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Abstract: The fault detection and diagnosis of a ship’s electric propulsion system is of great signif-
icance to the reliability and safety of large modern ships. The traditional fault diagnosis method
based on mathematical models and expert knowledge is limited by the difficulty of establishing an
accurate model of the complex system, and it is easy to cause false alarms. Data-driven methods,
such as deep learning, can automatically learn from the mass of data, extract and analyze fault
characteristics, and create a more objective distinction system state. A deep learning fault diagnosis
model based on ResNet feature extraction capability and bidirectional long-term memory network
timing processing capability is proposed to realize fault diagnosis of high resistance connections in
ship electric propulsion systems. The results show that the res-convolutional BiLSTM deep neural
network (Res-CBDNN) can fully integrate the advantages of the two networks, efficiently process
fault current data, and achieve high-performance fault diagnosis. The accuracy of Res-CBDNN can be
kept above 85% in a noisy environment, and it can effectively monitor the high resistance connection
fault of ship electric propulsion systems.

Keywords: ship electric propulsion system; fault diagnosis; high-resistance connection (HRC);
residual network (ResNet); bidirectional long short-term memory (BiLSTM)

1. Introduction

Permanent magnet synchronous motors (PMSMs) have the characteristics of high-
power density, fast response, and large torque, making them the main propulsion motors
in all-electric marine propulsion systems. However, adverse factors such as a bad working
environment, high temperature and humidity, and narrow working space affect the safety
and reliability of the marine propulsion system [1]. High-resistance connection (HRC) is
a kind of low probability, high-cost fault in marine electric propulsion systems, which is
mainly caused by the instability of the power supply due to the corrosion, vibration, or
weak connection of the stator end of the propulsion motor. In the worst-case scenario,
the fault may evolve into an open-phase fault (OPF), causing a catastrophic loss of power
and requiring early identification and control of its spread [2]. It is difficult to realize the
effective identification and rapid location of HRC early faults in ship electric propulsion
fault diagnosis.

To realize HRC fault diagnosis by an electrical parameter, the zero sequence current
component (ZSCC) and zero sequence voltage component (ZSVC) are used as HRC fault
signals. Hang. J [3] calculated the angle difference between ZSCC and stator current for
online HRC fault diagnosis, but the use of a PMSM system with a triangle connection was
limited. Based on this, ZSVC and current were used to solve the resistance deviation and
realize the HRC fault location in [4], but it was impossible to distinguish between turn-to-
turn short circuit and HRC fault. A high-frequency component was used to distinguish
between a turn-short circuit and HRC fault in [5], and the ZSVC was analyzed to detect
HRC fault by the amplitude of the fundamental frequency component and complete fault
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location [6]; however, it was not suitable for HRC fault diagnosis of the ship’s electric
propulsion system, which is a compact system, because it failed to draw the neutral point
of the motor and configure additional resistance networks and instruments to detect the
zero sequence current and voltage.

To avoid adding additional sensors, Mengoni [7] extended the vector analysis method
to the field of motor control by referring to the three-phase unbalanced theory of power
systems. HRC fault diagnosis was realized by calculating unbalanced resistance with the
current amplitude and voltage vector. In [8], based on magnetic field swing technology, the
vector oscillation angle of the fault current was analyzed, the feature of the fault current
was extracted by the symmetrical component method, and the fault degree was judged
by a three-phase unbalanced degree. These methods have high diagnostic ability, but
their calculation methods are complex and cannot detect the initial HRC weak fault, so
their application range is limited. Most scholars use the model reference method, which is
easy to realize in the control system, to diagnose the HRC fault by establishing the system
mechanism model, calculating the theoretical output, and taking the deviation from the
actual data as the fault diagnosis basis. Goucalves [9] distinguished HRC and OPF faults
by referring to the second component of current error, but it was not suitable for marine
electric propulsion systems because of its poor diagnosis effect in the low-speed segment.
In [10], the voltage distortion caused by HRC was taken as the fault characteristic, and a
fault indicator insensitive to motor parameters was designed to diagnose and locate the
fault, but the influence of the current controller was not considered. The second order
component of the voltage control signal of the d-q axis was taken as the fault index in [11]
to solve this problem so that the fault diagnosis could be realized; therefore, a wider
control band-width was needed, which required the high performance of the controller.
The model reference method can realize HRC fault location and degree estimation to
a certain extent. Still, its diagnosis results are influenced by the model accuracy and
control system performance, but its practicability is limited due to the influence of model
accuracy and control system performance. In addition, the high-frequency signal injection
method [12–14] is also prevalent nowadays, but this method belongs to intrusion detection.
The high-frequency signal injection causes the torque to ripple, affecting the dynamic
performance of the system and reducing its reliability.

