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Abstract: Significant wave height (SWH) is a key parameter for monitoring the state of waves.
Accurate and long-term SWH forecasting is significant to maritime shipping and coastal engineering.
This study proposes a transformer model based on an attention mechanism to achieve the forecasting
of SWHs. The transformer model can capture the contextual information and dependencies between
sequences and achieves continuous time series forecasting. Wave scale classification is carried out
according to the forecasting results, and the results are compared with gated recurrent unit (GRU)
and long short-term memory (LSTM) machine-learning models and the key laboratory of MArine
Science and NUmerical Modeling (MASNUM) numerical wave model. The results show that the
machine-learning models outperform the MASNUM within 72 h, with the transformer being the
best model. For continuous 12 h, 24 h, 36 h, 48 h, 72 h, and 96 h forecasting, the average mean
absolute errors (MAEs) of the test sets were, respectively, 0.139 m, 0.186 m, 0.223 m, 0.254 m, 0.302 m,
and 0.329 m, and the wave scale classification accuracies were, respectively, 91.1%, 99.4%, 86%,
83.3%, 78.9%, and 77.5%. The experimental results validate that the transformer model can achieve
continuous and accurate SWH forecasting, as well as accurate wave scale classification and early
warning of waves, providing technical support for wave monitoring.

Keywords: significant wave height forecasting; long-sequence forecasting; transformer; wave
scale classification

1. Introduction

Marine forecasting plays an extremely important role in supporting coastal engi-
neering construction, disaster prevention and mitigation, marine ecological civilization
construction, and economic development. Forecasting significant wave height (SWH) holds
important scientific value for monitoring the state of waves [1–6].

Traditional numerical models for wave forecasting are based on physical dynamics,
solving a wave action balance equation through the use of discrete calculations [1]. How-
ever, these models are usually computationally expensive and complex [1,2]. In contrast,
existing machine-learning methods focus on data association and do not rely on physical
mechanisms. Compared to numerical models, existing machine-learning methods offer
lower computational and time costs and achieve higher accuracy in short-term wave fore-
casting [3–25]. Commonly used machine-learning models for wave forecasting include
artificial neural network (ANN) [3], backpropagation (BP) [4], support vector machine
(SVM) [5–7], long short-term memory (LSTM) [8–17], bidirectional LSTM (BiLSTM) [18–20],
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gated recurrent unit (GRU) [17,21–23], and bidirectional GRU (BiGRU) [24,25]. These mod-
els capture the envolution of wave height with time from historical information or model
wave envolution based on the driving effect from the wind and the influences of other
environmental features (e.g., air pressure and temperature) on waves. Wave forecasting is
divided into point-to-point forecasting and continuous-sequence forecasting. Most current
studies focus on point-to-point forecasting, where waves at specific time steps in the future
are forecasted by setting the length of the forecast window. Prahlada et al. [3] utilized
a hybrid model, combining wavelet analysis and an artificial neural network (WLNN)
to forecast the significant wave height in a time series, with lead times extending up to
48 h. The root mean square error (RMSE) for a 48 h forecast horizon near the western
region of Eureka, Canada, in the North Pacific Ocean was found to be 1.076 m. Under
normal conditions, the mean absolute percentage error (MAPE) for a 12 h forecast was
61%, while under extreme conditions, it reduced to 40%. Li et al. [21] used a GRU model
and introduced environmental features such as wind speed and sea temperature to predict
SWH 1–3 h ahead. Wave height data were collected from six monitoring stations in the
offshore waters of China. Zhou et al. [9] used a convolutional LSTM (ConvLSTM) model to
perform forecasting 3–24 h ahead using National Oceanic and Atmospheric Administration
(NOAA) wave reanalysis data under normal and extreme weather conditions. The mean
absolute percentage error (MAPE) of a 12 h forecast was 61% under normal conditions and
40% under extreme conditions.

