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Abstract: Part 2 of this work presents a numerical methodology, validated using the experimental
results presented in Part 1, to calculate the added modal coefficients of a submerged cylinder in water
both when it oscillates and when it rotates with a whirling motion. The numerical methodology
is based on computational fluid dynamic simulations that obtain the added modal forces on the
cylinder when it is forced to vibrate with mode shapes calculated using acoustic-structural modal
analysis. Then, these forces are processed with a curve-fitting algorithm to extract all the coefficients.
Most numerical coefficients presented a close agreement with the corresponding experimental ones,
although the added modal damping was overestimated. In general, the added modal mass was found
to be independent of both the rotating speed and the whirling frequency except for low whirling
frequencies when it increased. The added modal damping was found to depend on both parameters,
and the rest of the coefficients were independent of the whirling frequency and only depended on
the rotating speed. As a conclusion, this numerical approach has permitted the study of particular
conditions that could not be experimentally tested and thus broadened the knowledge of the behavior
of the added modal coefficients of rotating submerged cylinders.

Keywords: fluid—structure interaction; hydraulic turbines; added modal coefficients; whirling motion;
CFD

1. Introduction

Most numerical studies devoted to calculating the added coefficients of non-rotating
structures have been performed by means of coupled acoustic-structural simulations. This
type of calculation consists of a two-way finite element simulation in which the solid
mechanics are coupled with an acoustic domain representing the fluid. The acoustic ele-
ments model the fluid as irrotational and neglect the mean flow velocity. Consequently, the
structural rotation cannot be considered in the analysis. Among all the added coefficients,
these studies are limited to investigating the influence of the added mass on the modal
response of non-rotating structures [1-7]. Escaler et al. [1] studied, both experimentally
and numerically through coupled acoustic-structural simulations, the effects of water
loading on the axisymmetric modes of vibration of a circular plate. A close agreement
between experimental and numerical natural frequencies and mode shapes was found,
with a frequency reduction ratio of around 64% due to the added mass effect. Although
identical mode shapes were previously assumed for structures in air and fully submerged
in water, measurable differences were experimentally and numerically observed in the
radii of nodal circles between corresponding dry and wet modes. Similarly, Bossio et al. [2]
also investigated the effects of the water surrounding a disk on its modal response by
means of coupled acoustic-structural simulations. In addition to investigating the effects
of the added mass, they studied how the acoustic natural frequencies of the fluid cavity
alter the natural frequencies of the disk. The natural frequencies of the disk were found to
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decrease by up to 25% due to the proximity of an acoustic natural frequency. Moreover,
the acoustic natural frequencies were observed to affect the disk natural frequencies only
when both the acoustic and disk mode shapes presented the same number of nodal di-
ameters. Liang et al. [3] investigated the added mass effects on the modal response of a
Francis turbine runner using coupled acoustic-structural simulations. Compared with the
corresponding experimental results, the numerical results showed strong agreement with
a maximum deviation of around 3.5%. The frequency reduction ratio varied in the range
from 10 to 39% depending on the mode shape. Huang et al. [4] also used acoustic-structural
simulations to study how large-scale forms of attached cavitation, appearing on Francis
runner blades, modified the added mass effects. It was concluded that the added mass
effects induced on the entire runner were altered by the presence of the attached cavitation
which was responsible for a decrease in the added mass effect and for an increase in the
natural frequencies of the first modes. Moreover, any increase in cavitation cavity size was
found to result in a decrement in the added mass effects and in an increment in the blade
amplitude deformation below the cavity.

In order to calculate the added stiffness and damping of non-rotating structures,
computational fluid dynamic (CFD) simulations which take into consideration the mean
flow velocity are required. Liaghat et al. [8] performed two-way fluid—structure interaction
(FSI) simulations to calculate the added damping using the exponential decay rate of the
structure response to an impulse. Close agreements were found between experimental
and numerical results with an average overestimation of the damping of around 12%.
Monette et al. [9] implemented a theoretical model in an in-house finite element (FE)
code based on kinetic energy transfer between the fluid flow and the moving structure to
calculate the added damping. A strong correlation was found between experimental and
numerical results. Both researchers relied on a two-way coupling of the fluid flow and the
structural dynamics, but this implementation is complex and requires a high computational
effort. To overcome this problem, Gauthier et al. [10] proposed a method to calculate
the added mass, damping, and stiffness based on a prescribed motion of the structural
boundary in Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. This
method does not require two-way simulations; nonetheless, the natural frequency of the
coupled system must be known beforehand. The natural frequency and added mass were
calculated using an acoustic-structural modal analysis prior to performing: (i) a URANS
simulation to calculate the added damping, and (ii) a Reynolds-Averaged Navier—Stokes
(RANS) simulation to calculate the added stiffness. Roig et al. [11] used a similar numerical
methodology to investigate the influence of the wake cavitation on the dynamic response
of hydraulic profiles under lock-in conditions. The numerical results correlated well with
the corresponding experimental results, which also validated the methodology.

