845.4042 3, (128, 128, 128), 0.01, 0.002
LAT 9.2702 × 10−5 0.0074

Seq2Seq-ATTN LON 5.7978 × 10−5 0.0061 717.5646 3, (128, 128, 128), 0.01, 0.002
LAT 6.4726 × 10−5 0.0064

Seq2Seq-MHSA LON 4.5202 × 10−5 0.0051 608.6507 3, (128, 128, 128), 0.01, 0.002
LAT 5.2463 × 10−5 0.0055

Our Model LON 2.5220 × 10−5 0.0041 480.3572 3, (128, 128, 128), 0.002, 0.001
LAT 2.8857 × 10−5 0.0042

Head-on Situation 2
from eastern coastal area

of the United States

Seq2Seq LON 9.3664 × 10−5 0.0077 758.1244 3, (128, 128, 128), 0.01, 0.002
LAT 1.1874 × 10−4 0.0078

Seq2Seq-ATTN LON 9.0765 × 10−5 0.0065 629.4445 3, (128, 128, 128), 0.01, 0.002
LAT 7.0376 × 10−4 0.0058

Seq2Seq-MHSA LON 4.6450 × 10−5 0.0050 512.9711 3, (128, 128, 128), 0.01, 0.002
LAT 5.4739 × 10−5 0.0057

Our Model LON 3.0541 × 10−5 0.0042 422.7494 3, (128, 128, 128), 0.002, 0.001
LAT 3.8907 × 10−5 0.0044

Table 4 and Figure 13 show the comparison results of the models under different
attention mechanisms. The Seq2Seq model showed a good prediction accuracy with the
attention mechanism. Focusing on the prediction for Head-on Situation 1 from the Yangtze
River, the prediction results of the model with a global attention mechanism showed
decreases in MAE of 0.0014 and 0.0010 in the longitude and latitude predictions, and a
decrease in HADE of 15.12%. The MAE of longitude and latitude predicted by the MHSA
mechanism decreased by 0.0024 and 0.0019, respectively, and the HADE decreased by 28%.
The results of comparing the MSE, MAE, and HADE showed that our model outperformed
the other two models with the attention mechanism.

To explain the internal working of the neural network, we obtained the importance
weight vector of the input sequence at each position in the prediction sequence and explored
the influence of the attention mechanism on the proposed model. Inspired by Lee et al. [47]
for the interpretability of the attention mechanism, we visualized the output of two self-
attention heads in the prediction model, and the visualization of the output attention
weight is shown in Figure 14.

We visualized the weight values calculated by the attention mechanism of the Head-on
Situation 2 in the model of different navigation state stages and explained the importance
of the network to specific trajectory characteristics. The first column in Figure 14 shows the
input, target, and prediction sequences of the different models; the second column shows
the visualization of the global attention mechanism weight score of our model, and the last
two columns show the visualization of the MHSA weight score of the feature fusion module
in our model. In the thermodynamic diagram, the line represents the output sequence, and
the list shows the weight distribution of the input sequence. Thus, it can be determined that
positions in the history mode are considered more important when generating the predicted
trajectory for the global attention mechanism (second column). Over time (from left to
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right), the model can influence the characteristics of the input sequence when generating
the output sequence. At different stages of the predicted navigation status, the positions
considered by the output series are different, as shown in Figure 14b,f, which pay more
attention to the middle and tail segments of the input series, respectively.

Figure 14j shows a marginal difference in the weight values of the entire series. For the
MHSA mechanism (the third and fourth columns), it can be observed from the figures that
the different information focused on by the attention head was inconsistent, as shown in
Figure 14k. The input X1 sequence had a greater correlation with X1, X7, and X8, while X3
had a greater correlation with X4 and X9. The MHSA mechanism calculates the correlation
representation between AIS information features and generates a better information feature
code for the current input sequence by making full use of the position state information in
the sequence. This allows the model to focus on the information of different positions in
the input sequence, and it can also alleviate overfitting by integrating different attention
heads, to improve the accuracy and robustness of the overall model.

(a) Longitude MSE of the two situations. (b) Longitude MAE of the two situations.

(c) Latitude MSE of the two situations. (d) Latitude MAE of the two situations.

(e) HADE for the two situations.

Figure 13. Comparison results of MSE, MAE, and HADE. Brown and blue-green represent the
evaluation indicators for Situations 1 and 2 from different areas, respectively. The green dots represent
the average value.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14. Weights of attention mechanism. (a,e,i) is the prediction results of the ship navigation
trajectory at different conditions. (b,f,j) Weights of the global attention mechanism. (c,g,k) and
(d,h,l) represent the weight values of the self-attention mechanism for the two heads, respectively.

4.3.4. Analysis of Model Validation

For both the Yangtze River delta and eastern coast, we selected two encounter sce-
narios to verify the effectiveness of the trajectory prediction. Test samples 1 and 2 for the
Yangtze River delta contained encounter scenarios of MMSI (414386000, 312958000) on
28 June 2019 and MMSI (413556520, 413585000) on 2 January 2022. Test samples 1 and
2 for the eastern coast contained encounter scenarios of MMSI (372821000, 31100037) on
31 December 2021 and MMSI (316001635, 316044371) on 2 January 2022. The experimental
results and comparative analysis are shown in Table 5.