Because of the high cost and low efficiency, traditional fault diagnosis technology based
on mathematical models and expert knowledge cannot meet the accuracy requirements of
the self-healing control system of marine electric propulsion systems. Machine learning
(ML) is a kind of modeling technology that can effectively avoid the influence of model
precision and professional knowledge on diagnosis results. Gonzalez [15] used the random
forest method to train the network with fault data, establish the diagnosis model, and
realize the fault diagnosis of the induction motor. Allafi [16] used linear discriminant
analysis to reduce the dimension of voltage second harmonic data, first by support vector
machines (SVM) to detect fault types and then by K-nearest neighbor (KNN) to identify
the extent of the fault. This data-driven method is suitable for fault diagnosis of complex
nonlinear systems such as the marine electric propulsion system.

Given the strong interference of the marine electric propulsion system and the highly
complex electrical system, early fault identification and rapid location are common dif-
ficulties in the field of fault diagnosis. In this paper, the deep learning method is used
to diagnose HRC of complex progressive failure. A Res-CBDNN deep learning network
is designed to diagnose the faults of marine electric propulsion systems based on the
characteristics of cyclic networks and deep networks. According to the output current and
torque data of the inverter in the propulsion system, the fault characteristic information is
mined by the convolutional neural network connected by the residual error, and a bidirec-
tional long-term and short-term neural network is used to extract and identify the fault
periodicity. The robustness and accuracy of the proposed method are verified by different
noise pollution data. The results show that the proposed method not only improves the
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accuracy of fault location but also resists noise disturbance and improves the accuracy and
robustness of diagnosis.

2. HRC Fault Analysis of Ship Electric Propulsion System
2.1. Structure of Shipboard Main Power System

With the increase in ship power capacity, most modern shipboard power systems use
multiple gas turbines or diesel synchronous generator sets to coordinate with the regional
distribution network topology. The medium-voltage district distribution system supplies
power to the ship’s electric propulsion units via a zone distribution board (ZSB) and a
propulsion distribution board (PSB). Figure 1 shows the main power unit structure of an
electrically propulsed ship.
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Figure 1. Structure of main power unit of an electric propulsion ship.

The main distribution board is composed of the generator control panel, synchronous
panel, load panel, and bus bar. The propulsion area distribution board is used as a power
distribution board to supply energy for the medium-voltage propulsion system. The area
distribution panel supplies power to the ship’s low-voltage equipment and lighting.

Due to the harsh conditions during navigation, the ship’s electric propulsion system
requires high stability and reliability [17]; therefore, accurate diagnostic methods must be
developed, and data support must be provided to enable fault tolerance and maintenance
strategies. This paper examines the early HRC fault characteristics of the three-phase
electric propulsion system of ships using a deep-learning diagnosis method.

2.2. HRC Fault Analysis of Electric Propulsion System

The HRC fault of the ship propulsion system, which usually occurs between the drive
inverter circuit and the propulsion motor, is a discontinuous early gradual fault [18], and
its failure schematic is shown in Figure 2.
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where ω∗ and ω represent reference and actual speed respectively, Rsf, Ls, iabc, and Ψabc
are the stator resistance, inductance, current, and flux matrix of the propulsion motor, Rs is
the original phase resistance, ∆R is the additional resistance, L is the self-inductance, M is
the mutual inductance, and Np is the pole of the motor. Within HRC, fault occurs in phases
A and B. The unbalanced three-phase resistance will cause a large unbalanced current and
increase the torque loss of the motor under heavy load. The reduction of effective torque
causes the system to go from an alert state to a degenerate state, and the changes in current
and torque during the fault are shown in Figure 3.
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Through the coordinate transformation, the state equation of the fault system in the
d–q coordinate can be obtained as follows:

Ld
d
dt id = −[Rs +

2
3 (∆RA cos2 θ + ∆RB cos2(θ + 2

3 π))]id+
1
3 [∆RA sin 2θ + ∆RB sin(2θ + 2

3 π)]iq + ωeLqiq + ud

Lq
d
dt iq = −[Rs +

2
3 (∆RA sin2 θ + ∆RB sin2(θ + 2

3 π))]iq+
1
3 [∆RA sin 2θ + ∆RB sin(2θ + 2

3 π)]id − ωe(Lqiq + ψf) + uq

Te = 1.5N2
piq[id(Ld − Lq) + ψf]

. (2)

After the HRC fault occurs in phases A and B, the current of the d–q axis will produce
sinusoidal and cosine interference related to the fault resistance and produce torque har-
monics. The comparison of different order torque harmonics between the alert state and
the degenerate state is shown in Figure 4. Excessive torque harmonics make the effective
torque output of the propulsion motor decrease, which affects the stability of the whole
power system in the long run; therefore, it is necessary to complete the identification at the
initial stage of the fault to control the impact of the fault.
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Figure 4. Comparison of torque harmonics under different HRC fault states.

Under different HRC faults, the system current changes, as shown in Figure 5. In
the early stage of HRC fault, the fault phase current is relatively small, and it has little
influence on the healthy phase current. As the fault intensifies, the current waveform of
the healthy phase gradually becomes distorted, and the phase changes, so according to
the impact of the fault and practical measures, the marine electric propulsion system HRC
fault is divided into 12 categories in Table 1.
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Table 1. Fault classification label.

State Health
Index F0

State Alter
Index F1 F2 F3 F4 F5 F6

Location A B C AB BC AC

State Degradation
Index F7 F8 F9 F10 F11 F12

Location A B C AB BC AC

According to the analysis, the fault location information is included in the change in
three-phase current, and the state is included in the change in output torque, but the torque
and current have time-varying nonlinearity, stochastic uncertainty, and local observability,
which makes the traditional method based on the mathematical model difficult to reflect
the fault characteristics and limit the diagnosis ability. Therefore, a fault diagnosis method
based on depth learning is designed. Firstly, the wavelet transform is used to decompose
the sampled current and torque signals in the time-frequency domain. The BiLSTM is
trained by ResNet to extract the relevant fault information from the wavelet decomposition
signal to realize the fault location and state judgment.
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3. Fault Diagnosis Model Based on Res-CBDNN
3.1. Convolutional and Bidirectional Long Short-Term Memory Neural Network

The utilization of convolutional neural networks (CNNs) in fault diagnosis involves
a multi-level supervised learning approach that employs a feature extractor comprising
a convolutional layer and pooling layer, which is capable of processing time series data
and exhibits a robust capacity for addressing nonlinear problems [19]. Long short-term
memory networks (LSTM) are a special recurrent neural network (RNN) that can alleviate
the gradient diffusion problem in training and has good sequence data processing abilities.
In contrast to the simple cellular structure of traditional RNN, LSTM adds three special
‘Gate’ structures, which can add or lose state information through linear mapping, realize
the ability to flow state with sequence, and acquire memory. The mapping is shown in
Equation (3). 

ft = σ(W f ht−1 + U f xt + b f )
it = σ(Wiht−1 + Uixt + bi)
at = tanh(Waht−1 + Uaxt + ba)
ot = σ(Woht−1 + Uoxt + bo)
ct = ct−1 ft + itat
ht = ottanh(ct)

. (3)

Each LSTM cell transmits the current cell state ct and the hidden layer state ht. Through
the sigmoid function, the forgetting gate can remove a part of the last state information
ct−1 according to the last hidden layer output ht−1. The input gate integrates the current
input via it and obtains ht from ct via the output gate and outputs.

The BiLSTM network consists of two LSTM layers for forward and backward propa-
gation of data. The transport flows are shown in Figure 6.
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Figure 6. Schematic diagram of BiLSTM data transmission.