A non-rotating structure has standing mode shapes whilst a rotating structure has
whirling mode shapes. Consequently, the added coefficients of the submerged components
of rotating machines with a whirling motion, such as runners, should be considered in
their dynamic analysis. The few researchers who have approached this topic have only
studied the influence of the runner’s added mass on the dynamic response of rotors without
considering other potential added coefficients. Moreover, the added mass exerted on the
runner has been calculated by means of acoustic-structural simulations and therefore
without considering the influence of the rotation or whirling motion. Gustavsson et al. [12]
calculated the added mass and moments of inertia of turbine runners using acoustic-
structural simulations. Their values were then introduced in a rotor dynamic simulation.
The added mass of the runner was found to be influenced by its geometry, blade angle, and
the shape of the draft tube walls. It was observed that both the polar moment of inertia
and the radial mass increased by about 300% and 60%, respectively. Similarly, Keto-Tokio
et al. [13] also calculated the added mass of a turbine runner through acoustic-structural
simulations and included it in a rotor dynamic analysis. The lowest natural frequencies of
the turbine shaft train were found to decrease by 25%.
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To the author’s knowledge, only numerical methodologies to calculate the added
coefficients of structures, such as hydraulic machines, without rotation have been presented.
Consequently, it is necessary to develop and validate numerical methodologies to calculate
and investigate the added coefficients of submerged bodies induced by the rotation and
whirling motion.

This article presents a numerical methodology, validated using the experimental
results of Part 1 [14], to calculate the added modal coefficients of a submerged cylinder both
when it only oscillates and when it rotates and presents a whirling motion. The test rig and
the experimental methodology used to measure and calculate the added modal coefficients
are presented in Part 1 [14]. The numerical methodology breaks down the problem leading
to a deeper understanding of the physics involved. Furthermore, the presented numerical
results provide an insight into how and why added modal coefficients are influenced by
the rotating speed and the whirling frequency.

2. Numerical Methodology

The following presents a numerical methodology to calculate: (i) the added modal
mass, My, and the added modal damping, Cy, of a standing mode shape when the cylinder
does not rotate, and (ii) the added modal mass, M r the added modal damping, C z the
added modal stiffness, K¢, and the two new added modal coefficients proposed in Part
1[14], Ay and By, of a whirling mode shape when the cylinder rotates. One advantage of
the numerical model compared to the experiments carried out and presented in Part 1 [14]
is that the mode shapes can be forced to oscillate at any selected frequency, without being
restricted to the cylinder natural frequencies.

The first step of this method is to map the normalized structural mode shape of interest
on the fluid-structure interface of a URANS simulation. Subsequently, the mapped mode
shape is forced to only oscillate, under non-rotating conditions, or to oscillate and rotate,
under rotating conditions. Finally, the added modal coefficients can be obtained using the
calculated added modal forces exerted by the fluid on the cylinder.

Assuming that the mean flow velocity does not alter the cylinder mode shapes, they
can be calculated through an acoustic-structural modal analysis. Figure 1 shows the first
two mode shapes of the cylinder in water before unity normalization, ¢ and @, which
have the same natural frequency and are identical but perpendicular to each other.

?
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0,00085779
0.00073525
0.00061271
0.00049017
0.00036762
0.00024508
0.00012254
0

0.0011026
0.00093006
0.00085755
0.00073505
0.00061234
0.00045003
0.00036752
0.00024502
0.00012251

0

@) (b)
Figure 1. Numerical mode shapes of the cylinder submerged in water, @ (a) and @y, (b).
Under non-rotating conditions, @, was normalized, imported, and mapped on the

fluid—structure interface of a URANS simulation. The mapped normalized mode shape
was forced to oscillate at a selected frequency, f, and with a selected modal amplitude, &,
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which scaled the normalized mode shape. The added modal force, F Foray” induced as a

reaction to the modal acceleration (4;), velocity (41) and displacement (g;) of the cylinder:

g1 = —(27f *hsin(27eft), )
g1 = (27f)heos(27ft), @)
g1 = hsin(27tft), )

in the direction associated with @ was then calculated. Once the solution was stable,
eight periods of F farq, VETE processed by a curve-fitting algorithm which estimated qulql

through a harmonic signal:
qulql ~ asin(27ft) 4+ Beos(27ft), 4)

by a least square method (see Figure 2). As shown in Figure 2, it must be noted that under
non-rotating conditions the fluid only exerts a force in the direction associated with @,
whereas the force in the direction associated with ¢ 2, qu2q1, is zero.

1 | :
0.5+ i
= |/ /TN /N
~— 0 / \\‘ / \‘~. / \
o \
—0.5F -
T fl]lfn
Curve fitting
e
_1 1 I I |
0 0.5 1 1.5 2 2.5

Time (s)

Figure2. Fy _, Fr  and curve-fitting signal of Fy calculated when the cylinder does not rotate
q1q1 9291 q1q1
and oscillates at 1.2 Hz.

