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Abstract: A growing number of large data sets have created challenges for the oil and gas industry in
predicting reservoir parameters and assessing well productivity through efficient and cost-effective
techniques. The design of drilling plans for a high-pressure tight-sand reservoir requires accurate
estimations of pore pressure (Pp) and reservoir parameters. The objective of this study is to predict and
compare the Pp of Huizhou Sag, Pearl River Mouth Basin, China, using conventional techniques and
machine learning (ML) algorithms. We investigated the characteristics of low-permeability reservoirs
by observing well-logging data sets and cores and examining thin sections under a microscope. In
the reservoir zone, the average hydrocarbon saturation is 55%, and the average effective porosity is
11%. The tight sandstone reservoirs consist of fine- to extremely fine-grained argillaceous feldspathic
sandstone. The mean absolute error for reservoir property prediction is 1.3%, 2.2%, and 4.8%,
respectively, for effective porosity, shale volume, and water saturation. Moreover, the ML algorithm
was employed to cross-check the validity of the prediction of Pp. Combining conventional and ML
techniques with the core data demonstrates a correlation coefficient (R2) of 0.9587, indicating that
ML techniques are the most effective in testing well data. This study shows that ML can effectively
predict Pp at subsequent depths in adjacent geologically similar locations. Compared to conventional
methods, a substantial data set and ML algorithms improve the precision of Pp predictions.

Keywords: well logs; machine learning; pore pressure; tight sandstone; reservoir properties

1. Introduction

The challenges encountered during drilling under uncontrolled pressured conditions
can result in well abandonment, incurring substantial costs for hydrocarbon production [1,2].
Companies have made significant efforts to improve pore pressure (Pp) prediction in drill
planning to mitigate these risks [3]. The accurate prediction of Pp and assessment of fluid
flow play a crucial role in developing hydrocarbon areas, particularly in the well-planning
phase [4]. According to a survey conducted on 2520 wells completed in the Gulf of Mexico,
problems with gas flow, shallow water flow, kicks, and lost circulation accounted for
more than 24% of the entire drilling duration. These problems were primarily related to
the fracture inclination and imprecise pore pressure estimation [5]. A robust modeling
approach is required to precisely predict shear stress for the thixotropic fluids because
these fluids have widespread use in the petroleum industry due to their prevalence in
porous media and pipelines, and their complex rheological behavior [3]. It is crucial to
accurately determine the minimum miscibility pressure of the reservoir fluid, rock, and
thermal conditions to assess the gas injection process [6,7].
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Well-logging data can offer an effective tool to obtain extensive details on subsurface
formation and rock properties. Well logs provide such information as lithology information,
formation resistivity, clay content, porosity, rock density, water saturation, rock physics, and
flow capacity, which are very important for reservoir characterization [8–11]. Estimating
Pp from borehole data has been accomplished through established theoretic techniques,
which originated from the Terzaghi and Biot effective stress law [12–15], to accurately
estimate Pp in formations, ensuring safe drilling operations and reducing the environmental
effect. Drilling plans are guided by Pp, defined as the fluid pressures within pore spaces
of permeable geological formations [4]. Substantial engineering catastrophes, such as
seabed instability, formation destruction, well blowouts, etc., typically arise from errors in
predicting Pp [16].

Hottmann and Johnson [17] introduced a typical theoretical approach for predicting
Pp with shale character derived from sonic (DT) and gamma-ray (GR) logs. This method
detected abnormal Pp by identifying deviations from the standard porosity style in the
calculated results. Incorporating the average overburden stress gradient, normal fluid
pressure gradient, depth, and two empirical constants, this model facilitated rapid Pp
prediction. Eaton [15] proposed a renowned classical theoretical equation using Rt data
and, later, in 1975, introduced a new empirical equation for Pp prediction utilizing DT
data. In this new empirical Eaton model, the DT in the normal trend became a crucial
parameter for calculating Pp [16]. Luo et al., 2021, presented a novel Pp model based on GR
and resistivity logs’ data set, effective in formations with diverse lithologies and different
tectonic compressions [18]. Like the DT-related equation, their empirical equation derived
porosity from empirical expressions.

