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Abstract: With an El Niño prediction model, an advanced approach of conditional nonlinear optimal
perturbation (CNOP) is used to reveal the maximum impacts of the errors occurring in initial
conditions (ICs) and model parameters (MPs) on the El Niño predictions. The optimally growing
initial errors CNOP-I and parameter errors CNOP-P are obtained, as well as their optimally combined
mode (denoted by CNOPs). The comparisons among CNOP-I, -P, and CNOPs show that the El
Niño predictions are more sensitive to the uncertainties in the MPs than in the ICs. The CNOP-I
mainly affects the short-term prediction (less than 3 months), whereas the CNOP-P tends to induce
much larger error over a longer prediction time. Both CNOP-I and CNOP-P can induce larger error
growth during spring than during other seasons; that is to say, both of them cause the “spring
predictability barrier” (SPB) phenomenon. The spring error growth caused by CNOP-I is mainly
attributed to the uncertainties of the ocean advection processes, while that caused by the CNOP-P
is controlled by thermodynamics. When the errors in ICs and MPs are simultaneously included in
predictions, the resultant CNOPs produce much larger error growth and cause much more significant
SPB; furthermore, the corresponding mechanism is dominated by the nonlinear advection processes.
This certainly indicates that strong nonlinear interactions between the errors in ICs and MPs enhance
the SPB, thus deepening our understanding of El Niño predictability. It is obvious that initial and
model errors should be simultaneously given great attention to improve the El Niño prediction level.

Keywords: El Niño predictability; condition nonlinear optimal perturbation; initial uncertainties;
parametric uncertainties

1. Introduction

El Niño, characterized by anomalous warming in the eastern-central equatorial Pa-
cific [1], has drawn great public attention for its global effect on society and the natural
climate system [2–4]. As a strong air–sea coupling phenomenon in the earth system, El
Niño has genes of quasi-periodicity but features of complexity, diversity, and variabil-
ity [5,6]. Therefore, although efforts towards the prediction of El Niño have never been
stopped [7–11], operational prediction for the sea surface temperature (SST) in the tropical
Pacific is still faced with huge challenges (e.g., [12,13]).

On the one hand, the El Niño evolution is modified by the atmospheric processes
with high frequency, such as Madden–Julian oscillation and westerly wind bust (e.g., [14]).
Hence, the model that fails to capture the stochastic wind forcing tends to make a false
prediction of El Niño and produce large prediction errors [15]. On the other hand, from
the perspective of the model itself, one common view is that prediction uncertainties are
attributed to imperfect models and initial errors. Lorenz (1975) separated two kinds of
predictability problems [16]: the first is involved with the initial value problem, while the
second is related to model uncertainties. Therefore, to reduce the prediction uncertainties,
it is necessary to explore the cause and mechanisms that induce prediction errors from the
perspective of initial condition (IC) errors and model errors [17,18], respectively.

The prediction errors caused by IC errors have been explored in-depth. For example,
Xue et al. (1997) investigated the IC errors that have the fastest growth in an intermediate
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coupled model developed by Zebiak and Cane (1987) (hereafter referred to as the ZC
model, [7]) by using a linear singular vector (SV) approach [19]. They showed that an
east–west dipole SST initial error mode in the tropical Pacific is favorable for the error
growth of the SST associated with ENSO forecasts. A similar result was also reported
by Tang et al. (2006) using a fully coupled global climate model [20]. Mu et al. (2003),
considering the linear limitation of SV, extended the SV to a nonlinear field and proposed
a condition nonlinear optimal perturbation (CNOP) approach [21]. Based on the CNOP
approach, it is found that prediction errors for tropical SST caused by the CNOP-type IC
errors (denoted as CNOP-I) are strongly season-dependent [22] and are highly related
to the phenomenon of “spring predictability barrier” (SPB) for El Niño prediction [23].
These above studies provide a solid basis for the improvement of El Niño prediction level
by improving the accuracy of ICs through target observation [24], data assimilation, and
ensemble prediction [25].

The other topic for the predictability problem is related to model errors [26–28]. Given
that the prediction model serves as an approximation to the Earth system, significant
uncertainties exist in model parameters (MPs). Previous research has indicated that the
simulation of El Niño variability can be attributed to MPs [29–31]. For instance, Zhang et al.
(2013) revealed that the MPs that represent the strength of the thermocline feedback play a
crucial role in the evolution of SST anomaly in the tropical Pacific [32]; Mu et al. (2010) used
an updated CNOP approach (denoted by CNOP-P) to address the parametric uncertainty
that influences the prediction most [18] and Duan and Zhang (2010) adopted this approach
to reveal the relationship between SPB phenomenon and CNOP and showed the trivial
role in causing SPB [33]. Additionally, Yu et al. (2012) suggested that MP errors have little
effect on causing SPB phenomena [34], contrasting with Wu et al. (2016), who discovered
that optimizing spatial distributions of parametric values can extend prediction durations
and mitigate SPB occurrences in El Niño predictions [35]. Tao et al. (2019) also examined
the role of space-varying MP errors and showed that the CNOP-P has the potential to
cause a significant SPB for El Niño prediction [36]. The varying conclusions regarding the
role of MP uncertainties in causing SPB may stem from different models utilized or the
consideration of spatial variability of parametric errors in subsequent studies.

An intriguing question awaits investigation: in a practical prediction model where
both initial conditions (IC) and model parametric (MP) errors can lead to SPB in El Niño
forecasts, what distinguishes the roles of IC errors from those of MP errors in inducing SPB,
and what mechanisms underlie their respective contributions? Addressing these queries is
essential for enhancing the forecast accuracy of El Niño events. Furthermore, a comparison
will be made on the sensitivity of El Niño prediction uncertainties to IC and MP errors
and their dependency on the prediction timeframe, aiming to deepen comprehension of
ENSO predictability dynamics and offer insights for enhancing forecasting precision of
ENSO events.

The remainder of the paper is organized as follows. The methodology, including the
seasonal-interannual forecast model and CNOP approach, is briefly introduced in Section 2.
In Section 3, the different roles played by IC and MP errors in SPB-associated error growth
are analyzed in great detail. Section 4 examines the sensitivity of the El Niño prediction to
uncertainties in ICs and MPs. Section 5 investigates the impact of errors in ICs and MPs on
El Niño prediction with various prediction lengths. Finally, a summary and discussion are
presented in Section 6.