Where the solid line represents forward propagation, the dashed line represents
backward propagation, and the green, yellow, and black arrows represent xi, hi, and
ci (i = 1, 2, · · · , t + 1), respectively. σ(•) ∈ (0,1) is the sigmoid function, tanh(•) ∈ (−1,1) is
the hyperbolic tangent function, W and U are the weights between the gates, and b is the
bias. The BiLSTM output yt = tanh(WBthbt + WFthft ).

From the above analysis and the existing research results [20–24], the fault classification
effect of the CNN and BiLSTM has been improved compared with traditional DNNs, and
each has its advantages. CNNs are good at reducing frequency variations, BiLSTM is
good at temporal modeling, and DNNs are better suited to map features to more separable
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spaces. Considering the complementarity of the three, we have combined them into a
unified architecture, the convolutional BiLSTM deep neural network (CBDNN), whose
structure is shown in Figure 7.
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To reduce feature data dimension and network parameter space, the convolution
kernel and the input signal slip are represented in the form of a local connection, and the
signal’s eigenvalues are calculated as weight sharing during this period. The global merge
is used to suppress over-fitting. To strengthen the performance of the diagnosis network,
BiLSTM is used to learn the temporal sequence of the abstract features extracted by the
CNN. In theory, the DNN can extract more advanced features. However, for the design of
a high-performance identification network, which often needs tens or hundreds of layers,
the gradient vanity problem has become a problem in DNN training [25–30].

3.2. Residual Network

In the DNN, each function is a layer, and the neurons in each layer are connected by
weights and deviations. With the increase in network layers, more feature information
can be learned, and then the gradient disappears in network superposition. To reduce the
impact of network depth on performance, ResNet is used to mitigate DNN’s degradation.
The structure is shown in Figure 8.
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The core idea of ResNet is to add a residual connection between the two network
layers to alleviate the problem of disappearing gradients in deep networks. This can be
expressed mathematically as follows:{

Yl = h(Xl) +F (Xl , Wl)
Xl+1 = f (Yl)

(4)

If h(•) is a linear map and F (XL,WL) represents the output of convolution networks,
then the input of the next residual block Xl+1 is the direct map f (•) of the output Yl of this
residual block. So, for a residual network with depth L, the Lth layer can be written as the
sum of the residual parts between any shallow layers, like Equation (5).

XL = (
L−1

∑
i=l

λi)Xl +
L−1

∑
i=l

F (Xi, Wi). (5)

Additionally, the loss function ε for the gradient can be expressed as follows:

∂ε

∂Xl
=

∂ε

∂XL
[
L−1

∏
i=l

λi +
∂

∂Xl

L−1

∑
i=l

F (Xi, Wi)]. (6)

Equation (6) shows that it will cause
L−1
∏
i=l

λi → ∞ else
L−1
∏
i=l

λi → 0 , so λi= 1 can avoid

gradient explosion or vanity during training.
The analysis shows that if there is a large error between the input and output of the

network, the residual block can directly provide feedback on the error information so that
the error information can be retained to a deeper level. This structure has little influence on
the original network and can reduce network degradation without increasing training time,
which can be used to enhance the performance of the CBDNN.

3.3. Res-CBDNN Fault Diagnosis Model

Since the propulsion system is noisy and time-varying, wavelet packet transform is
often used to preprocess the non-stationary current signal in engineering [31]. To extract
more attribute features from fault signals and retain the timing features of current signals,
a deep network based on BiLSTM and the residual module is designed as a fault diagnosis
model for the electric propulsion system, and the fault diagnosis model is improved by
integrating timing information of fault occurrence. The Res-CBDNN structure is shown in
Figure 9, including two initial convolution layers, a BiLSTM layer, and two residual blocks.