The prediction of Pp is a crucial factor in determining the effectiveness and cost-
effectiveness of drilling operations and effectively managing the well. It is considered
primary data for petroleum exploration and development strategies. This will aid in mitigat-
ing issues related to drilling operations and reducing the associated costs and risks [19,20].
The prediction of Pp has been performed through several traditional methods, which in-
clude analytical and numerical approaches. The empirical methods seldom consider the
relationships between Pp and other well-log data, including sonic velocity, porosity, and
resistivity logs, and the use of these methods makes them frequently utilized in the industry.
The empirical methods are subject to some limitations, especially when the correlation is
derived from a restricted data set as well as the geological context [20–22]. ML algorithms
were employed to predict Pp and used risk identification for complex conditions. Nowa-
days, machines and deep learning-based methods have been developed to precisely predict
Pp in cost-effective ways and reduce processing time [13,20].

As a critical region for petroleum production, the Huizhou Sag contains multiple
significant hydrocarbon accumulations, especially natural gas reserves like HZ25-7, HZ21-
1, LH11-1, and LF13-2. In this basin, grabens and half-grabens created by the Cenozoic
extensional fault networks are typically filled with the source rocks [23]. This Cenozoic
extension significantly impacts the integrity of fault seals and the preservation of traps [24].
Thus far, exploration efforts have largely penetrated the petroleum targets in the shallower
sediments. It has been concluded from a literature review that minimal work was per-
formed on Pp prediction. This study aims to fill this gap by determining the Pp of the basin
so that drilling operations can be facilitated.

This research primarily focuses on the tight sandstone reservoirs of the formations
in the Huizhou Sag, Pearl River Mouth Basin (PRMB), China. It aims to investigate
the reservoir properties and Pp to understand its potential for further exploration and
production (E&P) activities. This study addresses the gap in estimating Pp and reservoir
properties through conventional and ML approaches with core data calibration. The
supervised ML approach offers an innovative alternative for precisely and effectively
predicting Pp and characterizing reservoir properties. The random forest (RF) algorithm
was employed for a petrophysical analysis, while gradient boost and ADA boost algorithms
were utilized for Pp prediction. To facilitate and calibrate ML model results in core data,
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analyses such as thin-section observation, mineral identification, and porosity and pressure
data analyses were performed to investigate the petroleum characteristics of the Wenchang
Formation (WC 421).

This study provides valuable insights into predicting Pp through theoretical and ML
models and reservoir characterization in the Huizhou Sag Field, utilizing lab-measured
formation Pp and readily available conventional well-logging data from the Wenchang
Formation. Current research outcomes contribute to a reliable and better understanding of
tight reservoirs and enhance our knowledge about Pp prediction from the well log data set.
Additionally, these insights provide crucial guidance for oil and gas E&P activities for safe
drilling operations in the PRMB, China.

2. Geological Setting

Rift basins are prevalent geological features, among many of which have suffered
multiple phases of tectonic activity, incorporating extension, strike-slip, or inversion defor-
mation in various orientations [23,25]. Underneath conditions of extension, newly formed
fault systems verge toward being oriented practically vertically to the orientation of the
extension fault [18]. However, the resulting fault network becomes more intricate when
two extension stages occur in separate directions. This can include curved, various sets of a
strike, and intersecting faults, as demonstrated in sandbox analog models [26].

Normal faults are typically generated in large numbers in rift basins during the syn-
rift phase. However, their movement is periodic and relatively too constant. These faults
may originate in the initial stages of rifting, become inactive during certain sedimentary
phases, and then become reactivated and increase due to extensional stresses during
later sedimentary periods. Newly formed faults that initiate during the late deposition
phase may generate downward, vertically linking with other initial-manufacture faults or
developing separately [18,27].