2. Model and Methodology

In this paper, an intermediate coupled model (ICM) developed by Zhang et al.
(2003) [37] is adopted to investigate the roles of the MP and IC errors. This model has
been widely used to study the variability and the predictability of El Niño [31,38–41]. Fur-
thermore, due to the good performance in the ENSO prediction, the real-time predictions
by the ICM have been contained in the routine monthly assessments of the ENSO events
made by the International Research Institute of Columbia University for routine monthly
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assessments (see http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current
(accessed on 26 March 2024)) and released globally. Similar to other ENSO models, the El
Niño predictions made by the ICM also often suffer from the SPB phenomenon caused by
the initial and parametric uncertainties [40,41]. To explore the respective roles of initial and
model errors and identify many important ones in causing the SPB, the CNOP approach, as
mentioned in the introduction, is used to reveal the initial or/and model parametric errors
that cause the largest prediction errors.

2.1. The ICM

The ICM is a dynamic-statistical model in which a dynamical intermediate ocean
model (IOM) is coupled with an empirically determined wind anomaly (denoted as τ)
model. The wind anomaly model only describes the interannual variability of the wind
stress but filters the wind with higher frequency since El Niño is mainly affected by the
interannual variability of the wind. The IOM describing the evolution of the surface current
in the tropical Pacific is a nonlinear model that only produces the time-evolution of the
zonal and vertical current anomalies over the mixed layer of the tropical Pacific and the sea
level (SL) anomaly. Additionally, to represent the thermodynamics that are forced by the
ocean current anomalies, an SST anomaly model is embedded into the IOM to yield the
evolution of the SST anomaly. The SST anomaly model can be written as follows:

∂T′
∂t = −u′ ∂T

∂x − (u + u′) ∂T′
∂y − v′ ∂T

∂y − (v + v′) ∂T′
∂y

−{(w + w′)M(−w − w′)− wM(−w)} (Te−T)
H

+ κh
H ∇h·(H∇hT′) + 2κv

H(H+H2)
(T′

e − T′)

−(w + w′)M(−w − w′) (T
′
e−T′)
H − αTT′

(1)

Note that the thermocline fluctuations or subsurface processes play dominant roles
in SST diversity and variability [7,42]. As such, Zhang et al. (2003) developed a Te model
into the SST model to represent the thermocline effect on the SST [37]. Due to the SL
anomaly can characterize the perturbation of thermocline (or subsurface temperature) to
some extent, there exists a strong relationship between the SL and Te anomaly. Given this,
the Te model is built based on the relationship between the SL anomaly and subsurface
entrainment temperature (Te), which is defined as follows:

Te = αTe · FTe(XSL) (2)

in which FTe denotes the statistical relationship between SL and Te anomaly. Here, an
added αTe parameter is used to represent the intensity of SST-thermocline feedback.

A similar scheme is applied to the τ model. The τ model is constructed based on the
highly coupling SST and wind fields, which can be expressed as follows:

τ = ατ · Fτ(XSST), (3)

where Fτ is the relationship between SST anomaly and τ according to the historical data,
and ατ represents the intensity of the SST-wind feedback. Previous studies indicated that
the SST evolution simulated by the ICM is related to the values of αTe and ατ [31,32]. In
the present study, the αTe = 1.0 and ατ = 0.87 are predetermined so that the ICM can well
represent the interannual variability of SST. For further details on the ICM, see [38].

2.2. The CNOP Approach and Experimental Design
2.2.1. Mathematical Expression of the CNOP

The CNOP approach is proposed by Mu et al. (2003) to search for the optimal pertur-
bation that can lead to the largest error growth in a nonlinear system. Due to the advantage
of dealing with nonlinear problems, the CNOP has been widely used to study the pre-

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current
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dictability of chaotic systems [22]. The main idea of the CNOP approach is described in
this section. More details are referred to [18].

Supposing a nonlinear model that represents the climate system is denoted as M,
given the model parameter p and initial states X0, the model results at time T can be
defined as Y = M(X0, p)(T). Here, we can call Y the reference state. When perturbing
the MPs and ICs (e.g., u0 for ICs and p′ for MPs), a new solution is obtained as Y + Y′ =
M(X0 + u0, p + p′)(T). Obviously, Y′ is the error growth induced by the combined effect
of MPs and ICs. The CNOP approach aims to solve the following optimization problem
within a certain constraint (u0, p′) ∈ C:

J(u∗
0 , p∗) = max

(u0,p′)∈C
J
(
u0, p′) = max

(u0,p′)∈C

∥∥M(
X0 + u0, p + p′)(T)−M(X0, p)(T)

∥∥2, (4)

in which ∥·∥ is the L2-norm used to measure the error growth Y′ and J is the object function.
The optimized perturbations (u∗

0 and p∗) are the so-called CNOPs. From Equation (4),
the CNOP approach has the ability to search optimal perturbations that cause the largest
error growth. The obtained J quantifies the maximum impact of the perturbation on the
prediction of the reference state Y. As the obtained J is larger, the model is more sensitive
to the corresponding perturbation. Much more detail about the CNOP approach is referred
to [18,21].

Then, if we only consider the uncertainties in the ICs and the model is assumed to be
perfect, the optimization problem is modified as follows:

J(u∗
0) = max

u0∈CI
J(u0) = max

u0∈CI
∥M(X0 + u0, p)(T)−M(X0, p)(T)∥2, (5)

where u∗
0 is the most unstable IC errors (referred to as CNOP-I) that can make the prediction

deviate from the reference state most (see [40]).
If we only consider the errors in MPs rather than ICs, the CNOP approach is used to

solve the problem as follows:

J(p∗) = max
p′∈CP

J
(
p′) = max

p′∈CP

∥∥M(
X0, p + p′)(T)−M(X0, p)(T)

∥∥2. (6)

The optimized p∗ is the optimally growing MP errors (denoted by CNOP-P) when the
ICs are perfect (Tao et al. 2019 [36]).