Assuming that under non-rotating conditions a static displacement, g1, of the sub-
merged cylinder does not induce per se added forces, qullh can be modeled as a function of

g1 and g7 as well as their corresponding added modal coefficients, as shown in Equation (5).
My and Cf were then calculated from a direct comparison of « and , which were com-
puted using the numerical model and the curve-fitting algorithm, with Equation (5) (see
Equations (6) and (7)).
. . 2 .
Ff, () = =Mt — Cpis = (+Mf(27'cf) h)sm(znft) + (—Cf(an)h)cos(ant), ®)
x= —|—Mf(27rf)2h, (6)

p=—Cr(27tf)h, @)
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Under rotating conditions, the whirling mode shapes can be understood as the com-
bination of ®f; and @y, oscillating with the same  and at the same f but at 90° out
of phase relative to each other. Thus, having 41, 41 and q; expressed as presented in
Equations (1) to (3), 42, 42, and g associated with @, must be defined as:

Go = +(271f)*heos(27ft), 8)
g2 = +(27tf )hsin(27tft), )
go = —hcos(27tft), (10)

In this case, there are two forces: (i) F for in the direction associated with @ induced
by 41, 41, 42, q1, and g, as well as their corresponding added modal coefficients, and
(ii) quz in the direction associated with @y, induced by 42, 92, 41, 42, and g1 as well as their
corresponding added modal coefficients (see Equations (11) and (12)):

Ffﬂl (t) = _qui — Cflﬁ + quﬁ - Kfql + quz = (+Mf(27'[f)2h + Af(Z?‘L’f)h— (11)
K¢h)sin(27cft) + (—Cr(27tf)h — Bgh)cos(27ft),
Fy, () = =Mgq2 — Cro — Agfr — Kyqa — Bpgy = (—My(27f)*h — Ag(2mf)h+

K¢h)cos(27tft) + (—Cs(27tf )h — Beh)sin(27tft), 12

Nonetheless, the whirling motion was simplified by only considering the oscillation
of @ and the rotation rather than considering the coupling of both @, and ®,, which
would reproduce the full whirling motion. The use of only one mode shape simplified
the numerical setup, reduced the number of simulations to calculate all the added modal
coefficients, and minimized the required computation resources, whereas the final results
appeared to be accurate. Considering this simplification, F i in the direction associated
with @y is only induced by 41, q1, and q; as well as their corresponding added modal
coefficients, and F i in the direction associated with @, is induced by 4 and q; as well

as their corresponding added modal coefficients (see Equations (13) and (14)):

Fr, 0 (1) = =Myt — Cra — Kpn = (+Mp(27f)*h — Keh)sin(27ft)+
(~Cr2mfcos(2rft),
Ffo0 () = —Agfy — B = (—Ag(27f)h).cos (27ift) + (= Beh)sin(27ft),  (14)

As shown qualitatively by the black and red arrows in Figure 3, the sine amplitude of
F¢ is approximately equal to the sine amplitude of F plus the absolute value of the
fa fom

(13)

cosine amplitude of ququ. Using the curve-fitting algorithm, the sine coefficient of F fq, CAN
be calculated and is 1.23 N. Similarly, the sine coefficient of Ffﬂm and the absolute value
of the cosine coefficient of ququ can also be calculated and are 0.7563 and |—0.4801| N,

respectively, which when added give a value of about 1.2364 N showing a deviation of
0.5% relative to the actual amplitude, calculated using the full whirling motion. Thus, it is
verified that the simplification is approximately valid.
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Figure 3. qul, Ffzml and ququ calculated when the cylinder rotates at 1.25 Hz and oscillates at
1.67 Hz. The red and black arrows indicate the sine and cosine amplitudes of I—"f'm1 and ququ,
respectively.

Both simulated qum and ququ were approximated by the curve-fitting algorithm and
their coefficients compared with Equations (13) and (14), as shown in Equations (15) and (16)
for the case of qulql:

& = +M(27f)h — K¢h, (15)

B = —Cr(27f)h, (16)
and in Equations (17) and (18) for the case of ququz

a« = —Bgh, (17)

p=—AsQ2rf)h, (18)

Cr and Ay were calculated directly from Equations (16) and (18), respectively. In
order to separate the contributions of M ¢ and Ky in Equation (15), a new simulation
was performed which consisted of forcing the fluid-structure interface to rotate and de-
form statically according to @ scaled by h. Under these circumstances, Ff‘h‘h in the

direction associated with <Df1 is only induced by g; as well as its corresponding added
modal coefficient, and F i in the direction associated with @y, is only induced by g; as

well as its correspondmg added modal coefficient, as shown in Equations (19) and (20)
and Figure 4:

Ff g, () = —Kpn = —Kgh, (19)

(t) = —=Bfq1 = —Bsh, (20)

Ky and By were subsequently computed substituting the numerically calculated values
of F and F in Equations (19) and (20). Finally, using K¢ and Equation (15), M
fon foam f f

Ff‘h‘h

was computed.

It must be noted that under rotating conditions the numerical forces present a ripple
(see Figure 3) which is induced by the mesh when it rotates and deforms, but is not a
physical phenomenon.
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Figure 4. qulql and ququ calculated when the cylinder rotates at 1.25 Hz and only present a static
deformation.