As a result, newly generated faults connected to reactivated faults are less affected
by older faults and may display variations in their direction and propagation. The PRMB
is a vast offshore sedimentary basin that spans around 175,000 square kilometers along
the South China Continental border. That includes a sedimentary sequence of up to
17 km in depth, composed of Cenozoic and Mesozoic fluvial to marine deposits, including
carbonate and clastic strata. The basin exhibits a complicated structural configuration,
with different uplifted regions split by dual bowl shape geometry running in a NEE-SWW
orientation (as shown in Figure 1). The northern depression zone comprises the Zhu 1 and
Zhu 3 depressions. Comparatively, the southern depression was formed by the Zhu 2 and
Chaoshan depressions. The Zhu 1 depression, located at the heart of the Huizhou Sag,
extends over 11,719 sq. kilometers with a depth of around 10,000 m. Given the significance
of this region, it is crucial to identify additional petroleum geometry within the basin,
reduce exploration uncertainties, and establish dependable geological models for the fault
systems in the area.

The literature survey of the study area suggested that the limited exploration data set
of the Wenchang Formation is available to establish relationships between sedimentary
facies and key formation evaluation parameters for reservoir characterization and enhance
drilling operations. The significant post-depositional erosional events, including tectonic
inversion and shifts in tectonic patterns, have impacted the Wenchang Formation (Target
Formation) composition, and made it heterogeneous, while it was initially deposited in a
deeper lake environment [26,28–30]. The reservoir formation presented in the study area
exhibits distinct facies-controlled characteristics that make the assessment and prediction
of reservoir quality viable [31,32]. It has been witnessed that previous studies performed
on the Wenchang Formation have primarily focused on examining the structure, resource
potential assessment, and source rock evaluation through seismic, well logs, and core data
sets, and no study has been reported to predict pore pressure (Pp) of this formation [26,28].
Core measurement is the most reliable method to access reservoir properties and Pp. Still,
it is expensive, and limited interval availability makes it challenging to assess the whole
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reservoir unit potential. To overcome this, the prediction of reservoir quality, Pp, and the
potential presence of hydrocarbon in wells can be achieved by well-logging data without
core data. Nevertheless, little work has been reported in the study area regarding the
comprehension of Pp and a petrophysical analysis through machine learning (ML) methods.
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Figure 1. A geological map illustrating the spatial arrangement of tectonic units, the structural
features along a profile within the Huizhou depression in the PRMB, and the precise geographic
location of the Huizhou depression within the PRMB [26].

PRMB in the South China Sea, with its two-kilometer-thick layer of Eocene sediments,
has emerged as a hotspot for oil exploration. Recent discoveries, like the HZ25-7 field in the
Wenchang Formation, have fueled this interest [28]. PRMB, a Cenozoic rift basin stretching
northeastward along the continental margin, is crisscrossed by three fault systems: NE-EW
normal faults, NW shear faults, and WNW oblique-slip faults [33]. The Huizhou Sag, a
shallow area on the continental shelf, has been studied previously. These studies classified
the Cenozoic sediments in the Huizhou Sag into syn-rift and post-rift mega-sequences. The
syn-rift sequence comprises the Wenchang and Enping formations, divided by the T70
breakup unconformity. The post-rift sequence includes the Zhuhai, Zhujiang, Hanjiang,
Yuehai, and Wanshan formations. Figure 2 illustrates Huizhou Sag’s stratigraphy with
details on petroleum potential, lithology, and sedimentary facies.
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Figure 2. Stratigraphy of the Huizhou Sag [34].

3. Material and Methodology

The present research used data from HZ-26-A in China for reservoir characterization
and pore pressure prediction. The log is used for the calculation of parameters. The
target zone for the reservoir and pore pressure prediction for HZ-26-A is 3820.15 m to
3837.98 m, and the overall thickness of the zone is 17.83 m. The lithological identification
was performed through thin sections (using a German Leica polarizing microscope), and
logging equipment was widely used in the geoscience of well HZ-26-A. The sampling
and analysis were carried out in strict accordance with the requirements of geological
design and on-site geological supervision to identify thin lithology sections in this well, as
demonstrated in Figure 3. Present studies employed different types of techniques involving
conventional and machine learning approaches.
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3.1. Conventional Method

With the help of a traditional linear technique, the volume of shale is estimated, as
shown in Equation (1) [35].