2.2.2. Designs of the CNOP Experiments

Since the Bjerknes positive feedback is the main mechanism dominating the devel-
opment of El Niño [43], the uncertainties of El Niño prediction are commonly related
to the uncertainties of the Bjerknes feedback. The Bjerknes feedback consists of three
sub-processes: the SST-wind feedback, the wind-SL feedback, and the thermocline-SST
feedback. On the one hand, it is clear that the SST and thermocline are the key oceanic
variables in the Bjerknes feedback, which are respectively related to the SST-wind and
thermocline-SST feedback. On the other hand, the strengths of SST-wind and thermocline-
SST feedback are explicitly denoted as ατ and αTe in the ICM, respectively. Therefore, two
ICs, i.e., SST and SL, and these two MPs are perturbed in CNOP analyses to explore the El
Niño predictability.

To perform the CNOP approach, the constraint functions for IC errors are defined
as follows:

δSST =

√
1
N ∑

i,j

[
SST′(i, j)

]2, δSL =

√
1
N ∑

i,j

[
SL′(i, j)

]2, (7)
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where SST′(i, j) and SL′(i, j) are the perturbations of SST and SL in the grid (i, j), respec-
tively, and N is the total number of the model grid over the tropical Pacific, excluding the
model land. Similarly, the constraint functions for MPs are described as follows:

δτ =

√
1
N ∑

i,j
[p′τ(i, j)]2, δTe =

√
1
N ∑

i,j

[
p′Te

(i, j)
]2

, (8)

where p′τ and p′Te
are the perturbations of ατ and αTe, respectively. Since the prediction of

El Niño is usually involved with the SST anomaly in the tropic Pacific, the object function
that quantifies prediction errors is expressed as follows:

J =
√

1
N ∑

i,j∈Ω
[ESST(i, j, T)]2, (9)

where ESST denotes the difference between the predicted SST anomaly at prediction time T
and the reference El Niño state.

In the present study, one typical El Niño event simulated by the ICM is chosen as a
reference state for investigating the sensitivity to MPs and ICs. For convenience, the year
when the tropical Pacific achieves the mature phase of El Niño is denoted as year (0). The
year before and after is referred to as year (−1) and year (1), accordingly. To assess the
roles of the MPs and ICs in different phases (i.e., onset phase, mature phase, decay phase)
predictions of the El Niño event, we make 12-month predictions at the start time of July
(−1), January (0) and July (0), and correspondingly predict the SST anomalies in June (0),
December (0) and June (1), respectively. The IC-related constraint radiuses δ (Equation (7))
are preliminarily determined to be 0.2 ◦C for SST and 1 cm for SL, which are dynamically
harmonious and also approximate to the observation errors. The MP-related constraint
bound δ is defined as δτ ≤ 2% · ατ and δTe ≤ 2% · αTe, within which the ICM still has the
capacity to capture the realistic interannual variability of the SST in the tropical Pacific. The
former defined constraint value is the standard (reference) constraint, which will be used
to compare with other CNOP experiments (Sections 4 and 5).

To compare the error growth induced by ICs and MPs, two sets of CNOP experiments
are repeated as in [36,40] but with different constraints of the IC and MP errors. For the
CNOP-I experiments, the ICs, including SST and SL, are perturbed under the given con-
straint without perturbing MPs. On the contrary, for the CNOP-P experiments, the optimal
errors of MPs (ατ and αTe) are calculated without adding IC errors. Since uncertainties
exist in both MPs and ICs in practice, a simple comparison between CNOP-I and CNOP-P
will cause the error interaction between MPs and ICs to be lost. Therefore, the CNOPs in
which MPs and ICs are conditionally perturbed simultaneously are additionally performed.
Physically, CNOP-I (CNOP-P) represents the optimal mode of errors in ICs (MPs) that has
great potential to destroy the prediction, and CNOPs are the optimally combined mode
of errors in MPs and ICs. By analyzing the CNOP information, we can determine not
only the sensitive areas for prediction but also the relationship between IC/MP errors and
prediction errors [36,40].

3. The Impact on Season–Dependent Error Growth

In this section, we investigate time-dependent error evolutions induced by the optimal
IC errors (i.e., CNOP-I), optimal MP errors (i.e., CNOP-P), and optimally combined errors
(CNOPs). The corresponding error evolutions for CNOPs, CNOP-I, and -P are nearly iden-
tical, with the largest error growth occurring in spring and yielding an SPB phenomenon.
However, the hidden error growth mechanisms could be different.

3.1. Horizontal Distributions of CNOPs-Type Errors

As mentioned above, CNOP-type errors are the dominant unstable mode that induces
large error growth. It is valuable to explore the spatial structure of the CNOP-type er-
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rors [24]. Using the ICM, Tao et al. (2017) demonstrated CNOP-Is in different seasons [40].
Later, they investigated the horizontal distributions of CNOP-P [36] and indicated that
both the CNOP-I and CNOP-P are independent of constraint value, thereby suggesting
that the CNOP-determined sensitive areas are robust. However, the above studies ignored
the interaction between MPs and ICs, so we still have no idea whether the optimal mode
for ICs and MPs is the same or not when both errors in ICs and MPs are considered in the
CNOP analysis. To answer this, we calculated the optimally combined mode of ICs and
MPs (i.e., CNOPs).

Figure 1 displays the horizontal distributions of CNOPs, including ICs (SST and
SL) and MPs (ατ and αTe) for different phase predictions. It is evident that CNOPs are
concentrated in a certain local region, indicating that errors in those areas are responsible
for the prediction errors. Take the CNOPs in the mature phase prediction of El Niño for
example; the SST and ατ components with positive value are mainly located in the central
tropical Pacific (Figure 1(b1,b3)), and the SL and αTe with positive value are concentrated
in the eastern equatorial Pacific (Figure 1(b2,b4)). The structures of CNOPs are slightly
changed due to different initial months, but the locations where CNOPs peak are the same:
the SST and ατ components are mainly centered in the central tropical Pacific; SL and αTe
components are mainly located in the eastern tropical Pacific.
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It is not surprising that the horizontal distributions of SST and ατ components in
CNOPs are similar, while those of SL and αTe are nearly equal. On the one hand, since the
sea surface where the air–sea coupling is active is the junction of ocean and atmosphere,
the SST as the production of air–sea coupling and ατ representing the strength of air–sea
coupling are interrelated dynamically. On the other hand, the SL represents the subsurface
signal to some extent, which affects the surface through thermocline feedback. Thus, the SL
and αTe are also interrelated in dynamic.