2.1. Numerical Setup
2.1.1. Acoustic-Structural Modal Analysis

Coupled acoustic-structural simulations have been widely used to calculate natu-
ral frequencies and mode shapes of submerged bodies showing close agreement with
corresponding experimental results [1-7]. This method usually consists of coupling struc-
tural elastic elements with potential flow elements based on the Laplace equation or with
acoustic elements based on the Helmholtz equation. In the present work, the coupled
acoustic-structural simulations were conducted with the commercial solver code Ansys
which models the fluid by acoustic elements. Based on the theory presented by [15],
the continuity equations and the momentum equations can be modified assuming that:
(i) the fluid is compressible, (ii) the fluid is irrotational, (iii) there is no body force, (iv) the
pressure disturbance of the fluid is small, (v) there is no mean flow of the fluid, and (vi) the
gas is ideal, adiabatic and reversible, resulting in the following linearized continuity and
momentum equations:

Vo= - W 9 (21)
pgc ot pf
oo g, Ay _%%+Q , 22)
ot of 3pf pgc ot of

where v, and p, are the acoustic velocity and pressure, respectively, Q is a mass source, c is
the speed of sound in the fluid, pf is the mean fluid density, y is the dynamic viscosity of
the fluid, and ¢ is time. Finally, the acoustic wave equation can be given by:

1 p, 4 1 9p, G 4
s () () s (2)) e
prc? ot 3pf pgcs ot t\ pr 3pf Of

The finite element formulation is obtained by testing Equation (23) using the Galerkin
procedure [16] and combining it with the equation of the normal velocity, v, r, on the
boundary of the acoustic domain:

dvgr (1 dp 0. du
Fra <Pf + 73Pf2C2 8t> n-Vpa + —3pf2n Vp.Q, (24)
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2
Inp _ f- M, (25)
ot o
where ur is the displacement of fluid particles and 7 is the normal vector. Describing the
pressure and displacement components using shape functions, and assuming that there are
no fluid forces, the discretized acoustic wave presented in Equation (23) can be expressed
in matrix notation as:

[ME]{pa} + [CE){Pa} + [Kel{pa} + pf[R]" {1ir} =0, (26)

which can be coupled with the structural dynamic equation of a body submerged in
an acoustic domain, which takes the following form when assuming that there are no
structural forces:

[Ms] {iis } + [Cs){uis } + [Ks]{us} = [R]{pa}, (27)

where [Mp| and [M;] are the acoustic and structural mass matrices, [Cr] and [Cs] are
the acoustic and structural damping matrices, [Kr| and [K;] are the acoustic and struc-
tural stiffness matrices, [R] is a coupling matrix, and u; is the structural displacement
which is equal to ur at the fluid—structure interface. Solving Equation (26) coupled with
Equation (27), the natural frequencies and mode shapes of bodies submerged in a fluid
taking into consideration the added mass effects can be computed.

Among all the parts of the test rig, only the slim shaft and the cylinder were included
in the acoustic-structural model since the mode shapes of interest only affected this region,
as shown in Figure 1 where it is observed that the top of the slim shaft presents zero dis-
placement. The material of the shaft and the cylinder was considered a standard stainless
steel. The acoustic domain was modeled as water with a density and speed of sound of
1000 kg/m? and 1430 m/s, respectively. Showing the boundary conditions in Figure 5, it
can be seen that: (i) the top of the shaft was considered as clamped, (ii) the top and bottom
covers as well as the lateral walls of the cylindrical water tank were considered rigid walls,
and (iii) the nodes of the solid elements in contact with the fluid were considered as part of
a fluid—solid interface.

Clamped
p ~

e

Fluid-solid interface

Rigid walls *

Figure 5. Boundary conditions of the acoustic-structural modal analysis.

The discretization of the fluid and structural domains was performed using tetrahedral
elements. A mesh refinement process was carried out to determine the optimal element size
that gives an accurate solution with the lowest computational cost. The value of the natural
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frequency was considered as the verification variable and it was plotted as a function of the
number of mesh nodes (see Figure 6). The final optimal mesh had 962,609 nodes.

]_5 T T

1.4} ‘\\ .
— 1.3+ |
N
)
=120 ]

1.1+ .

1 I I I 1
0 0.5 1 1.5 2 2.5

Nodes (-) x 108

Figure 6. Mesh refinement study for the acoustic-structural modal analysis.

2.1.2. Computational Fluid Dynamic Analysis

The CFD simulations were conducted with the commercial solver Ansys CFX. The
fluid was described using the continuity and momentum equations which were averaged
when solving a turbulent flow. The turbulent flow variables are separated into average and
time-varying components based on the theory presented by [17]. If the fluid is assumed as
incompressible and the body forces are neglected, the following conservation equations
are obtained:

aV;
7] pr—
ax; 0, (28)
o(ViV; -
x; pfox;  0xj\ Ox;

where V and v are the average and varying components of the velocity, respectively, P is
the average pressure, v is the fluid kinematic viscosity, and p0;7; represents the Reynolds
stress tensor.

The unknown Reynolds stresses are obtained from the Boussinesq hypothesis:

v, dV; 2
U,’Uj = —V; (ax; + ax]]> + §k51]’ (30)

and using the shear stress transport (SST) model which combines the k-« model near the
walls and the k-e model away from the walls. The SST and other similar turbulence models
have already been used in the research of whirling flows with excellent results [18-20]. The
turbulent viscosity, v, can be calculated as:

lllk

V= max(alw, SFz) !