IGR =
GRlog − GRcln

GRshl − GRcln
(1)

VSHClavier = 1.7 −
√

3.38 − (IGR + 0.7)2 (2)

VSHStieber =
IGR

3 − 2IGR
(3)

where IGR is an Index Gamma Ray, GRlog is a log curve value obtained from the gamma-ray
log, GRcln is the average minimum value of GR, and GRshl is the maximum value of GRlog.
After the calculation of the IGR, the Clavier and Steiber correction was estimated with the
help of Equations (2) and (3) [36,37]. The estimation of shale volume through the linear
approach, which is not based on geographical features (gamma-ray index), leads to the
over-estimation of shale volume values. To reduce this, non-linear approaches have been
developed that are more optimistic and reliable [33]. Clevier’s and Steiber’s non-linear
approaches rely on geographical features or formation age to improve the accuracy and
reliability of shale volume estimation in shaly sand reservoirs [38]. A literature survey
revealed that the best estimation of shale volume is obtained using a gamma-ray log with
the Stieber non-linear approach, which is calibrated with XRD in the tight reservoir [8].
Therefore, in the current study, we use Steiber’s approach to compute shale volume.

The next step was the calculation of the effective porosity. Effective porosity is the sum
of all interconnected pores within the reservoir. The formula for the calculation of effective
porosity is shown in Equation (4) [39].

PHIE = PHIA × (1 − VSH) (4)

In the above equation, PHIE represents the effective porosity, PHIA represents the
average porosity, and VSH shows the volume of shale. The last step of petrophysics is
the calculation of water saturation; for that, Archie’s equation was used, as shown in
Equation (5) [40].

SWArchie =

[
aRw

PHIEmRt

] 1
n

(5)

In SWArchie, the saturation of water is calculated using Archie’s equation. Rw is the
resistivity of the water, and Rt is the deep resistivity.

Vertical stress (σv) or overburden is the quantitative weight of the sedimentary column
that creates the overburden [4,41,42]. Based on the information that is accessible, bulk
density and depth data, the overburden can be computed [43]. Equation (6) [44], which
shows how to apply the Amoco method to calculate the vertical stress gradient (OBG), uses
Z as the depth, RHOB as the bulk density log value, and g as the gravitational acceleration.

OBG =

z∫
0

RHOB(Z)gdZ (6)

The effective stress rule of Terzaghi and Biot [45] serves as the foundation for predicting
pore pressure. The framework of this theory states that total and vertical effective stress are
functions of fluid pore pressure. Equations (7)–(12) were adopted from [15,46] and express
the connection between these terms:

Approximation of the normal compaction trend line (NCT).

Ppg = συg − (συg − Phg)

(
∆tn

∆t

)m
(7)
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∆tn = ∆tm − (∆tml − ∆tm)e−cz (8)

(1) Calculation of lithostatic pressure.

συg =

(
Psea +

∫ Z
0 ρb(Z)gdZ

)
− Psea

Z
=

∫ Z
0 ρb(Z)gdZ

Z
g (9)

(2) Calculation of hydrostatic pressure.

Phg =
(Psea + ρwgZ)− Psea

Z
= ρwg (10)

(3) Estimation of pore pressure using Eaton’s equation.

Ppg = σνg − (σνg − Phg)

(
∆tn

∆t

)m
(11)

Pf = Psea + PpgZ (12)

∆tm is the transit time in the shale matrix, ∆tml is the transit time at the mudline
(Z = 0), (Z is the true vertical depth below the mudline, (c is the compaction parameter, σe
is the effective stress [46], pf is the pore pressure, ppg is the pore pressure gradient, σvgσ is
the overburden pressure, phg is the hydrostatic pressure gradient, and Ppg is the formation
pore pressure gradient [16,47].