Another interesting finding is that CNOPs are roughly the linear combination of
CNOP-I and CNOP-P. The MPs components of CNOPs are similar to the CNOP-P in both
horizontal pattern and phase (not shown, referred to [36]). The IC components of CNOPs
are the same as the CNOP-I (not shown, referred to [40]) but with opposite phases. That is,
CNOPs = −CNOP-I + CNOP-P. The comparison indicates that the interaction between MPs
and ICs does not change the horizontal characteristics of CNOPs but phases. Additionally,
it seems that MP errors are more important than IC errors in El Niño prediction since the
optimal mode of MPs is constant while the optimal mode of ICs is phase-inversed when
considering the interaction of the ICs and MPs.

3.2. Error Evolution

To examine to what extent errors in ICs and MPs affect predictions, we further analyze
the prediction errors and evolutions. By comparing the reference state with predictions
perturbed by CNOP, we identified the prediction errors attributed to CNOP-type errors for
each variable. It is observed that the final predicted SST errors induced by CNOP-P are
different from those induced by CNOP-I. For the CNOP-P case, a positive SST error was
detected in the eastern Pacific cold tongue region due to the intensified Bjerknes feedback
caused by CNOP-P, leading to an overestimation of El Niño strength [36]. As a result, the
model tends to predict a stronger-than-reference El Niño. On the contrary, in the CNOP-I
case, a weaker-than-reference El Niño is predicted as negative initial errors are amplified
through air–sea coupling. It seems that the MP errors likely counteract the effect of IC
errors in predictions if the CNOP-I and CNOP-P are directly added to the ICM. However,
that is not the case. As mentioned in Section 3.1, not only has the optimal error mode for
SST changed, but the error growth has also increased due to the interaction of ICs and MPs.
The CNOPs with positive errors in ICs and MPs tend to predict a stronger El Niño. In other
words, the prediction error induced by the CNOPs is as positive as that by CNOP-P, but
the former is larger.

To figure out how prediction errors come about for the CNOPs case, we next study
the underlying mechanisms from the perspective of error growth.

The error evolutions for SST, wind stress, and SL that are induced by CNOPs in
different phase predictions are displayed in Figure 2. Generally, CNOPs tended to produce
an El Niño-like SST error pattern in 12-month predictions. However, the temporal evolution
of prediction errors varied across different phases. When predicting the onset phase of
El Niño, the initial SL error is negative around the cold tongue region (Figure 1(a2)),
and the model has strong SST-thermocline feedback in the eastern Pacific (Figure 1(a4)).
As a result, the cold signal in the subsurface continually penetrates the surface through
thermocline fluctuations, leading to (+,−) dipole distribution for SST error (i.e., positive
signal in the central Pacific and negative signal in the eastern tropical Pacific). Such SST
error distribution enhances the trade wind that, in turn, exacerbates upwelling in the cold
tongue, so the model tends to predict a colder ocean at the 6-month leading time. In Dec
(0), remarkable errors were found in the zonal wind over the western Pacific, causing a
stronger-than-normal recharge (revealed by significant positive SL errors in the western
Pacific). The over-predicted westerly wind triggers excessive downwelling that propagates
eastward by Kelvin waves. Subsequently, the prediction errors with negative values in the
central Pacific are reduced and turn positive. The westerly wind is further enlarged for
enhanced SST-wind feedback (indicated by the positive errors in ατ in the central tropical
Pacific). The dynamic effect of the westerly wind is to deepen the thermocline and warm
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up the central-eastern equatorial Pacific. Therefore, the CNOPs cause El Niño-like errors
when predicting the onset phase of El Niño. Differing from the onset phase prediction that
SST error experiences phase change, positive SST errors prevail throughout the prediction
period for the case of the mature phase prediction. This is not only due to the initial
Bjerknes feedback built up by the warmer initial SST and SL (Figure 1(b1,b2)) but also due
to the enhanced Bjerknes feedback reflected by the enlarged ατ and αTe (Figure 1(b3,b4)).
Therefore, the prediction errors in the mature phase prediction are larger than in the onset
phase prediction. For the case of the decay phase prediction, the prediction error for SST
in the eastern tropical Pacific is positive, while the SST error in the central tropical Pacific
evolved from a positive to a negative value. This is because the negative initial SST error
in the western Pacific (Figure 1(c1)) is propagated easterly under an enhanced Bjerknes
feedback system. Broadly, although the error evolutions are not the same for different phase
predictions, the over-predicted El Niño is attributed to the enhanced Bjerknes feedback that
amplifies the IC errors, which are propagated eastward by ocean waves over time.
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tude of the warm phase is generally larger than the cold phase). The CNOP-P has the 
potential to inherit CNOPs, while the CNOP-I does not always induce error growth that 
is consistently parallel to the CNOPs case. For example, as shown in Figure 4a, the corre-
lation between CNOPs and CNOP-I cases has a noticeable variation along the equator, 

Figure 2. Longitude–time sections of the CNOPs-induced prediction errors along the equator during
the (a) onset, (b) mature, and (c) decay phase predictions. Panels from top to bottom in each column
are the prediction errors in SST, zonal wind stress, and SL, respectively. The contour interval is 0.5 ◦C
for SST, 0.1 dyn cm−2 for wind stress, and 3 cm for SL. The CNOP-I and CNOP-P-induced error
evolutions are referred to by Tao et al. (2017) [40] and Tao et al. (2019) [36], respectively.
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To compare error evolutions caused by CNOP-I, CNOP-P, and CNOPs, we calculate
the correlation coefficient between CNOPs and CNOP-I (CNOP-P) for each variable error
within a 12-month prediction. The results for onset and decay phase predictions are shown
in Figures 3 and 4, respectively. It is found that the SST error evolutions caused by the
CNOPs are nearly identical to that caused by the CNOP-P (the correlation is close to 1)
but contrary to that by the CNOP-I (the correlation is close to −1). This suggests that the
CNOP-P and CNOPs share the same error evolution, giving rise to an El Niño-like SST
error, and the CNOP-I holds the opposite role and causes a La Niña-like error evolution. It
should be pointed out that the behavior of CNOPs that tends to generate positive rather
than negative error growth also reflects the nature of ENSO asymmetry (i.e., the amplitude
of the warm phase is generally larger than the cold phase). The CNOP-P has the potential to
inherit CNOPs, while the CNOP-I does not always induce error growth that is consistently
parallel to the CNOPs case. For example, as shown in Figure 4a, the correlation between
CNOPs and CNOP-I cases has a noticeable variation along the equator, ranging from −0.9
to 0.9. In particular, the error evolution caused by the CNOP-I in the western Pacific is
unrelated to that by CNOPs (the correlation is nearly 0).
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Figure 3. Correlation coefficients of the prediction errors in (a) SST, (b) zonal wind stress, (c) SL,
(d) zonal current, (e) meridional current, and (f) vertical current, over 12-month prediction for the
onset phase of El Niño. The correlation between CNOP-I (CNOP-P) and CNOPs-induced errors
are denoted as red (green) curves. Note that only SST errors consistently show a high correlation
while other variables do not, implying that the underlying mechanisms accounting for the SST error
evolution are different by the CNOP-I and CNOP-P.
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3.3. Mechanism for SPB-Associated Error Evolution