(31)
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where k and w are obtained by solving the following transport equations:

0 ] ok ~ .
ach(ka) = (v+ VkVt)aTCj + P — Bkw, (32)
d 9 ow 2 2 1 Jk dw
the blending function Fj is expressed as:
4
, Vi 500v\ 4pf0uwrk
F; = tanh “mm lmax ( Fwy vw |’ Chy? , (34)
and CDy,, as:
_ 1 0k dw ___19

CDkw = ImaX <2pf0'w2waxjaxj, 10 ), (35)

where y is the distance to the nearest wall, S is the invariant strain rate, and F, is defined as:

2
F, = tanh [ [max <m, Ef;j:)} ] , (36)

The turbulence energy is limited through:

o min(Pk, 10ﬁ*pfkw), (37)
where Py is defined as:
oV;
Py = —7;0,-—, (38)
an

All constants are computed via:
o« =arF +ax(l—F), 39)

and have the following empirical values: (i) 0y = 0.85, (ii) o3, = 1.00, (iii) 0,7 = 0.50,
(iv) oo = 0.856, (v) p* = 0.09, (vi) B; = 0.075, (vii) B1 = 0.0828, (viii) &y = 5/9,
(ix) ap = 0.44.

The flow was modeled as laminar for the non-rotating cases since the lowest and
highest Reynolds numbers were 38.5 and 2705, respectively. The Reynolds number was
defined based on the diameter of the cylinder, 0.164 m, and the average between the
maximum velocities presented by the cylinder along its span. Nevertheless, when the
cylinder rotates, the flow has been modeled as turbulent since the lowest and highest
Reynolds numbers among the different cases studied were 3864 and 48,302, respectively.
Under rotating conditions, the Reynolds number was defined based on the gap between
the cylinder and the wall, 0.015 m, and the maximum flow velocity in the gap, induced
only by the cylinder rotation.

In this sense, a high-resolution turbulence model was used to solve the flow when the
cylinder rotates which resolves smaller turbulent scales than those solved by a first-order
turbulence model because the former model uses the high-resolution advection scheme
and the second-order backward Euler transient scheme.

The CFD domain was modeled using the water material defined in Section 2.1.1.
Showing the boundary conditions in Figure 7, it can be seen that: (i) the top and bottom
covers as well as the lateral walls of the cylindrical water tank were defined as stationary
no-slip walls, (ii) the fluid—structure interface was also defined as a no-slip wall but it was
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forced to oscillate periodically according to ®¢;, and (iii) under rotating conditions, the
rotating subdomain was also forced to rotate whilst a general connection interface (GCI)

was used to join both subdomains.
Rotating subdomain

. . Stationary subdomain
No-slip and stationary walls ¥

Fluid-structure interface

GCl

Figure 7. Boundary conditions of the CFD analysis.

The validation of the grid independence was carried out under non-rotating conditions
considering as a reference the values of My and Cy. Figure 8 shows My and Cy as a function
of the number of nodes when the mesh resolution was increased in the axial, circumferential,
and radial directions. My shows approximately the same value with all the mesh sizes.
Nonetheless, C £ increases and decreases when the number of nodes in radial directions as
well as in axial and circumferential directions is increased.

15 - - : : 15
14+ 1
14 — _
£ gt / : -
g Z
~ & )
12+ /'/ q
13| ]
1 ]
12 ‘ ‘ : : 10 : ‘ : ‘
0 2 4 6 8 10 0 2 4 6 8 10
Nodes (-) x10° Nodes (-) x10°
(a) (b)
14 . 12 :
135+ 1 11+
— AN
£ £
< w3 Zi
— c
= S N — A —
125+ 1 9t
12 ‘ ‘ ‘ 8 : :
0 2 4 6 8 10 0 2 4 6 8 10
Nodes (-) x10° Nodes (-) x10°
(o) (d)

Figure 8. Mesh refinement study for the URANS analysis in the radial direction for the M ¥ (a) and
Cy (b) as well as in the axial and circumferential directions for the My (c) and Cy (d).
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Figure 9 presents the results of a sensitivity study of the time step, t;, to obtain an
independent model. My and Cy are plotted as a function of the number of time steps per
vibration period, T, through T/t;. It is observed that M £ presents the same value for all £;
however, C f decreases when t; is decreased.

14 . - - - : 12 . :
13.5 - 1 10 - \
= g
o0 =
\&: 137 e e = | \Z(f/
125+ i ~— L
6 Te— .
12 : . L . : . : : : .
0 200 400 600 800 1000 0 200 400 600 800 1000
T/ts (') T/ts (_)
(a) (b)

Figure 9. Time step validation study for the URANS analysis of M 5 (a) and C f (b).

It can be observed that for the smallest time step considered corresponding to ts = T/
1000, a numerical result of Cy = 5.6Ns/m was obtained which was quite different from
the experimental value of 4.23 Ns/m. Due to the excessive computational time required to
achieve a valid solution for such short t;, it was decided to select a mesh with 73,748 nodes
fora t; = T/100 as it was sufficient to provide a mesh independent value of My but it was
assumed to work with numerical values of C significantly higher than the experimental
ones. Figure 10a shows the selected structured mesh built using hexahedral elements with
a detail of the mesh around the cylinder, which gives approximately 16 mesh layers in the
boundary layer and a Y+ lower than 1 as shown in Figure 10b.

2.0x10°
1.8 x 10°
1.6 x 10°
1.4 x 10°
1.2x10°
1.0 x 10°
8.0x 101
6.0x 101
40x 101
2.0x 101
0.0 x 10°

(@) (b)

Figure 10. CFD structured mesh and a detailed view (a) and Y+ variable (b).
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2.2. Case Studies

Multiple simulations have been performed with always the same h and multiple
combinations of rotating speeds, (), and f, which have been summarized in Table 1.