3.2. ML Method

In conventional techniques, different log curves are predicted with the help of a
regression analysis. The random forest ML technique was used for the prediction of
petrophysical calculation. The detailed methodology of the ML techniques is shown in the
flow chart in Figure 4.
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In ML techniques, the first step is frequency distribution, which assists in a better
understanding of the parameters present in our selected reservoir formation. The fre-
quency distribution chart was developed for petrophysics’ input and output parameters.
The plot’s x-axis represents the original scale, and the y-axis represents the frequency
distribution, illustrating the frequency range in which different data sets are present, as
shown in Figure 5. A pair plot is shown in Figure 6 before the outlier is removed. Note
that the outliers were removed by applying the absolute square method. The standard
equation available literature was used to calculate the error parameters. The error was
calculated by using Equations (13)–(15). A command was given to the code to generate the
error parameters.

RMSE =

√
1

nsamples
∑

nsamples−1
i=0 (ymeasured,i − ypredicted,i)

2 (13)

RMSE =

√
1

nsamples
∑

nsamples−1
i=0 (ymeasured,i − ypredicted,i)

2 (14)

MSE =
1

nsamples
∑

nsamples−1
i=0 (ymeasured,i − ypredicted,i)

2 (15)J. Mar. Sci. Eng. 2024, 12, 703 9 of 26 
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Figure 5. The frequency distribution of the selected well-log curve at well HZ-26-A. The x-axis plot
selected well log cure and computed values on the y-axis plot frequency distribution, where the
Spontaneous Potential (SP), Saturation of Water (SW), Effective Porosity (PHIE), Volume of Shale
(VSH), and VSH_S, VSH_SP, VSH_GR, and VSH_C are the volume of shale computed through Steiber,
SP, GR, and Clavier methods, respectively.
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3.3. Pore Pressure Prediction Using Sonic Log

Pore pressure prediction using a sonic log was performed on the ML algorithm using
a sonic log. The input log is shown in Figure 7, along with their calculated parameters like
porosity. The blue line shows the sonic log, and the black line represents the GR log. The
two shades are marked on the GR log, which shows the shale and sand. Yellow represents
the sand facies, and grey demonstrates the shale facies. Figure 8 illustrates the normal
compensation line drawn on the sonic log and shown in red. The black scatter plot shows
the travel time.
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Pp was predicted with the help of gradient boost and ADA boost algorithms. Gradient
boosting, being a mean algorithm, might promptly overfit a training data set. Regu-
larization methods, penalizing various algorithm aspects, can enhance performance by
controlling overfitting. AdaBoost, also called Adaptive Boosting, is a group ML method
that may be used for multiple regression and classification tasks. A supervised learning
technique classifies data by combining many weak or base learners (like decision trees) into
a robust learner. ADA boosting gives training data set instances weights determined by
how well previous classifications performed.

4. Results and Discussions

In recent decades, ML models have been used to predict petrophysical properties
more precisely and efficiently because petrophysical properties are industry practice to
evaluate the reservoir formation hydrocarbon potential and are further utilized to predict
rock physics attributes [47]. The primary reservoir parameters porosity and permeability
prediction have been achieved using ML and statistical regression tools in recent years. The
use of conventional well-log data with the calibration of core measurements has become
particularly effective. ML tools are widely used to accurately estimate reservoir properties,
particularly permeability and porosity [48]. To create sophisticated predictive ML models
for Pp prediction using petrophysical data [49]. The primary focus of the current study
is on the best way to design and use ML models for petrophysical parameter estimation
because they are further used to predict Pp.