Previous studies have unequivocally demonstrated that both CNOP-I and CNOP-P
can trigger SPB-associated error evolutions [36,40]. In this section, we not merely illustrate
the temporal SST error evolutions triggered by CNOP-I, CNOP-P, and CNOPs but also
delve deeper into distinguishing their dynamic disparities.

Figure 5 shows the SST errors in the Niño3.4 area and the corresponding tendencies for
different phase predictions. We focus on the SST errors in the Niño3.4 area because it is the
main benchmark for judging the prediction of the El Niño event internationally. Consistent
with Figure 3, CNOP-I tends to generate a negative error, while CNOPs and CNOP-P are
likely to cause positive errors. One may note that all CNOP-type errors tend to cause
negative SST errors in the Niño3.4 area when predicting the decay of El Niño (Figure 5c).
In fact, the CNOP-P and CNOPs-induced SST error features a dipole mode (the positive
error in the eastern tropical Pacific and the negative error in the central Pacific) when
predicting the decay phase of El Niño (Figure 2c). Despite these patterns, a substantial error
growth tendency is observed in late winter and spring (i.e., from January to April) across
all predictions. Taking the onset phase prediction as an example, the strongest negative
tendency induced by CNOP-I peaks in February, further amplifying the negative error
at the end of the prediction. The largest error tendency caused by CNOP-P (exceeding
0.1 ◦C/month) occurs around April. The strong effect induced by the CNOP-P in the
spring pulls the SST prediction from a negative error to a positive error at the end of the
prediction. When the effect of ICs and the MPs are considered simultaneously, the error
growth tendency becomes larger with the peak tendencies of 0.4 ◦C/month between March
and April.
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Although the SST error evolution, including the SPB-associated error growth, exhibits
a strong similarity in the Niño3.4 area (with correlations close to −1 or 1, as shown in
Figures 3a and 4a), this similarity does not extend to other variables. As shown in Figure 3,
the correlation between error evolutions in meridional and vertical currents is nearly nonex-
istent in certain regions when comparing the CNOP-I and CNOPs cases. Especially for
the decay phase prediction (Figure 4), CNOP-I-induced error evolution is totally different
from CNOP-P or CNOPs. It is implied that the IC-induced and MP-induced SPB have
different mechanisms.

To explore and distinguish the mechanisms for the large error growth in spring,
we calculate each term (i.e., heat budget term) of the tendency error, including vertical
convection, zonal, and meridional advections in the mixed layer from February to April.
Figure 6 displays the distributions of the heat budget in the spring. It is of interest that
the error of the vertical convection of the mean temperature by the anomalous upwelling,
namely the Ekman pumping feedback (i.e., w′ ∂T

∂z , denoted as VCam), is so small that it
hardly contributes to the error growth whether caused by errors in ICs or MPs, suggesting
that the prediction of vertical current is not sensitive to the ICs or MPs in spring. However,
as implicated in Figures 3 and 4, the dominant terms causing the SPB are dependent on the
error sources (i.e., errors in the ICs or MPs) and phase predictions.
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Figure 6. Distributions of tendency errors in each term (unit: ◦C/month) in the spring that are
caused by the (a) CNOP-I, (b) CNOP-P, and (c) CNOPs. Results for different phase predictions of
El Niño are shown along the y-axis in each panel. The colored bars (see graph legend in the right
panel) represent error tendency terms from the heat budget analysis. For convenience, the vertical
convection (VC) of the anomalous upwelling and mean temperature (w′ ∂T

∂z ) is denoted as VCam, and
that of the anomalous upwelling and anomalous temperature (w′ ∂T′

∂z ) is denoted as VCaa, and so are
the zonal advection (ZA) and meridional advection (MA). The residual term, including the heat flux,
diffusion, and conduction, is denoted as R.

The distribution of each error tendency term that is caused by the CNOP-I for different
phase predictions is shown in Figure 6a. It was found that error in the zonal advection
is the dominant term, contributing more than 60% to the total tendency error in spring,
followed by the meridional advection. Particularly, uncertainties in the zonal advection
term are mainly dependent on the mean temperature and the anomalous zonal current
[i.e., zonal advection feedback (u′ ∂T

∂x ), denoted as ZAam]. The vertical advection (the blue
bars) also enhances the SPB in CNOP-I cases. The above results manifest that errors in
ICs tend to perturb the ocean current, giving rise to large uncertainties in advection terms,
which accounts for the large error growth in spring for the El Niño prediction. In this light,
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improving the prediction of ocean currents is a priority to improve the El Niño prediction
using the ICM when the ICs are not perfect.

However, the advection terms are more likely to have a negative effect on the error
growth in spring when errors exist in MPs. The heat budget for the CNOP-P case is shown
in Figure 6b. Clearly, it is different from the CNOP-I case (Figure 6a). We observe that
the remainder term (i.e., the heat flux, diffusion, and conduction terms, and the brown
bar in Figure 6) is the chief culprit destroying prediction in the spring. Positive values
of these remainder terms contribute to positive SST errors, particularly when predicting
the onset and mature phases of El Niño, as shown in Figure 5a,b. Conversely, during the
decay phase prediction, negative values of the remainder term led to negative SST errors in
the model employing CNOP-P, as illustrated in Figure 5c. Interestingly, advection terms
generally play a minimal role in SPB-related evolution and may even hinder error growth
in spring, with the exception of nonlinear terms. For example, the growth rate explained
by the residual term is up to −0.15 ◦C/month in spring during the decay phase prediction,
while the total error growth rate is only −0.05 ◦C/month because of the negative effect of
the MAam and MAma (about 0.05 ◦C/month and 0.03 ◦C/month, respectively). From the
above, it becomes evident that the SPB phenomenon triggered by MP errors is primarily
attributable to uncertainties in thermodynamic processes. Therefore, we suggest that we
should take care of the simulations of the thermodynamics (i.e., the heat flux, diffusion, and
conduction terms) in El Niño prediction when MPs or the strength of the Bjerknes feedback
are not realistic in the ICM.