The initial convolution layers are used to reduce the dimension of the data, the residual
blocks are used to extract the fault features, the BiLSTM layer is used to extract the time
attributes between the feature sequences for learning, and finally, the fault diagnosis
is realized.
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4. Simulation
4.1. Parameter Setting

Simulations are conducted in cruise mode to simulate the HRC fault and normal opera-
tion. In total, 13,000 data, which contain the current output of the drive inverter, motor speed,
and torque, are collected. The original data are integrated into 40× 13, 000 dimension data
sets by three-layer wavelet packet transform, and the training set, validation set, and test set
are divided into a 8:1:1 ratio. In the training phase of the model, the network parameters are
initialized, the data of the training set are input into the network for training, and after the
satisfactory results are obtained, the network parameters are optimized and adjusted by the
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verification set and the fault diagnosis model is obtained by training and saving the network
parameters. In the stage of fault diagnosis, the test data are input into the trained model, and
the diagnosis result is output. Tables 2 and 3 provide propulsion system parameters and
Res-CBDNN hyperparameters. Figure 10 displays the diagnosis process.

Table 2. Parameters for the propulsion system.

Parameter Value

Maximum torque Tmax(Nm) 205
Maximum speed nmax(r/min) 170

Pole number Np 8
Inertia J(kg ·m2) 0.1

Stator resistance Rs(Ω) 1.2
Stator inductance L(mH) 2.4

Flux ψs(Wb) 0.04
IGBT switching frequency fsw(kHz) 10

Sampling frequency fs(kHz) 200

Table 3. Hyperparameter settings for Res-CBDNN.

Hyperparameter Value

Learning rate 0.0001
Maximum iterations 350,000

Convolution Kernel Size 3
Hidden Units 200

Batch Size 22
State Activation Function Tanh
Gate Activation Function Sigmoid

Dropout 0.5
Solver for training network Adam
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4.2. Results and Discussion

Referring to the existing fault diagnosis methods based on the deep learning model
in [32,33], the Res-CBDNN is compared to the CNN [32] and CBDNN [33]. Figure 11 shows
the training performance and the comparison.
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Figure 11. Comparison of (a) the training accuracy and (b) training loss of CNN, CBDNN, and
Res-CBDNN diagnostic models.

We trained the three networks using 10,400 simulated data as training sets from
Section 4.1; concerning the training speed, accuracy, and loss, this method is superior to
the other two methods. The training accuracy rate increases most rapidly and gradually
stabilizes above 95%. To avoid over-fitting, every training session would use dropout
layers to remove some features. The training accuracy averages 99.62%, the loss function
minimum is 0.0546, and the effect is highest. It is shown that the Res-CBDNN model
has acquired abundant fault features through ResNet in the initial training stage, and
the training performance is faster and more stable by learning the fault features through
BiLSTM. The three well-trained networks were tested using test set data to validate their
ability to troubleshoot, and their test results with a confusion matrix are shown in Figure 12
and Table 4.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 13 of 18 
 

 

   

Figure 12. Confounded matrix of diagnostic results of three models. 

Table 4. Comparison of training effects of three models. 

 CNN [32] CBDNN [33] Res-CBDNN 
Average Training Accuracy 97.5% 97.88% 98.65% 

Average Training Loss 0.2088 0.0870 0.0546 
Testing Accuracy 98.15% 98.77% 99.62% 

Among them, 1–12 represents 12 different HRC fault states, and 0 indicates the health 
state. Combined with Figure 11 and Table 4, with the CNN’s powerful feature extraction 
capabilities, it is possible to obtain more fault attributes and meet diagnostic needs. The 
CBDNN, combined with the features of BiLSTM, can learn the time features of the data 
with an accuracy of 98.77%. However, due to the limitation of the depth of the network, it 
cannot extract more fault features and cannot identify the degree of fault. The Res-
CBDNN network can improve the feature extraction ability through residual connection 
and combine the time features learned by BiLSTM, further improving the diagnosis effect 
and distinguishing the fault location and state. The test results show that the Res-CBDNN 
is the best in training precision and loss, and the residual network can enhance the model 
feature extraction ability and fault location ability. BiLSTM can further study the time in-
formation in the feature, improve the state recognition ability, and obtain better fault di-
agnosis results. 