In addition to using machine-learning models for short-term forecasting, some stud-
ies [8,18–20,26] have found that the combination of attention mechanisms or decomposition
methods with machine-learning algorithms can greatly improve SWH forecasting. In a
study by Zhou et al. [8], an integrated model combining empirical mode decomposition
(EMD) and LSTM was employed for forecasting SWH in the Atlantic Ocean at 3, 6, 12, 24,
48, and 72 h horizons. Wang et al. [19] proposed a convolutional neural network (CNN)–
BiLSTM–attention model and used it to carry out SWH forecasting 1–24 h ahead under
normal and typhoon conditions using WaveWatch III (WW3) reanalysis data from the East
China Sea and South China Sea from 2011 to 2020. The average RMSEs for the forecasts at
3, 6, 12, and 24 h were observed to be 0.063 m, 0.105 m, 0.172 m, and 0.281 m, respectively,
under normal conditions. Under extreme conditions, the corresponding RMSEs were 0.159
m, 0.257 m, 0.437 m, and 0.555 m. Notably, this model outperformed the one trained solely
on WW3 reanalysis data. The results demonstrate that the incorporation of an attention
mechanism improved the forecasting accuracy of the model. Celik [26] constructed a hybrid
model by integrating an adaptive neuro-fuzzy inference system (ANFIS) with singular
value decomposition (SVD) for forecasting SWH in the Pacific and Atlantic Oceans at lead
times ranging from 1 to 24 h.

Single-time forecasting can provide high-accuracy SWH forecasts at a specific time.
There are two methods for observing continuous SWH envolution over a period of time
in the future. One method involves establishing multiple single-time models, which
requires considerable computational cost. The other method is to build a time series
forecasting model, which may sacrifice the accuracy of forecasting at individual points
but save computational cost and can provide an accurate forecast trend. In recent years,
the attention-mechanism-based transformer model [27] has attracted attention due to its
excellent performance in time series forecasting tasks. This model was initially proposed
by the Google team in 2017 for natural language-processing (NLP) applications. Since then,
it has been gradually optimized and is widely used in speech recognition [28], computer
vision [29], time series forecasting [30,31], anomaly detection [32,33], and other fields [34].
Researchers in the marine field have noted the advantages of the transformer model and
applied it to marine time series data forecasting [35–39]. Immas et al. [35] used both
LSTM and transformer to achieve real-time in situ forecasting of ocean currents. The two
models performed similarly and provided valuable guidance for the path planning of
autonomous underwater vehicles. Zhou et al. [36] developed a 3D-geoformer model based
on the transformer model to forecast El Niño 3.4 sea surface temperature (SST) anomalies
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18 months in advance, achieving a Pearson correlation coefficient of 50%. Their results
were comparable to those of Ham et al. [40], who used a CNN to forecast El Niño/southern
oscillation. Feng et al. [37] used a transformer model to forecast the El Niño index, and the
results were better than those using a CNN. Pokhrel et al. [38] proposed differencing SWHs
fitted with WW3 and measured data and used a transformer model to forecast residuals
at specific time steps. Compared to WW3 predictions, the transformer-network-based
residual correction for a 3 h forecast provided more accurate estimations. The results
showed that the combination of numerical modeling and artificial intelligence algorithms
yields a better performance.

Currently, there are very limited applications of transformer models in continuous
wave forecasting [38,41] and wave scale classification. To fill this research gap, in this study,
an attempt is made to use an attention-mechanism-based transformer model to achieve
sequence-to-sequence learning for SWH. This model extracts the driving effects of various
features on the SWH evolution from the historical information of input features, captures
the contextual information and dependencies between sequences, and achieves continuous
SWH forecasting, allowing the overall trend of wave changes in the future to be monitored
and providing technical support for wave warning and forecasting.

The remainder of this paper is structured as follows. Section 2 describes the data used,
Section 3 introduces the methods and experimental setup employed in this study, Section 4
analyzes the results, and Section 5 summarizes the findings.

2. Materials
2.1. Experimental Data

Li et al. [42] showed that the wave field in the Pacific Ocean is characterized by clear
seasonal variations, with higher wave heights in winter and lower wave heights in summer.
Swells dominate in mixed waves. Influenced by the westerly wind belt, there is a relatively
large wind and wave intensity for all seasons, reaching approximately 1 m in the central
Pacific Ocean north of the equator (near the Hawaiian Islands). The waves in this area have
strong nonstationarity and a random nature, making it challenging to fit their envolution
accurately. In this study, a buoy deployed by the NOAA in the waters southwest of the
Hawaiian Islands in the central North Pacific Ocean was chosen as the research object, as
the buoy provides relatively complete hourly ocean data. The geographical location of
the buoy is shown in Figure 1, and specific details are provided in Table 1. Liu et al. [43]
conducted an analysis of meteorological data pertaining to shipping in the North Pacific
Ocean from 1950 to 1995. The data were resolved at a 5◦ × 5◦ resolution and revealed that
the waves in the equatorial zone predominantly travel in a northeast direction throughout
the year. Due to the serious lack of wave direction data of the buoy, Figure 2 only presents
the wind rose and wave rose drawn by the buoy data from 2015 to 2022. The larger the
radius of the rose, the higher the frequency of occurrence. It is evident from the charts that
the prevailing wind direction in this area is east-northeast and east, corresponding to the
direction of the waves as well.