The case is much more complicated when errors exist in both ICs and MPs. Figure 6c
displays errors in each term of the tendency that are induced by the CNOPs. Although
the evolution of sea surface temperature (SST) errors induced by the CNOP-P closely
resembles that caused by CNOPs, the processes underlying the SPB differ somewhat.
Influenced by the IC errors, the residual term fails to adequately account for the large
error growth in spring. In particular, when predicting the maturity of the El Niño, almost
all tendency terms exhibit a positive impact on error growth, with the exception of the
residual term. Additionally, the effects of nonlinear terms become larger and even exceed
the residual term.

Another intriguing finding is the emergence of significant error growth not only in
spring but also in fall during the prediction of the mature phase (Figure 5b). As mentioned
above, the SPB-associated error growth mechanisms induced by the ICs and MPs are
entirely different, although they are all forced by the Bjerknes feedback: the former is
primarily due to the advection processes, while the latter is attributed to the thermody-
namics. Then, what about the fall error growth? To compare the differences caused by
the ICs and MPs, we also present the uncertainties in the heat budget in the fall (shown
in Figure 7). Different from the strong error growth in spring, processes evoked by IC
errors are surprisingly similar to that by MP errors in fall, that the fall error growth is
mainly caused by the uncertainties in linear advection terms (e.g., u′ ∂T

∂x , u ∂T′
∂x , w ∂T′

∂z ). The
residual term and nonlinear advections tend to show a negative effect against the large
error growth. Not only that, the combined error mode of ICs and MPs (i.e., CNOPs) also
has the same error growth mechanisms, suggesting that the mechanism of the fall error
growth is unrelated to the errors in the ICs or MPs.
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4. The Sensitivity of Predictions to Uncertainties in ICs and MPs

Since the roles of ICs and MPs in SPB-associated error evolutions are found to be
different in the last section, it is conceivable that the sensitivities of El Niño prediction to
uncertainties in ICs and MPs are also not the same.

Three sets of sensitivity experiments are designed to examine uncertainties of El Niño
prediction arising from errors in ICs and MPs. The first set of experiments (referred to as
IC perturbed experiments, including SST perturbed and SL perturbed experiments) shown
in Table 1 is performed to compare the sensitivity of El Niño prediction to the magnitudes
of uncertainties in the SST and SL, in which only the constraints of SST and SL are changed
but without MPs errors in CNOP analysis. Take the case of SST perturbed experiments;
for example, constraint 2 means that the constraint bound δ for initial SST is 2 × 0.2 ◦C,
and 3 means 3 × 0.2 ◦C. The IC perturbed experiments can reveal the relative importance
between initial SST and SL during El Niño prediction. In addition to the SST and SL signal,
the corresponding processes (i.e., ατ and αTe) are also important in El Niño development.
Although Gao and Zhang (2017) [31] have investigated the contributions of SST-wind
and SST-thermocline feedback to the evolution of SST anomaly in the tropical Pacific, the
issue of which process is dominant is yet unclear. Therefore, the second set of sensitivity
experiments (referred to as MP perturbed experiments) shown in Table 2 is designed to
explore the relative contribution of ατ and αTe. The third set of sensitivity experiments
(denoted as IC-MP experiments) shown in Table 3 will reveal the relative importance of
errors in ICs and MPs in El Niño prediction. The IC-MP-1 (IC-MP-2) experiments are
related to the CNOP-I (CNOP-P) experiments in which MP (IC) errors are ignored. In the
IC-MP-3 experiment, the constraints of ICs and MPs are changed simultaneously from 0 to
4, which is in comparison with the IC-MP-1 (IC-MP-2) experiments. The combined effect
(CE) is calculated using the equation CE = JIP−(JI+JP)

JI+JP
, in which JI and JP are the final error

induced by the CNOP-I and CNOP-P, respectively; JIP is the prediction error induced by
the CNOPs.

Table 1. Settings of the IC perturbed experiments based on the CNOP-I approach, in which the MP
errors are ignored. To examine the sensitivity of El Niño prediction to uncertainties in the SST of the
ICs, the initial SST constraint intensity that represents the relative constraint to the standard case in
Section 2.2.2 is changed from 0 to 4 with the initial SL constraint fixed. Analogously, to explore the
sensitivity to uncertainties in the initial SL, the initial constraints are unfixed for the SL but fixed for
the SST.

Experiments
IC Constraint

SST SL

IC perturbed
experiments

SST δSST = (0, 0.5, 1, 2, 3, 4) · δ∗SST δ∗SL = 1 cm
SL δ∗SST = 0.2 ◦C δSL = (0, 0.5, 1, 2, 3, 4) · δ∗SL

Table 2. Settings of the MP perturbed experiments based on the CNOP-P approach, in which the IC
errors are ignored. Similar to the IC perturbed experiments in Table 1, two types of experiments are
designed to explore the prediction sensitivity to uncertainties in two MPs, one of which has unfixed
constraints ranging from 0 to 4, and the other one is fixed. The reference MPs are αTe = 1.0 and
ατ = 0.87.

Experiments
MP Constraint

ατ αTe

MP perturbed
experiments

ατ δτ = (0, 0.5, 1, 2, 3, 4) · δ∗τ δ∗Te
= 2% · αTe

αTe δ∗τ = 2% · ατ δTe = (0, 0.5, 1, 2, 3, 4) · δ∗Te
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Table 3. Settings of the IC-MP experiments that were used to explore the combined effect of the
ICs and MPs. The IC-MP-1 experiment is related to the standard CNOP-I analysis, in which the
constraints of two ICs are changed simultaneously from 0 to 4, but the MP errors are ignored. The
IC-MP-2 experiment is related to the standard CNOP-P analysis in that the IC errors are ignored. The
third type of experiment is designed to explore the combined effect of ICs and MPs, in which the
constraints of the ICs and MPs are changed in a synchronous manner in the CNOPs analysis.