Table 1. Values of 11, (), and f corresponding to the different cases studied in this work.

h (m) Q (Hz) f(Hz)

0.0005 0* 0.10, 0.50, 1.20 %, 4.50, 7.00
0.0005 1.25,2.92,4.80 % 6.25* 0

0.0005 0.50 0.78, 1.67, 2.25, 2.50, 4.50, 7.00
0.0005 1.25*% 0.78, 1.67 *, 2.50, 4.50, 7.00
0.0005 292 0.78

0.0005 1.00, 2.00, 2.92 * 2.25*%

0.0005 2.92 7.00

0.0005 4.80 % 3.60 *

0.0005 6.25* 494 *

* Cases to be compared with the experimental results of Part 1 [14].

3. Results
3.1. Numerical Methodology Validation

My, Cf, Ay and Ky were calculated numerically for different (2 and f to be compared
with the experiments performed in Part 1 [14] (see Table 1). Figure 11 shows a comparison
between the numerical (Num) and experimental (Exp) added modal coefficients. The
numerical My calculated when the cylinder does not rotate coincides with the experimental
one, presenting a deviation of about 1.2%. The numerical Cf always presents higher values
than the experimental ones, but its trend is well captured at low ). The average deviation
is 142.5% and may be partially induced by an additional damping added by the mesh when
it deforms and by the use of a not sufficiently short ¢;. In previous studies, a numerical
damping higher than the corresponding experimental one was also obtained [8,21]. The
numerical and experimental A and Ky present a strong agreement with average deviations
around 10% and 18%, respectively. In summary;, it is proved that the numerical model
provides good accuracy for most of the added modal coefficients with the exception of Cy.

i * . * * 80 *
10 —~60 *
— =]
4 >
< —40¢ *
= 5 ) .
20 - —
« Exp 0 o Exp
* Num T . ° * Num
0 ‘ : 0 ‘ : : : —_——
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Q (Hz) Q (Hz)
(a) (b)

Figure 11. Cont.



J. Mar. Sci. Eng. 2023, 11,1828

14 of 23

600 0wy, ' : 7
. o . * Exp
. ‘oo * Num
* . .
—~ 400 - . ’ * —~ —1000 f .
2 = ‘
<200 it 2000 - .
b e « 4 EXp M
. * * Num .
0 : : : : ~3000 : : ‘ :
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Q (Hz) Q (Hz)
(c) (d)
Figure 11. Numerical and experimental values of M ¥ (a), C Y (b), A £ (c), and K f (d), as a function
of Q.
3.2. Added Modal Coefficients under Non-Rotating Conditions
Figure 12 shows the evolution of My and Cy as a function of f. M presents a constant
value when f is higher than 1 Hz, which agrees with previous studies that concluded that
My was independent of the flow conditions and f [10,22-24]. However, for f lower than
1 Hz, the M increases when f is decreased, as was also observed in a previous investigation
with Kaplan turbines [25].
15 40
\‘
30 //
10 — -
g : T
— Z 20 -
= e
= gl )
10
0 : 0 ‘
0 4 6 8 0 2 4 6 8
f (Hz) f (Hz)
(@) (b)

Figure 12. My (a) and Cy (b) as a function of f when ) = 0 Hz.

Cy presents an approximately linear increase when f is increased. Nonetheless, for
f lower than 4.5 Hz, Cy deviates from the linear trend, presenting higher values than
those expected. It can be seen that C¢q; evolves similarly to a drag force, which increases
quadratically with the flow velocity, when assuming that the flow velocity is equivalent to
q1. Consequently, C¢q; can be understood as a drag force type.

Table 2 shows the percentage of M and Cy induced by the pressure (PFs) and viscous
(VFs) forces as a function of f. In both cases, the highest contribution of the VFs to My and
Cy occurs for the lowest f, representing a contribution of 1.09% and 6.94%, respectively. At
higher values of f, its contribution decreases. For instance, at 7 Hz, VFs only contribute
0.14% to My and 2.92% to Cy. PFs are the main contributors to My and Cy due to the
cylindrical geometry, especially its large cross-section area. Finally, it can be seen that the
contribution of VFs to Cy is always higher than to M.



J. Mar. Sci. Eng. 2023, 11,1828

15 of 23

Table 2. Percentage of M i and C Y induced by pressure (PFs) and viscous (VFs) forces as a function

of f.

f(Hz) Mg (%) Cr (%)
PFs VFs PFs VFs
0.1 98.91 1.09 93.06 6.94
0.5 99.47 0.53 95.08 4.92
1.2 99.65 0.35 96.12 3.88
4.5 99.82 0.18 96.69 3.31
7 99.86 0.14 97.08 2.92

Figure 13 shows the normalized values of M ¥ and C 'z M f* and C f*, as a function of f
based on:

My = M (40)
f pfAl.S’
. Cr

Cf' = — (41)
T ppACafh)

where A is the cylinder cross-section area. It can be seen that M;* and C¢" tend to a

constant value when f is higher than 1 and 4.5 Hz, respectively, and that they increase

when f is decreased at lower values.

2
\
L5 100 |
= =
T 1t e
= [ ‘\\“\
50 - —
0.5 T
0 ‘ 0 ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8
f (Hz) [ (Hz)
(a) (b)

Figure 13. M* (a) and Cf" (b) as a function of f when ) = 0 Hz.