Table 1. Detailed buoy information.

Location 17◦2′32′′ N, 157◦44′47′′ W

Site elevation sea level
Air temp height 3.7 m above site elevation

Anemometer height 4.1 m above site elevation
Barometer elevation 2.7 m above mean sea level

Sea temp depth 1.5 m below water line
Water depth 4997 m

Watch circle radius 4691.7864 m
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Figure 2. Wind rose and wave rose.

Buoy data with a time resolution of 1 h can be obtained from the official website of
the U.S. National Data Buoy Center (NDBC) at https://www.ndbc.noaa.gov/ (accessed on
15 May 2023). In this study, the data from 2000 to 2018 were selected as the training set,
the data from October 2019 to December 2021 were used as the validation set, and the data
from 2022 were used as the test set. The samples were divided using the sliding method,
and feature data of the past 96 h were used as input to forecast the SWH for continuous 12 h,
24 h, 36 h, 48 h, 72 h, and 96 h in the future. Due to reasons such as equipment maintenance
and sensor malfunctions, the data for some years were missing. Therefore, the original
data needed to be cleaned as follows: only continuous valid data were extracted during
the training, and data with large portions of consecutive missing data were removed. In
cases where there were isolated missing values in the continuous data, linear interpolation
was performed to fill in the gaps. The SWH maximum, minimum, average, and variance
after data cleaning are shown in Table 2. The numbers of valid samples in the training,
validation, and test sets are shown in Table 3.

https://www.ndbc.noaa.gov/
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Table 2. Detailed SWH information.

Station Id Max_SWH Min_SWH Mean_SWH Variance_SWH

51002 5.92 m 0.49 m 2.33 m 0.36

Table 3. Valid sample time range and quantity information.

Dataset Time_Range Valid Sample Numbers

Training set 1 January 2000–31 December 2018 117,706
Validation set 1 October 2019–31 December 2021 18,716

Test set 1 January 2022–31 December 2022 8760

2.2. Feature Selection

Feature selection is a key step in time series forecasting. The buoy data collected by
the NDBC included wave information, wind field information, and other environmental
features. Wave information consisted of SWH, dominant wave period (DPD), and average
wave period (APD); wind field information included wind speed (WSPD), wind direction
(WDIR), and peak 5 or 8 s gust speed (GST); and environmental information was composed
of air temperature (ATMP), sea surface temperature (WTMP), and sea level pressure (PRES).
After data cleaning, a correlation analysis was performed on all buoy feature data by
calculating the Pearson correlation coefficients between the features. The results are shown
in Figure 3.
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Figure 3 shows that SWH had correlation coefficients greater than 0.5 with both WSPD
and GST, a weak positive linear correlation with APD and PRES, no clear relationship with
wind direction, and a weak negative linear correlation with sea surface temperature and
air temperature. In a comprehensive simulation framework examining the evolution of
waves, Allahdadi et al. [44] conducted an empirical investigation on various whitecapping
formulas. They observed a notable association between the underestimation of wave
height and negative values of the air–sea surface temperature difference (dT) at NDBC
44011. Wave change is a complex, dynamic process that is not only related to wind
field information and wave information but is also regulated by sea surface temperature
and air temperature, although SWH is negatively related to sea surface temperature and
air temperature. Therefore, all data mentioned above were combined as input features
for training.
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2.3. Data Preprocessing

When considering different value ranges and scales (i.e., dimensions) of different
feature data, to eliminate the influence of different dimensions on the model training, data
preprocessing should be performed before training the model by normalizing different
features and scaling the data. The data processing was conducted in this study using
min-max normalization, which scales each feature proportionally to a range of [0, 1] using
Equation (1) [21]:

x̂i =
xi −min(xi)

max(xi)−min(xi)
(1)

where x̂i is the normalized value of xi, max(xi) is the maximum value among all xi, and
min(xi) is the minimum value among all xi.