Experiments IC Constraint MP Constraint

IC-MP
experiments

IC-MP-1 (δSST, δSL)
= (0, 0.5, 1, 2, 3, 4) · (δ∗SST, δ∗SL)

(δτ , δTe) = 0

IC-MP-2 (δSST, δSL) = 0 (δτ , δTe)
= (0, 0.5, 1, 2, 3, 4) · (δ∗τ , δ∗Te)

IC-MP-3 (δSST, δSL, δτ , δTe) = (0, 0.5, 1, 2, 3, 4) · (δ∗SST, δ∗SL, δ∗τ , δ∗Te)

4.1. SST vs. SL

Sensitivities of prediction errors to magnitudes of the initial SST and SL errors are
shown in Figure 8 (upper panels). An evident increase in the prediction error is followed
as the initial errors increase. The fact that the doubling of initial errors doubles the error
growth points to a quasi-linear relationship between the prediction errors and IC errors.
This seems somewhat confusing since we preliminarily thought that there would be a
nonlinear relation. In fact, under a long-term (i.e., 12 months) prediction, the model tends
to be insensitive to ICs but sensitive to the model itself (revealed in Section 5). In addition,
the final SST error growth is dependent on the phase of El Niño. Compared with the onset
and decay phase predictions of El Niño, the slope of the error growth is larger in the mature
phase prediction.
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The sensitivity of El Niño prediction to uncertainties in individual ICs is different. In
comparison with the SST errors, the ICs of the SL errors tend to induce larger uncertainties
for the El Niño prediction at any phase. That is, the El Niño prediction is more sensitive
to uncertainties in SL than SST. This result supports the study by Zheng et al. (2007) that
the prediction uncertainties are reduced by assimilating the observed SL rather than the
observed SST [44].

4.2. ατ vs. αTe

The prediction errors as the function of constraint intensity for MP errors are shown
in Figure 8 (bottom panels). It is found that the effort caused by the errors in ατ and αTe is
identical when the constraint is small. However, as the uncertainties associated with MPs
grow, errors induced by ατ become larger than that by αTe, particularly when predicting
the mature phase of the El Niño (Figure 8e). Thus, compared with the uncertainties in αTe,
the El Niño prediction is more sensitive to the error size in ατ . That is, the impact of SST-
wind feedback on the El Niño prediction is greater than that of SST-thermocline feedback.
Another noteworthy observation is the nonlinear relationship between the constraints on
MPs and prediction uncertainties. Large errors in MPs can induce an imbalance of the
model dynamics so that the error increases rapidly under an unstable prediction. This is
supported by evidence that uncertainties in MPs can amplify the uncertainties in predicted
wind stress, ultimately resulting in substantial uncertainties in the prediction of ocean
dynamics and thermodynamics [7,36].

4.3. ICs vs. MPs

The former experiments have qualitatively examined the sensitivity of the El Niño
prediction to the uncertainties in ICs or MPs. The third experiment is finally carried out to
compare the impact of ICs and MPs, as well as their combined effect.

Errors induced by the CNOP-I and CNOP-P, as well as CNOPs (i.e., the IC-MP-1,
IC-MP-2, and IC-MP-3 experiments), are shown in Figure 9. When both the constraint
of ICs and MPs are 1, the errors induced by the CNOP-I and CNOP-P are almost equal.
However, as the constraint increases, the CNOP-P causes larger error growth than CNOP-I
when predicting the mature and decay phase of the El Niño (Figure 9b,c). This result
reflects a plausible fact that the El Niño prediction is more sensitive to uncertainties in MPs.

Another feature that can be found in Figure 9 is that the error induced by CNOPs is
much larger than that by CNOP-I or CNOP-P, implying a strong coupling effect between ICs
and MPs in El Niño prediction (also shown in Figure 5). Additionally, this combined effect
becomes larger along with the intensity of the constraint. For example, the prediction error
induced by the CNOPs is lower than 4 ◦C under the constraint of 2, and the prediction error
is larger than 12 ◦C when the constraint is 4 (Figure 9b). This feature probably contributed
to the nonlinear effect caused by the combined effect of IC and MP errors (revealed in
Figure 6, in which the nonlinear terms become dominant in error growth).

To elucidate the high combined effect, we conducted a detailed analysis of prediction
errors across various regions of the tropical Pacific. The tropical Pacific (15◦ N–15◦ S,
140◦ E–100◦ W) is divided into nine equal parts (shown in Table 4). We find that the largest
error caused is consistently located in the eastern equatorial Pacific in all experiments,
hence influencing the prediction of the El Niño intensity. However, as shown in Table 4,
the interesting thing is that the CNOPs have the largest combined effect of the equator
prediction, where the combined effect can reach 23.5%. This result underscores the critical
role of the combined effect of IC and MP errors off the equator in driving the growth of
prediction errors.
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Table 4. The combined effect is caused by the errors in the ICs and MPs in the tropical Pacific.

140◦~180◦ E 180◦~140◦ W 140◦~100◦ W

15◦ N~5◦ N 17.3% 19.9% 15.5%

5◦ N~5◦ S 14.9% −2.3% 15.3%

5◦ S~15◦ S 5.5% 2.0% 23.5%
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5. The Impact of Errors in ICs and MPs Due to Prediction Time

In addition to looking at prediction sensitivity to ICs/MPs, another set of experiments
is designed to study the ICs/MPs-induced error growth due to various prediction lengths.
CNOP analyses are implemented as standard cases but with diverse prediction lengths.
The predictions are carried out with lead times from 3 months to 15 months to predict the
onset [June (0)], mature [December (0)], and decay phase [June (1)] of El Niño. The initial
times for the predictions are shown in Figure 10. Note that predictions are made on the
first day of each selected month.
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Figure 10. The design of the CNOP analyses with various prediction lengths (i.e., optimization time
in the CNOP algorithm) spans from 3 months to 15 months. The filled triangles are the start months,
and the solid circles are the final prediction times. Predictions are made on the first day of each month
to predict the onset [June (0)], mature [December (0)], and decay phase [June (1)] of the El Niño.