Figure 14a shows an isometric view of the cylinder with a green line over the perimeter
located at the midplane. The red arrow indicates the direction and sense of the vibration at
time instants t = (3)T, corresponding to the maximum amplitude of the oscillation, and
t = 0T, corresponding to the zero oscillating amplitude. It must be noted that at t = (%) T,
the cylinder presents the maximum 47 and q; buta g; = 0m/s. On the other hand, att = 0T,
the cylinder presents the maximum g; buta §; = 0 m/s* and a g; = 0 m. Consequently,
att = (%) T and t = 0T the added modal forces are induced exclusively by My and Cy,
respectively. Figure 14b shows the locations on the green perimeter corresponding to the
6 axis of Figures 15 and 16, with 6 = 0 rad corresponding to the front of the cylinder and
6 = 7t rad to the back of the cylinder.
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Figure 14. Isometric view of the cylinder with a green line over the perimeter located at the midplane

(a) and reference locations on the green perimeter (b).
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Figure 16. Normalized velocity gradient in Y direction plotted along the green perimeter at t = (%) T.
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Figure 15 shows the normalized pressure plotted along the green perimeteratt = (3)T
induced by Mg, PMf*, and at t = 0T induced by Cy, Pcf*/ as:

P
Pa,* = , 2
Y ppavs (nanf ) w
p
Pof=— 3
& p05(2mfh) )

At 6§ = O rad, both Py, f* and Pc f* present the highest value as shown in Figure 15a,b.
Py f* and Pc f* decrease and become negative when moving along the perimeter in the
counter-clockwise direction. At 8 = 7t rad, Py f* and Pc,* show the lowest pressure and
then increase progressively when moving towards to the front of the cylinder. It must be

noted that lower f results in higher ’PM f*’ and ‘PC f*

and that at higher values of f, they

tend to present the same amplitudes regardless of f.
Figure 16 shows the normalized velocity gradient in Y direction, Vy*, plotted along
the green perimeter at f = (3 )T and consequently related exclusively with M ras:

vt =1 (44)

where Vy is the velocity gradient in direction Y.

As shown in Figure 16, at # = O rad, V4 = 0 and then decreases and becomes negative
moving over the perimeter in the counter-clockwise direction, reaching the lowest value at
8 = 7 rad. Subsequently, Vy* increases progressively up to 0 at § = 7 rad, then continues
increasing and presents the highest value at @ = 3 rad. Finally, Vy* decreases moving
towards to the front of the cylinder. It must be noted that lower values of f result in lower
|Vy*| and that at higher values of f, it tends to present the same amplitudes regardless of f.

Based on Figure 12b, Figure 13b, and Figure 15b, it can be concluded that C Y loses its
linearity at low values of f, and thus when there is the highest influence of the VFs on C
(see Table 2). Consequently, the increase in Cy at low values of f may be partially induced
by this increase in the influence of VFs.

Based on Figure 12a, Figure 13a, and Figure 15a, it can be concluded that M £ increases
atlow f when the Vy* presents the lowest values (see Figure 16). Low values of Vy* suggest
that the velocity over all the length of the gap between the cylinder and the tank wall is
approximately equal, indicating that the acceleration of the cylinder accelerates all the fluid
of the gap rather than only the fluid close to the cylinder as at high values of Vy*. It must
result in a higher amount of water mass accelerated and thus in higher My. This may be
partially induced by the increase in the influence of VFs at low f (see Table 2).

3.3. Added Modal Coefficients under Rotating Conditions

Figures 17 and 18 show the distributions of the pressure and velocity, respectively,
on the midplane of the cylindrical water tank when () = 1.25 and 6.25 Hz and f = 0 Hz.
Under these circumstances, the cylinder is displaced, according to the & scaled by k, and
it does not oscillate but only rotates. The lowest pressure occurs downstream close after
the front of the cylinder and the highest pressure occurs downstream close after the back of
the cylinder. This pressure distribution is due to the fact that the fluid thickness is smaller
at the front of the cylinder than at the back, leading to higher flow velocities at the front
and, consequently, a lower pressure.
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Figure 17. Pressure distribution on the midplane of the cylinder when f = 0 Hzand () = 1.25Hz (a)
and 6.25 Hz (b). The black arrow indicates the rotating direction.
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Figure 18. Velocity distribution on the midplane of the cylinder when f = 0 Hz and Q) = 1.25 Hz (a)
and 6.25 Hz (b). The black arrow indicates the rotating direction.
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This pressure distribution results in a force towards the minimum fluid thickness,
pushing the cylinder away from its equilibrium position, and in another force perpendicular
to the displacement direction. These forces are proportional to the cylinder displacement
through the coefficient Ky and By, respectively.

Figure 19 shows the evolution of K f and B rasa function of (), calculated when
f = 0 Hz. In this case, the cylinder is also displaced, according to the @4 scaled by £, and
it does not oscillate but only rotates. K¢ decreases and By increases proportionally to 02 1t
can be seen that K¢q1 and Bfqy evolve similarly to most fluid forces, which usually increase
quadratically with the flow velocity, when assuming that the flow velocity is equivalent to
Q). Ky is negative because the associated force tends to move the cylinder away from its
equilibrium position.