2.4. Wave Scale Classification Criteria

According to the wave scale level table in the specifications for oceanographic sur-
veys [45] and the SWH changes of the selected buoy, the studied waves were divided into
four levels: (i) slight sea: 0 m < Hs < 1.25 m; (ii) moderate sea: 1.25 m ≤ Hs < 2.5 m;
(iii) rough sea: 2.5 m ≤ Hs < 4 m; and (iv) very rough sea: 4 m ≤ Hs < 6 m. The data
volume proportions for these wave scale levels were 0.845%, 64.842%, 33.086%, and 1.227%,
respectively. Based on these results, the waves near the Hawaiian Islands are dominated by
the moderate and large sea levels.

3. Methodology
3.1. Model Structure

The structure of the transformer model is shown in Figure 4. The transformer model
adopted an “Encoder–Decoder” architecture. The encoder was used to map the input se-
quence into a high-dimensional space and extract the dependencies of long input sequences,
and the decoder was responsible for generating the target sequence. The transformer model
was composed of multiple encoder or decoder stacks. An encoder stack contained a multi-
head attention layer and a feedforward neural network layer, and a decoder stack consisted
of two multihead attention layers and a feedforward neural network layer. Residual connec-
tions and layer normalization were applied to the output sequences of each layer. Residual
connections allowed the model to pass information across multiple layers, while layer nor-
malization sped up the model training and improved the model generalizability. Vaswani
et al. [27] proposed a transformer model that employed a learned linear transformation and
softmax function to predict the probabilities of subsequent tokens in the decoding process.
To map the decoder’s output to the target sequence, a fully connected layer was utilized as
the output layer in this study. To assess the impact of encoder and decoder stack numbers
on predictions across different time intervals, trials were conducted employing varied
numbers ranging from 1 to 6 for both components. The optimal combination selected
is presented in Table 4. As the forecasting time increased, the number of layers in the
transformer model increased, which was beneficial for capturing long-term dependencies.

Table 4. The optimal combinations of encoder/decoder stacks.

Forecast Hours Encoder Stacks (N) Decoder Stacks (M)

12 1 1
24 1 1
36 2 1
48 6 1
72 2 2
96 4 2
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The transformer model captured the relationships between the information at different
positions in the input sequence through the multihead attention layer and transferred
the contextual information of the input sequence to the output sequence. The core of the
multihead attention layer was the attention mechanism. The attention mechanism in the
transformer model calculated the correlations between the features of the input sequence
at different time steps and dynamically assigned weights to the features according to
their importance for the output result at each time step, thereby effectively learning the
dependencies between the sequence data and helping the model to improve its ability to
capture crucial information. The attention weight was calculated using Equation (2) [27]:

Attention(K, Q, V) = softmax(
QKT
√

dk
)V (2)

where Q, K, and V are obtained by mapping the input sequence to different spaces. Here, dk
represents the dimension of K. The multihead attention layer mapped the input sequence
into h feature subspaces, i.e., h attention heads. Each feature subspace could learn a set
of attention weights, and the weight parameters were not shared between subspaces. In
addition, various feature subspaces could be processed in parallel, enriching the diversity
of feature subspaces without incurring additional computational cost. The multihead
attention layer was calculated with Equations (3)–(5) [27]:

Qi = XWQi , Ki = XWKi , Vi = XWVi (3)

Hi = Attention(Qi, Ki, Vi), i = 1, 2, . . . , h (4)
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MultiHead(Q, K, V) = Concat(H1, H2, . . . Hh)W
O (5)

where WQi , WKi , and WVi are the linear projection matrices that map the input sequence X to
Q, K, and V, respectively, and Hi represents the attention weight of the ith feature subspace.

It can be observed from the calculation equations of the attention mechanism that the
attention score of the current position did not depend on the information from the previous
time step. Although both the encoding and decoding processes used a multihead attention
layer, they differed in their approaches. The attention calculation was bidirectional in the
encoding process. However, masking was applied in the decoding process to prevent the
model from accessing future information. Thus, the attention mechanism could only focus
on the earlier information, enabling the transformer model to be trained in parallel during
the encoding process. In the multihead attention layers in both the encoder and decoder,
h = 8 [27], the number of neurons in the feedforward neural network layer was set to 2048,
and the number of neurons in the final output layer was equal to the number of input
features in the model.

The attention mechanism realized the parallel processing of input sequences in the
transformer model. However, it did not consider the positional relationships between
sequence data. Therefore, before the input sequences were fed into the transformer encoder
and decoder, positional encoding was applied to introduce temporal information. Posi-
tional encoding refers to an encoding approach in the literature [27] that achieves relative
positional encoding using trigonometric functions, as shown in Equation (6). pk,2i = sin( k

10,0002i/d )

pk,2i+1 = cos( k
10,0002i/d )

(6)

where pk,2i and pk,2i+1 are the (2i)th and (2i + 1)th components of the encoded vector at
position k, respectively.