The prediction errors, represented by the object function (i.e., mean RMSE of SST in the
tropical Pacific), are presented in Figure 11. Comparing each panel of the figure, it is evident
that the relationship between prediction error and prediction length is not related to the El
Niño phase. However, such a relationship is dependent on the source of error. Considering
the onset phase prediction as an illustrative example (Figure 11a), the prediction errors
arising from CNOP-Is fluctuate around 0.3 ◦C regardless of the prediction length, whereas
the errors attributed to MPs gradually increase from 0.1 ◦C to 0.3 ◦C. It is indicated that
the ICs-induced error starts to saturate at short-term prediction, and the errors induced by
the MP errors are still growing as the prediction time increases. This finding aligns with
the study conducted by Zheng et al. (2009), who demonstrated that perturbations in ICs
have a minimal impact on El Niño predictions, primarily affecting the first three months of
the forecast, whereas perturbations in model errors contribute significantly to improving
predictions across the entire 12-month period. In practical applications, to achieve accurate
predictions, it is crucial to prioritize the accuracy of ICs at shorter lead times (e.g., 3 months)
while emphasizing the precision of MPs at longer lead times (e.g., 12 months).

The feature that prediction error is increased with prediction length is evident in CNOP
cases where errors in both ICs and MPs are considered. It is found that the interaction
of ICs and MPs tends to cause larger prediction errors over time. For example, the error
induced by either ICs or MPs is less than 0.3 ◦C at a 3-month prediction; even at a 12-month
leading time, the prediction error is about 0.5 ◦C (Figure 11b). The error induced by the
combination of ICs and MPs intensively increased from 0.4 ◦C at 3-month prediction to
larger than 1.2 ◦C at 15-month prediction.
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6. Conclusions and Discussion

Uncertainties in ENSO predictions come from not only ICs but also model dynamics
(e.g., the physical processes featured by MPs). In this study, we systematically investigate
the impact of errors in ICs and MPs and their combination on El Niño prediction from
the optimal error growth perspective. The CNOP approach, which is used to explore
the optimal errors in the ICs/MPs that are likely to lead to large error growth in the
prediction, is adopted with the ICM. Two ICs (SST and SL) and two MPs (ατ and αTe)
that are directly related to the Bjerknes positive feedback are considered in the CNOP-I
and CNOP-P analysis, respectively. Additionally, the optimally combined error pattern
of the MPs and ICs (CNOPs) are calculated in a synchronous manner. The comparison of
CNOP-type errors and the corresponding error evolutions allows us to understand the El
Niño predictability regarding the two kinds of predictability problems.

Results show that both uncertainties in ICs and MPs have the potential to induce SPB-
associated error evolution that presents a rapid error growth in spring, thus deteriorating
the prediction of El Niño. However, the underlying processes governing this error growth
differ. The spring error growth attributed to CNOP-I is primarily due to uncertainties in
ocean advection processes. Conversely, the uncertainties in advection caused by CNOP-P
tend to suppress error growth in spring. The spring error growth induced by the MP
errors is primarily projected onto uncertainties in thermodynamic processes, encompassing
heat flux, diffusion, and conduction. In this light, we should take care of the simulations
of the thermodynamics in El Niño prediction when the MPs are not perfect in the ICM,
but the simulations of the ocean currents when the ICs are not perfect. Furthermore, the
optimally combined mode of the errors in the MPs and the ICs (i.e., CNOPs) produces much
larger error growth and causes much more significant SPB. Differing from the CNOP-I
and CNOP-P cases, the nonlinear advection terms become dominant in the spring error
growth when errors in ICs and MPs are considered simultaneously. This indicates that
strong nonlinear interactions exist between the errors in ICs and MPs that aggressively
influence the SPB.
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The potential impacts of errors in ICs and MPs on the error growth of El Niño predic-
tions across various prediction lengths are demonstrated. It is observed that prediction
errors arising from IC errors tend to saturate at short-term prediction horizons (i.e., 3–6
months) as the prediction length increases without a corresponding surge in prediction
error. Conversely, errors in MPs tend to induce increasingly larger errors as the prediction
time extends. This explains why IC-perturbed ensemble predictions are effective primarily
for 3-month forecasts, while model error-perturbed ensemble predictions yield remarkable
results at longer lead times [27]. When errors in the ICs and MPs exist simultaneously,
the nonlinear interaction between ICs and MPs makes the prediction errors grow much
stronger with prediction length than CNOP-I or CNOP-P does. Additionally, the combined
nonlinear effect is magnified as the prediction length increases. Consequently, to ensure
better prediction accuracy, it is imperative to make concerted efforts to improve both ICs
and MPs simultaneously.

The sensitivities of the uncertainties of El Niño prediction to uncertainties in ICs and
MPs are revealed. From the CNOP experiments regarding ICs, the El Niño prediction is
more sensitive to the information of the SL than the SST. That is, the initial heat content in
the tropical is more significant in the prediction of the tropical Pacific. From this point, these
results also confirm the previous conclusion that the heat content in the tropical Pacific is
a better precursor than the SST to detect the occurrence of the El Niño event [45]. From
the CNOP experiments regarding MPs, compared with the uncertainties in αTe, El Niño
prediction is more sensitive to uncertainties in ατ . That is, the impact of SST-wind feedback
on the El Niño prediction is greater than that of SST-thermocline feedback. Moreover, the
relative importance of ICs and MPs in El Niño prediction is investigated with the conclusion
that the El Niño prediction is more sensitive to uncertainties in MPs than that in ICs. Hence,
we suggest a priority of improvement in MPs or the model itself so as to give a better
prediction when computing resources are limited, especially for the state-of-the-art models.

We are not denying the effectiveness of the data assimilations that balance the ICs
and model. On the contrary, we emphasize that the initial and model errors should be
simultaneously considered for greatly improving the El Niño prediction level [35] since the
nonlinear interactions between the errors that existed in ICs and MPs make El Niño difficult
to predict. We also acknowledge the limitations of the present study, such as the simplified
model adopted. More relevant studies are expected to be conducted. For example, how
can an effective scheme to improve the prediction except for the target observation be
designed [24]? An alternative approach is to obtain the optimal model errors based on the
observations and model rather than subjectively or empirically [37,41,46,47]. For example,
as demonstrated by Zhang et al. (2018), the optimized MPs and ICs are obtained based on
the CNOP approach, which is then used to successfully predict the 2015 El Niño event [13].
In spite of all this, this study deepens our understanding of El Niño predictability.
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