4.3. Verification of Robustness of the Diagnostic Model 
In this paper, three additive white Gaussian noises are used to simulate different lev-

els of noise, and the Ns value is introduced to describe the sensitivity of the model to noise. 
The results of the three network diagnostics are shown in Table 5 where

none noise

none

Accurcy AccurcyNs= 100%
Accurcy

−
× . 

Table 5. Comparison of different models under noises. 

 38 dB 35 dB 33 dB 
 Accuracy Ns Accuracy Ns Accuracy Ns 

CNN [32] 90.77 7.51 80.92 17.55 73.38 23.24 
CBDNN [33] 97.23 1.56 86.69 12.23 81.23 17.76 
Res-CBDNN 99.08 0.54 94.77 4.87 88.33 11.28 

From Table 5, the diagnostic accuracy of the CNN and CBDNN models decreased 
significantly under different noises, while the diagnostic accuracy of the Res-CBDNN 
model was above 85%. By observing the change in accuracy under 38 dB and 33 dB noise, 

Figure 12. Confounded matrix of diagnostic results of three models.

Table 4. Comparison of training effects of three models.

CNN [32] CBDNN [33] Res-CBDNN

Average Training Accuracy 97.5% 97.88% 98.65%
Average Training Loss 0.2088 0.0870 0.0546

Testing Accuracy 98.15% 98.77% 99.62%

Among them, 1–12 represents 12 different HRC fault states, and 0 indicates the health
state. Combined with Figure 11 and Table 4, with the CNN’s powerful feature extraction
capabilities, it is possible to obtain more fault attributes and meet diagnostic needs. The
CBDNN, combined with the features of BiLSTM, can learn the time features of the data
with an accuracy of 98.77%. However, due to the limitation of the depth of the network,
it cannot extract more fault features and cannot identify the degree of fault. The Res-
CBDNN network can improve the feature extraction ability through residual connection
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and combine the time features learned by BiLSTM, further improving the diagnosis effect
and distinguishing the fault location and state. The test results show that the Res-CBDNN
is the best in training precision and loss, and the residual network can enhance the model
feature extraction ability and fault location ability. BiLSTM can further study the time
information in the feature, improve the state recognition ability, and obtain better fault
diagnosis results.

4.3. Verification of Robustness of the Diagnostic Model

In this paper, three additive white Gaussian noises are used to simulate different levels of
noise, and the Ns value is introduced to describe the sensitivity of the model to noise. The re-
sults of the three network diagnostics are shown in Table 5 where Ns =Accurcynone−Accurcynoise

Accurcynone
×

100%.

Table 5. Comparison of different models under noises.

38 dB 35 dB 33 dB

Accuracy Ns Accuracy Ns Accuracy Ns

CNN [32] 90.77 7.51 80.92 17.55 73.38 23.24
CBDNN [33] 97.23 1.56 86.69 12.23 81.23 17.76
Res-CBDNN 99.08 0.54 94.77 4.87 88.33 11.28

From Table 5, the diagnostic accuracy of the CNN and CBDNN models decreased
significantly under different noises, while the diagnostic accuracy of the Res-CBDNN model
was above 85%. By observing the change in accuracy under 38 dB and 33 dB noise, it can
be seen that BiLSTM can capture the time series information of fault features extracted by
the CNN, and the accuracy loss of diagnosis results is reduced from 17.34% to 16%. ResNet
enhances CNN’s fault extraction capability, which can extract deeper fault information for
BiLSTM to learn, reducing the loss of accuracy to 10.75%. In addition, the integration of
feature information and time series information helps strengthen the anti-noise ability of
the diagnostic model. The test results show that the anti-noise ability of the Res-CBDNN
mainly comes from the combination of the residual network and CBDNN, which makes
the fault diagnosis accuracy of Res-CBDNN remain high, and the diagnosis results have a
certain robustness.

The confusion matrix of the Res-CBDNN diagnostic model in different noise environ-
ments is shown in Figure 13. The model’s fault state detection and fault location capabilities
are analyzed based on the indicators presented in the literature [34], and the calculation
result is shown in Tables 6 and 7.
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Table 6. Evaluation of fault location effect under different noises.