In this study, to maintain the consistency of the input sequence dimension, the original
data were linearly embedded using the fully connected layer and combined with the
positional encoding results to obtain the final input sequence for the encoder. Here, the
number of neurons in the fully connected layer was set to 512 [27].

3.2. Introduction of the Output Method

The input of a traditional transformer model [27] is historical features, and various
feature results for the next time step are output. To achieve continuous SWH forecasting,
an iterative approach is required, which is inefficient and time-consuming. Therefore, we
referred to the generative inference in the literature [30], which generates all the results for
the forecasted time steps in one forward step. The specific input and output formats are
shown in Figure 5.

3.3. Parameter Settings

During model training, a model may overfit the training data due to noise interference
caused by redundant data, a complex model structure, and unbalanced training samples.
Therefore, a dropout [46] technique is employed to prevent model overfitting. In this
study, the dropout parameters were tested between 0.01, 0.02, 0.05, and 0.1, and 0.05 was
eventually selected for the encoder and decoder. During backpropagation for parameter
optimization, the model used Adam [47] as the optimizer, with a learning rate of 0.0001 [31].
The training batch size for input sequences was selected from 32, 64, and 128, with the best
result being 64, and the model was trained for 20 epochs.

To verify the effectiveness of the transformer model, we chose the GRU [48] and
LSTM [49] methods as comparative machine-learning models, both of which are commonly
used for time series forecasting. The GRU and LSTM used in this study each consisted of a
hidden layer, a dropout layer, and a fully connected layer. For both models, the number of
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neurons in the hidden layer was set to 64, and the number of neurons in the fully connected
layer was 16. The other related parameters of the GRU and LSTM were set to be consistent
with those of the transformer model.

All three models used the mean squared error (MSE) as the loss function for model
training, as shown in Equation (7):

MSE =
1
N

N

∑
i=1

(xi − x̂i)
2 (7)

where N is the number of samples, xi is the true value, and x̂i is the forecasted value.
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3.4. MASNUM Ocean Wave Numerical Model

In this study, the baseline numerical model selected is the key laboratory of MArine
Science and NUmerical Modeling (MASNUM) numerical wave model, as proposed by
Yang et al. [50]. The governing equation of MASNUM is described by a wave energy
spectrum equation and calculated using a complex characteristic inlaid scheme based on
the spherical coordinate system. These equations consider the wave–current interaction
source function, as well as the wave propagation and refraction along the great circle.
MASNUM has been extensively validated and has shown excellent capability in accurately
simulating the global distribution of and variations in ocean waves. Hence, it serves as a
suitable choice for our baseline model in this study.

The wave energy spectrum balance equation used in the MASNUM numerical model
is shown in Equation (8) [50]:

∂E
∂t

+

(
Cgλ + Uλ

Rcosϕ

)
∂E
∂ϕ
−
(
Cgϕ + Uϕ

)
tanϕ

R
E = Sin + Sds + Sbs + Snl + Scu (8)

where E = E
(
⇀
K, λ,ϕ, t

)
is the wave number spectrum.

→
K = (kλ, kϕ) is the wave

vector, λ is longitude, and ϕ is latitude.
→
U = (Uλ, Uϕ) is the surface current velocity.

→
Cg =

(
Cgλ, Cgϕ

)
is the vector of group velocity. Sin, Sds, Sbs, Snl, and Scu are, respectively,

the wind input term, wave-breaking term, bottom friction term, wave–wave nonlinear
interaction term, and wave–current interaction function. More details can be found in [50].

For the driving wind field of the MASNUM numerical model, we utilized the global
meteorological forecast data from the Global Forecast System (GFS) provided by the Na-
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tional Centers for Environmental Prediction (NCEP). The wind field data had a spatial
resolution of 0.25◦ and a temporal resolution of 3 h. The simulation domain covered latitude
and longitude ranges from 180◦ W to 180◦ E and from 70◦ S to 70◦ N. As for the predicted
wave field, its spatial resolution was set at 0.25◦ × 0.25◦, with a temporal resolution of 1 h.
The numerical integration time for this study spanned from 1 January to 31 December 2022.