Figure 20 shows the normalized values of Ky and By, K f* and B f*, as a function of Q),
calculated when f = 0 Hz based on:

) Ky
Kt =——F (45)
pfdg(ZTL’RiQ)
- )
pfdg(ZTL’RiQ)

where dg is the gap cylinder-wall, and R; is the radii of the cylinder.



J. Mar. Sci. Eng. 2023, 11,1828 19 of 23

04— 1000
800 +
—~ —1000 —
g g 600+
~ ~
3 z
= < 400 |
<2000 - M
200 -
~3000 ‘ ‘ ‘ o—"" | | ‘ ‘
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Q (Hz) Q (Hz)
(a) (b)
Figure 19. Ky (a) and B r(b)asa function of Q.
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Figure 20. K¢* (a) and B¢” (b) as a function of ().
It can be seen that they tend to a constant value when () is increased. At lower
Q, K;* slightly decreases and B" increases when () is decreased because Ky and By are
not completely proportional to Q2. At high values of Q) then these coefficients are fully
proportional to Q2.
Figure 21 shows the evolutions of M fr C s and A rasa function of f for () equal to 0,
0.5, and 1.25 Hz. Similarly, Figure 22 shows their evolutions as a function of () when f is
0.78,2.25, and 7 Hz.
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Figure 21. My (a), Cy (b) and Ay (c) as a function of f when Q) =0, 0.5 and 1.25 Hz.

Aslong as f is higher than 1 Hz, the cylinder always presents the same value of My
regardless of f and () (see Figures 21a and 22a). Consequently, these results suggest that
My is independent of the state of the flow, as also observed by previous authors [10,22-24],
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and it also has to be independent of the rotation, based on the present results. My may only
depend on the distance to the boundaries and the geometry. Exceptionally, at low f, My
increases as presented in Section 3.2 and also observed by [25].
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Figure 22. M; (a), Cf (b) and Ay (c) as a function of Q) when f = 0.78, 2.25 and 7 Hz.

Cy presents a linear increase when f or () increase regardless of the values of () or
f (see Figures 21b and 22b). The rotating flow does not alter the trend of Cy, increasing
linearly in general as a function of f. However, the rotation alters the exact value of Cy, with
higher values of () resulting in a higher damping. Assuming that the flow velocity passing
over a non-rotating structure is equivalent to the flow induced by a rotating structure, these
results agree with previous authors who observed that Cy increased linearly when the flow
velocity passing over a vibrating non-rotating structure increased [9,21,23,26]. It can be
seen that, in general, Cr increases faster when f increases than when () increases. Figure 23
presents the turbulence kinetic energy on the midplane of the cylindrical water tank when
fis7Hzand (is 0.5 and 1.25 Hz at t = 0T. Although the flow presents a low degree of
turbulence, its increment at higher values of (3 will result in higher VFs and a new pressure
distribution that may also contribute to the damping increase.
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Figure 23. Turbulence kinetic energy on the midplane of the cylinder when f = 7 Hz and
Q =05Hz (a) and 1.25 Hz(b).

Ay is approximately constant regardless of the value of f but it increases linearly
when () is increased (see Figures 21c and 22c). Ay is thus independent of f and it depends
linearly on Q). Since Ay occurs when the cylinder rotates and Ay increases linearly as a
function of (2, which agrees with the evolution of the Magnus force observed by other
researchers [27-29], the origin of A could be related to the Magnus effect.

Figure 24 shows M;* and C¢* corresponding to different () as a function of f. These
evolutions resemble those of cases where the cylinder is non-rotating, with M* presenting
the same values regardless of () and C;* showing the same trend at different Q but with
higher values at higher (). Similar to the cases when the cylinder does not rotate, the
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increase of C¢* at low values of f may be partially induced due to the increase in the

influence of the VFs.
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Figure 24. Mf* (a) and Cf* (b) as a function of f when () =0, 0.5 and 1.25 Hz.
Figure 25 shows the normalized value of A fr A f*, as a function of (), based on:

Y - 47
f= pfA(Zﬂ'RiQ) ! ( )
Af" presents an approximately constant value regardless of Q) and f, confirming that

Ay is independent of f and increases linearly with the increase in Q.
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Figure 25. A f* as a function of ) when f = 0.78, 2.25, and 7 Hz.

4. Conclusions

This article presents a numerical methodology to calculate the added modal coeffi-
cients of a submerged cylinder both when it oscillates without rotation and when it rotates
with a whirling motion. It must be noted that a simplified whirling motion was forced
in the simulations, presenting slight deviations lower than 1% compared to the case of
considering the full whirling motion.

The numerical results of My, A, and Ky present a close agreement with the corre-
sponding experimental ones. The trend of Cy as a function of () is captured by the numerical
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model; however, the numerical predictions present higher values than the corresponding
experimental measurements. This deviation is caused by the use of a too-large time step
and the additional damping added by the mesh deformation.

The numerical model has permitted the study of particular conditions and allowed
conclusions to be reached that could not be reproduced and achieved experimentally,
such as:

- My is independent of () and f, except at low values of f, when My increases. Cy
appears to increase linearly with f and with (). A¢, K¢ and By are independent of f
but A¢ increases linearly with (). Ky decreases and By increases with 02

- When M f and C ¢ are normalized, they tend to a constant value with f, and when A fr
K s and B ¢ are normalized, they also tend to a constant value with Q).

- My and Cy tend to increase for low values of f, probably due to the increasing
influence of the VFs.
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