4.1. Conventional Technique

Tight sandstone reservoir assessment is challenging due to their complex diagenesis
and considerable heterogeneity in accessing porosity and permeability values. It is a
crucial factor that serves as the foundation for creating geological models for the precise
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estimation of oil and gas reserves and the formulation of sensible development strategies.
These days, several mathematical regression and ML techniques on petrophysical data
are the primary methodologies for high-precision porosity and permeability prediction.
Thin-section petrography and geometric analyses are very helpful in examining the pore
structure properties of tight sandstone reservoirs [31,50]. The details of the lithological
thin-section identification results of well HZ26-A (drilling coring) are shown in Table 1 to
access the tight sandstone reservoirs. The detailed petrophysical analysis result is shown in
Figure 9. The correlation track represents the gamma ray with red and SP log with green,
and the resistivity track shows the resistivity log, a deep resistivity log curve in a cyan
color. The porosity track shows the sonic log curve, and DTR stands for delay time from
the receiver. Tracks 5 to 10 show the calculated results. The detailed result of the reservoir
formation is shown in Figure 9 and Table 2.

Table 1. Lithological thin-section identification results of Well HZ26-6-4Sa (sample-type drilling cores).

Serial
Number

Depth
(m) Rock Naming Lithological Description

1 3820.00

Asphaltene
very-fine-grained
feldspathic quartz

sandstone

Very-fine-grained structure; the debris is mainly composed of quartz +
feldspar + rock debris. The quartz is well rounded; the surface of the feldspar
is dirty, mainly alkaline feldspar, and partially completely clayized; and the

rock debris is sandstone debris. The interstitial materials are mainly asphaltene
and some mud. The asphaltene contains more feldspar + quartz microchips.

2 3821.00

Argillaceous
fine-grained

feldspathic quartz
sandstone

Fine-grained structure: The rock fell off during grinding. The debris is mainly
composed of quartz + feldspar + rock debris. The quartz is well rounded. The
feldspar is mainly alkaline feldspar and plagioclase. It is heavily clayed with a
small amount of carbonation. The rock debris is siltstone + a small amount of

mudstone crumbs. The gap filler is mainly mud.

3 3822.00

Asphaltene
very-fine-grained
feldspathic quartz

sandstone

Very-fine-grained structure. The debris is mainly composed of quartz +
feldspar + rock debris. The quartz is well rounded, the feldspar is seriously

clayed, and a small amount of mica is also found. The rock debris is siltstone +
mudstone debris. The gap filler is mainly asphaltene + some mud iron.

4 3823.00

Argilly medium sandy
fine-grained

feldspathic quartz
sandstone

The rock has a medium sandy fine-grained structure, and it has fallen off
during grinding. The debris is mainly composed of quartz + feldspar + rock

debris. The maximum particle size of quartz is about 0.53 mm. The feldspar is
mainly alkaline feldspar and plagioclase. It is partially completely clayized.
The rock debris is sandstone + a small amount of acid rock debris. The gap

filler is mainly mud, and the mud contains more feldspar + quartz microchips.

5 3824.00

Argillaceous coarse
sandy

medium-grained
feldspathic quartz

sandstone

Coarse sandy medium-grained texture, same as above.

6 3825.00 Conglomerate
(andesite)

The rock is andesite gravel and is heavily muddied. The composition consists
of phenocrysts and matrix. The phenocrysts are composed of short columnar
neutral plagioclase, a small amount of feldspar, and heavy mudification. The
matrix is composed of volcanic glass and cryptocrystalline and fine acicular

plagioclase. The acicular plagioclase is distributed in a directional or
semi-directional manner. Volcanic glass is distributed between the feldspar

grains, and chlorite metasomatism is found for plagioclase.

7 3826.00

Argilly medium sandy
fine-grained

feldspathic quartz
sandstone

The rock has a medium sandy fine-grained structure, and it has fallen off
during grinding. The debris is mainly composed of quartz + feldspar + rock
debris. The quartz is well rounded; the feldspar is mainly alkaline feldspar

and plagioclase, which is completely clayized in parts; and the rock debris is
fine sandstone + a small amount of granite debris. The gap filler is mainly

mud, and the mud contains more feldspar + quartz microchips.
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Table 1. Cont.

Serial
Number

Depth
(m) Rock Naming Lithological Description

8 3827.00

Asphalt-containing
argillaceous
fine-grained

feldspathic quartz
sandstone

Fine-grained structure, same as above.