3.5. Evaluation Metrics

To assess the performance of our model and compare it with that of the GRU, LSTM,
and MASNUM numerical models, we chose mean bias, mean absolute error (MAE), RMSE,
and MAPE as the evaluation metrics to measure the accuracy of the forecasting results.
For multiclassification tasks, the microaverage precision, recall, and F1 score are the same.
Therefore, the microaverage precision was selected as the evaluation metric to assess the
accuracy of wave scale classification. These metrics are shown in Equations (9)–(14).

Bias =
1
N

N

∑
i=1

xi − x̂i (9)

MAE =
1
N

N

∑
i=1
|xi − x̂i| (10)

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (11)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣ (12)

Precision =
TP0 + TP1 + TP2 + TP3

TP0 + TP1 + TP2 + TP3 + FP0 + FP1 + FP2 + FP3
(13)

Precisioni =
TPi

TPi + FPi
(14)

where N is the number of samples, xi is the true value, x̂i is the forecasted value, TPi is
the number of correctly classified samples for the i-th class of waves, FPi is the number of
misclassified samples for the i-th class of waves, and Precisioni is the classification accuracy
of the i-th class of samples.

4. Results and Discussion

To explore the influence of different input sequence lengths on the forecasting results
of sequences of the same length, Figure 6 shows the MAE results for the three machine-
learning models, each using historical features from the previous 12 h, 24 h, 36 h, 48 h,
72 h, and 96 h as inputs, respectively, to forecast the SWHs of the next continuous 12 h.
It can be seen that the transformer model results were less affected by different input
sequence lengths, the error curve changed relatively smoothly, and the error results for
different inputs were similar. However, the GRU and LSTM models showed variations in
the forecasting performance under different input lengths. Our transformer model learned
the dependencies between different positions in the input sequence through its attention
mechanism. Thus, it was less affected by the length of the input sequence.

Table 5 presents the results of the multipoint average errors between the continuous
12 h, 24 h, 36 h, 48 h, 72 h, and 96 h forecasted SWHs and their corresponding true values.
The machine-learning models outperformed the MASNUM numerical model in terms of
MAE, RMSE, and MAPE within a 72 h time range. Interestingly, the MAE of the MASNUM
numerical model was comparable to that of the LSTM model for predicting 96 consecutive
hours. The error results of the MASNUM numerical model exhibited consistency across
different prediction lengths, with the MAE ranging from 0.32 m to 0.34 m for consecutive
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12–96 h and higher accuracy in wave scale classification for continuous 72–96 h. For the
continuous forecasting, the transformer model performed similarly to the LSTM and GRU
models. The MAE, RMSE, and MAPE between the true values and the forecasted values
all showed a gradually increasing trend with increasing forecasting time. The accuracy of
wave scale classification decreased gradually as the forecasting time increased. Overall,
the transformer model outperformed the other two machine-learning models in terms
of the average error results. For the continuous 12 h forecasting, our transformer model
achieved an average MAE of 0.1394 m, an improvement of 8.4%, 14%, and 57% over GRU,
LSTM, and the MASNUM numerical model, respectively, and had an average MAPE of
6.36%, an average bias of −0.0035, and a wave scale classification accuracy of 91%. In the
case of continuous 96 h forecasting, our transformer model achieved an average MAE of
0.329 m, an improvement of 3.2%, 2.1%, and 2.2% over GRU, LSTM, and the MASNUM
numerical model, respectively, and had an average MAPE of 15.29%, an average bias of
0.0004, and a wave scale classification accuracy of 77.47%. Therefore, the transformer model
demonstrated superior accuracy in short-term wave scale classification warnings compared
to the accuracies of the GRU, LSTM, and MASNUM numerical models.

Figure 7a–f present the frequency histograms of the average MAEs for continuous
12 h, 24 h, 36 h, 48 h, 72 h, and 96 h sequence forecasting. The transformer model exhibited
a high frequency of small errors and a low frequency of large errors in terms of the MAEs
compared to those of GRU and LSTM in the forecasting of different sequences, especially
long sequences, as shown in Figure 7e,f.

Table 5. Comparison of the average errors for continuous 12, 24, 36, 48, 72, and 96 h forecasting
between transformer, GRU, and LSTM. The bold text in the table represents the optimal forecast value.