From Table 5, it can be seen that our model achieved the best results for the various
evaluation indicators, with the highest accuracy and a good predictive performance. In
addition, statistical methods were used to analyze the results, as shown in Figure 15.
In terms of the prediction performance of the ship trajectories, our model included an
attention module that more effectively extracted important feature information from the
trajectory sequences than BPNN, LSTM, Seq2Seq, and DANAE. Compared with the models
containing a single attention mechanism, such as Seq2Seq-ATTN, Seq2Seq-MHSA, and
EncDec-ATTN, our model effectively extracted correlations between the sequences and
features, accounting for multiple attention structures. The experimental results also showed
that our model had a good trajectory prediction performance under encounter situations.
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Table 5. Comparison of the model performance for the test samples.

Model Position Test Sample 1 Test Sample 2
MSE MAE HADE MSE MAE HADE

Yangtze River delta

BPNN LON 5.5900 × 10−4 0.0137 537.5320 4.7147 × 10−4 0.0217 853.0951
LAT 5.8601 × 10−4 0.0142 5.1134 × 10−4 0.0226

LSTM LON 1.6606 × 10−4 0.0102 399.8864 2.6896 × 10−4 0.0116 640.3072
LAT 1.7191 × 10−4 0.0108 3.2279 × 10−4 0.0129

Seq2Seq LON 8.5295 × 10−5 0.0075 296.0660 9.9816 × 10−5 0.0078 485.1224
LAT 9.2641 × 10−5 0.0078 1.0563 × 10−4 0.0080

Seq2Seq-ATTN LON 7.3838 × 10−5 0.0069 264.7203 8.0580 × 10−5 0.0071 414.3751
LAT 7.6468 × 10−5 0.0069 8.4536 × 10−5 0.0071

Seq2Seq-MHSA LON 5.0014 × 10−5 0.0056 215.3634 6.2602 × 10−5 0.0061 350.034
LAT 4.4967 × 10−5 0.0055 6.7629 × 10−5 0.0065

DANAE LON 1.2231 × 10−4 0.0074 301.2500 1.3935 × 10−4 0.0083 495.0518
LAT 2.1533 × 10−4 0.0083 8.8652 × 10−5 0.0083

EncDec-ATTN LON 5.2074 × 10−5 0.0055 218.4405 5.6014 × 10−5 0.0057 334.0571
LAT 5.7575 × 10−5 0.0058 7.9404 × 10−5 0.0068

Our Model LON 3.2121 × 10−5 0.0044 174.3734 2.9485 × 10−5 0.0044 250.2701
LAT 3.5942 × 10−5 0.0045 3.5306 × 10−5 0.0048

Eastern Coastal Area
of the United States

BPNN LON 5.4331 × 10−4 0.0233 924.1445 5.2985 × 10−4 0.0160 1356.0606
LAT 6.2152 × 10−4 0.0249 5.7272 × 10−4 0.0168

LSTM LON 1.9752 × 10−4 0.0108 767.8572 1.5630 × 10−4 0.0100 1090.1046
LAT 2.3233 × 10−4 0.0111 1.3083 × 10−4 0.0097

Seq2Seq LON 5.8735 × 10−5 0.0062 586.9804 1.0423 × 10−4 0.0078 880.4276
LAT 9.7247 × 10−5 0.0076 9.0954 × 10−5 0.0076

Seq2Seq-ATTN LON 5.0514 × 10−5 0.0056 520.9248 7.4921 × 10−5 0.0066 745.4695
LAT 7.4168 × 10−5 0.0068 6.4257 × 10−5 0.0065

Seq2Seq-MHSA LON 4.6845 × 10−5 0.0049 383.6337 4.7334 × 10−5 0.0053 621.6424
LAT 5.7935 × 10−5 0.0059 5.1199 × 10−5 0.0054

DANAE LON 9.3591 × 10−5 0.0072 629.2457 1.2319 × 10−4 0.0081 864.9335
LAT 1.2229 × 10−4 0.0084 9.7121 × 10−5 0.0074

EncDec-ATTN LON 4.5829 × 10−5 0.0056 421.0406 5.0587 × 10−5 0.0055 632.9389
LAT 5.6622 × 10−5 0.0056 4.9324 × 10−5 0.0057

Our Model LON 2.9595 × 10−5 0.0043 358.1493 3.2749 × 10−5 0.0043 487.4037
LAT 4.1747 × 10−5 0.0048 3.5261 × 10−5 0.0042

(a) (f)

Figure 15. Cont.
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(b) (g)

(c) (h)

(d) (i)

(e) (j)

Two test samples of the Yangtze River Two test samples of the eastern coastal area

Figure 15. Comparison analysis of the MSE, MAE, and HADE of the test samples from the different
areas. Brown and blue-green boxplots represent the evaluation indicators for test samples 1 and 2,
respectively. The green dots are the average value. Figure (a–e) and (f–j) represent the Yangtze River
and eastern coastal area, respectively.

5. Conclusions

To predict the future trajectory of a ship in the case of encounter situations, a high-
precision trajectory prediction model based on AIS navigation-history data was proposed.
This method uses an LSTM neural-network model to encode and decode trajectory infor-
mation from sequences. The framework of the proposed model uses the relative navigation
state information of the encounter and observation ships as part of the input state infor-
mation characteristics, to predict the observation ship trajectory. Compared with classical
models, the proposed model has a stronger generalizability and better performance. Ex-
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periments showed that the attention-based model could effectively capture the potential
information and correlations in a ship position sequence, so that the proposed model had a
better prediction ability for the curve trajectory segment. This significantly improved on the
performance of the existing models, which have strong advantages in trajectory prediction.
It provides an effective safeguard for ship intelligent navigation systems, by providing
real-time trajectory prediction and developing safe and efficient decision support.

In future work, we plan to consider more influencing factors around ships, in the case
of multiple ship collisions, and provide further decision support for our model, for more
cases of ship collision avoidance.
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