Fault
Location

38 dB 35 dB

Precision Recall F1 Score Precision Recall F1 Score

None 100 100 100 100 100 100
A 99.5 99.5 99.5 95.6 98 96.8
B 98.5 100 99.2 97.5 98 97.7
C 99 99.9 99.5 96.1 98 97

AB 98.0 100 99 85.9 98 91.6
BC 99.5 97.5 98.5 94.1 87.5 90.6
AC 100 97.5 98.7 98.8 87 92.5

Fault
Location

33 dB

Precision Recall F1 Score

None 100 64 78.1
A 92 98 94.9
B 97 97.5 97.3
C 81.8 96.5 94

AB 75.8 100 86.2
BC 97 80.5 97.9
AC 97.9 70 81.6

Table 7. Evaluation of fault detection effect under different noises.

State Detection
38 dB 35 dB

Precision Recall F1 Score Precision Recall F1 Score

Health 100 100 100 100 100 100
Alert 100 100 100 99.8 100 99.9

Degradation 100 100 100 99.8 100 99.9

State Detection
33 dB

Precision Recall F1 Score

Health 100 64 78
Alert 93.9 98.2 96

Degradation 98.2 99.7 98.9

Where precision, recall, and F1 score can be determined as Equations (7)–(9) to evaluate
the diagnostic performance.

Precision =
True Postives

True Postives + False Postives,
(7)

Recall =
True Postives

True Postives + False Negatives,
(8)

F1 Score =
2 × True Postives

2 × True Postives + False Postives + False Negatives.
(9)

Combined with the confusion matrix and two tables, we found that noise mainly
affects the fault location ability, especially for AB and AC. The precision and F1 scores
decrease by 5.4% and 10.9%, respectively, with the increase in noise. This is due to the high
similarity of two-phase fault features; the noise has covered up part of the fault features,
leading to misclassification. The noise has little influence on system state identification, and
the accuracy of the two kinds of fault state identification is more than 90%, so the model
has strong fault detection ability.

Compared with the CNN and CBDNN, the Res-CBDNN diagnosis model has high
diagnostic accuracy and anti-noise ability and can effectively identify the fault state
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and fault location. Therefore, it is suitable for HRC fault diagnosis of a marine electric
propulsion system.

5. Conclusions

Aiming to achieve an HRC fault diagnosis of a ship’s electric propulsion system, a
diagnosis model based on ResNet and BiLSTM is proposed. Firstly, the original current
data are preprocessed by the wavelet transform to extract the fault high-dimensional time-
frequency information, and the CNN is used to further process the fault high-dimensional
information. The residual structure can avoid the gradient vanishing problem of the
deep network by direct mapping and by implementing deep CNN and deep fault feature
mining. Finally, BiLSTM can obtain the fault sequence features, fault degree, and location
information and complete HRC fault monitoring and diagnosis. The Res-CBDNN provides
an effective representation method to extract the intrinsic characteristics of HRC fault, and
the residual block transfers the gradient to a deeper level, which improves the training
effect. Diagnosis results show that the accuracy and robustness can be enhanced, and the
anti-noise ability of the diagnosis model can be obtained by extracting the time information
from BILSTM after the wavelet fault information is deeply mined by residual error network.

The Res-CBDNN combines feature extraction and classification to improve the accu-
racy and robustness of diagnosis. However, there are still the following problems:

1. In view of the influence of noise on fault diagnosis results, although this method
has a good effect in judging the degree of fault, noise will affect the accuracy of
data collection under HRC fault and confuse some similar fault features. Therefore,
it is necessary to preprocess the data of more scales to obtain different frequency
components in the signal in order to explore whether the information contained in
different scales can bring better results;

2. Compared with the traditional diagnosis method based on a mathematical model,
the diagnosis model based on the deep learning method is less interpretable, so it
is necessary to consider how to integrate these reliable methods into DNN fault
diagnosis to improve the interpretability of diagnostic methods;

3. In the field of fault diagnosis, it is difficult to obtain fault data labels, which has a
negative effect on supervised learning. Unsupervised learning does not need sample
labels and can generate unknown data labels by clustering methods; therefore, future
research will focus on how to improve the Res-CBDNN fault diagnosis model and
realize the discriminant unsupervised depth model.
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