Forecast Hours Model Bias MAE RMSE MAPE Precision

12 h

Transformer −0.0035 0.1394 0.1939 6.36% 91.09%
GRU 0.0656 0.1522 0.2192 6.72% 90.31%
LSTM 0.0713 0.1621 0.2265 7.18% 89.58%

MASNUM 0.0148 0.3239 0.4077 15.12% 81.16%

24 h

Transformer −0.0146 0.1864 0.2613 8.57% 88.38%
GRU 0.1141 0.2256 0.3203 9.82% 85.53%
LSTM 0.0830 0.2054 0.2910 9.05% 86.76%

MASNUM 0.0153 0.3242 0.4121 15.16% 81%

36 h

Transformer 0.0261 0.2230 0.3146 10.17% 85.97%
GRU 0.1100 0.2567 0.3580 11.32% 83.51%
LSTM 0.0859 0.2423 0.3407 10.75% 84.26%

MASNUM 0.0151 0.3242 0.4234 15.16% 80.67%

48 h

Transformer 0.0236 0.2542 0.3547 11.67% 83.3%
GRU 0.0683 0.2776 0.3845 12.53% 82.35%
LSTM 0.0787 0.2708 0.3761 12.14% 82.15%

MASNUM 0.0163 0.3243 0.4351 15.2% 80.5%

72 h

Transformer 0.0186 0.3020 0.4145 13.93% 78.9%
GRU 0.041 0.3110 0.4236 14.285 79.62%
LSTM 0.0578 0.3133 0.4256 14.29% 78.79%

MASNUM 0.0168 0.3275 0.4556 15.31% 80.01%

96 h

Transformer 0.0004 0.3290 0.4465 15.29% 77.47%
GRU 0.0247 0.3398 0.4558 15.79% 77.73%
LSTM 0.0258 0.3362 0.4521 15.62% 77.42%

MASNUM 0.0172 0.3363 0.4783 15.45% 79.75%
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To study the performance of the three models in continuous long-sequence forecasting,
Figure 8a–c present the MAE, RMSE, and MAPE results at each time step during the
continuous 96 h forecasting experiment. The MAEs, RMSEs, and MAPEs of the three models
showed an increasing trend with the forecast time, but the error growth rate slowed. The
fast accumulation of errors in the short term was related to the nonstationary fluctuations
in the data. In the long-term forecasting, the models could capture the envolution and
long-term dependencies in SWHs within a certain time range, resulting in a relatively slow
error growth rate. Furthermore, the transformer model noticeably outperformed GRU and
LSTM in the short term, while in the last 48 time steps, the MAEs, RMSEs, and MAPEs of all
three models were very close to each other. Figure 8d shows the accuracy of continuous 96 h
wave forecasting. Within the first 24 h, the transformer model exhibited higher accuracies in
terms of wave scale classification than those of GRU and LSTM. However, beyond 24 h, the
performance of our transformer method deteriorated compared to that of GRU and LSTM,
indicating that the transformer model tended to overestimate the maximum values and
underestimate the minimum values at the “wave scale level boundaries” more frequently
than GRU and LSTM.
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Typhoon Aere originated from a tropical disturbance in the east–southeast of Palau
on 27 June 2022. It traveled northward, crossing the East China Sea, and made landfall on
the northern island of Hokkaido, Japan, gradually dissipating thereafter. Figure 9 shows
the three machine-learning models and MASNUM numerical model fitting results of wave
height changes near the Hawaiian Islands within ten days of 27 June 2022. Figure 9a–c
represent the forecasting results made 1 h, 12 h, and 24 h in advance, respectively. During
this time period, there were large waves due to the influence of cyclones in the northwest
Pacific, and the central Pacific waves responded to the strong atmospheric disturbances,
leading to an increasing trend in SWH. All three machine-learning models accurately fit
the SWH envolution within the 1 h forecast horizon, but underestimation was observed
at the peak values, and overestimation was noted at the troughs. As the forecast horizon
extended to 24 h, the accuracy of all three machine-learning models declined, but they
still outperformed the MASNUM numerical models. The three machine-learning models
consistently underestimated the SWH during the rising phase and overestimated them
during the falling phase. The forecasting results of the transformer model were closer to
the true values than those of GRU and LSTM. It is noteworthy that the three machine-
learning models underestimated the prediction of SWH. This discrepancy can be attributed
to the machine-learning models being trained on data primarily from normal conditions,
with limited inclusion of typhoon-induced wave data. Consequently, the models may
fail to accurately capture all the characteristics of wave envolution in the central and
eastern Pacific Ocean during typhoons in the western Pacific. As a result, the forecast
of SWH specifically related to typhoon-induced conditions may be flawed. To improve
the prediction accuracy under extreme conditions, it is advisable to incorporate targeted
training using typhoon-induced wave data, which may yield better outcomes [9].

According to the wave scale classification criteria, the waves near the Hawaiian Islands
were mainly classified as moderate sea and rough sea. The evaluation results of various
wave scale classifications forecasted using different sequences are shown in Table 6. In
each sequence forecasting experiment, the classification results for moderate sea and rough
sea were better, and the classification accuracies of these waves gradually decreased as the
forecasting time increased. The classification accuracy of slight sea showed a trend of first
decreasing and then increasing, while the classification accuracy of very rough sea showed
a trend of first increasing and then decreasing.
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Table 6. Comparison of the mean precision results from transformer forecasting for various wave
scale classifications at continuous 12, 24, 36, 48, 72, and 96 h forecasting.

Classification 12 h_Mean 24 h_Mean 36 h_Mean 48 h_Mean 72 h_Mean 96 h_Mean

Slight sea 40% 33% 24% 18% 17% 37%
Moderate sea 94% 92% 89% 88% 84% 82%

Rough sea 83% 77% 76% 69% 61% 57%
Very rough sea 39% 36% 40% 41% 41% 24%

Figure 10 shows the MAPE results for different wave scale levels. The MAPE for
each wave scale level increased with the forecasting time, exhibiting an upward trend and
depending on the data volume. The MAPE growth rate was slow for moderate sea and
rough sea and the fastest for slight sea. Considering the accidental errors caused by the
uneven sample distribution, the reliability of the transformer model in forecasting SWH for
different wave scale levels was affected to some extent.
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In summary, the transformer model, as with GRU and LSTM, could effectively forecast
SWH with higher accuracies than the MANSNUM numerical model for continuous 72 h.
However, during continuous forecasting, the transformer model’s generalizability was
slightly better than that of the GRU and LSTM models. For long-sequence forecasting, the
transformer model could focus on key time steps and important features, resulting in a
better performance in short-term forecasting. Regarding the scale classification and warning
of wave scale levels based on the forecasted results, the transformer model performed
better in terms of short-term scale classification and warnings, achieving higher accuracy
in warnings for moderate sea and rough sea, but performing poorly for slight sea and very
rough sea.

5. Conclusions

Based on North Pacific Ocean buoy data, this study proposed the use of a transformer
model to achieve continuous SWH forecasting using buoy wind field features, wave
features, and environmental features. The transformer model weighted different parts of
the input sequence, which helped the model to better identify important information and,
thus, better capture the relationships between data. This research showed the following:

1. The transformer model extracted key information from wave data, realizing the con-
tinuous forecasting of waves and early warning of wave scale levels, with higher fore-
casting accuracies than those of the MASNUM numerical model and GRU and LSTM.

2. Unlike the GRU and LSTM models, our transformer method was less affected by the
time length of the input sequence.

3. In the long-sequence forecasting process, the transformer model significantly out-
performed the GRU and LSTM models in accurately forecasting future short-term
wave height.

4. The wave scale levels in the sea area where the buoy was located were mainly moder-
ate sea and rough sea, and the transformer model performed better in SWH forecasting
and scale classification for these.

The transformer model considered both accuracy and continuity for forecasting, pro-
viding a reliable reference for continuous SWH forecasting and the early warning and
forecasting of wave scale levels. The transformer model showed an advantage in the
overall accuracy of long-sequence forecasting compared with that of the GRU and LSTM
models, while it performed similarly to the other two models in terms of long-term wave
scale classification and warnings. Due to training sample imbalance, there was a lack of
reliability in classifying wave scale levels with a small number of samples. To address
this issue, it is necessary to add “negative samples” to improve the model’s ability to fit
negative samples.

The main difficulties in wave forecasting are the random nature and nonstationarity of
wave data. The key to long-term sequence forecasting lies in the accuracy of long-term trend
fitting. Therefore, the next phase of research will focus on handling the nonstationarity of
wave data and improving the long-sequence forecasting ability of the transformer model.
Data decomposition methods can be used to deconstruct nonstationary time series data
into low-, medium-, and high-frequency signals, as well as trend, seasonal, and noise
components, thus helping the model to fit different components of the data more accurately.
The combination of these methods with the transformer model may allow the dependencies
between data from multiple perspectives to be captured, providing research references for
more accurate sequence forecasting.
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