9 3828.00

Asphaltic coarse sandy
medium-grained

feldspathic quartz
sandstone

Coarse sandy medium-grained structure. The debris is mainly composed of
quartz + feldspar + rock debris. The feldspar is mainly alkali feldspar,

followed by plagioclase. The surface is dirty and partially zoisitized. The rock
debris is sandstone + a small amount of mudstone. The interstitial material is

mainly asphaltene and partially contains mud.

10 3829.00

Asphaltene
very-fine-grained
feldspathic quartz

sandstone

Very-fine-grained structure; the debris is mainly composed of quartz +
feldspar; the quartz particle size is small and well rounded; the surface of the
feldspar is dirty, mainly alkaline feldspar, and partially completely clayized;

and the debris is sandstone debris. The gap filler is mainly asphaltene + mud
iron, with an asphaltene content of about 40%. The asphaltene contains more

feldspar + quartz microchips.

11 3830.00 Asphaltene siltstone Silty sand structure, the debris is mainly quartz + alkali feldspar, the interstitial
material is mainly asphaltene, and the asphaltene content is about 45%.

12 3831.00

Asphaltene
very-fine-grained
feldspathic quartz

sandstone

Very-fine-grained structure, the debris is mainly composed of quartz +
feldspar, the quartz particle size is small and well rounded, and the surface of
the feldspar is dirty, mainly alkaline feldspar, and partially fully clayized (also
see mica); the rock debris is sandstone cuttings. The interstitial materials are
mainly asphaltene and some mud. The asphaltene contains more feldspar +

quartz microchips.

13 3832.00

Asphalt-containing
argillaceous
fine-grained

feldspathic quartz
sandstone

Fine-grained structure, the debris is mainly composed of quartz + feldspar +
rock debris, the quartz is well rounded, the feldspar is mainly alkaline feldspar
and plagioclase, the weathering degree is average, there is a small amount of
carbonation, and the rock debris is siltstone + a small amount of mudstone

debris. The gap filler is mainly mud + a small amount of asphaltene.

14 3833.00

Argilly medium sandy
fine-grained

feldspathic quartz
sandstone

Medium sandy fine-grained texture, same as above.

15 3834.00

Argillaceous
fine-grained

feldspathic quartz
sandstone

Fine-grained structure; the rock has fallen off during grinding. The debris is
mainly composed of quartz + feldspar + rock debris. The quartz is well

rounded. The feldspar is mainly alkaline feldspar and plagioclase. It is heavily
clayed with a small amount of carbonation. The rock debris is siltstone + a

small amount of mudstone crumbs. The gap filler is mainly mud.

16 3835.00

Tuffaceous
fine-grained

feldspathic quartz
sandstone

It has a fine-grained structure. The debris is mainly composed of quartz +
feldspar + rock debris. The feldspar is mainly alkaline feldspar and

plagioclase. It is locally heavily clayed with a small amount of mica. The
debris is sandstone + a small amount of tuff. The interstitial material is mainly

tuffaceous, and the tuffaceous material contains more feldspar + quartz
microchips.

17 3836.00

Mud-bearing
asphaltene

fine-grained
feldspathic quartz

sandstone

Fine-grained structure; the debris is mainly composed of quartz + feldspar +
rock debris. The feldspar is mainly alkaline feldspar and plagioclase. It has
general weathering, heavy clayification locally, and a small amount of mica.

The debris is siltstone and fine sandstone. The gap filler is mainly asphaltene +
mud.
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Table 1. Cont.

Serial
Number

Depth
(m) Rock Naming Lithological Description

18 3837.00

Argilly medium sandy
fine-grained

feldspathic quartz
sandstone

Medium sandy fine-grained structure; the rock has fallen off during grinding.
The debris is mainly composed of quartz + feldspar + rock debris. The

maximum particle size of quartz is about 0.53 mm. The feldspar is mainly
alkaline feldspar and plagioclase. It is partially completely clayized. The rock

debris is sandstone + a small amount of acid rock debris. The gap filler is
mainly mud, and the mud contains more feldspar + quartz microchips.

19 3838.00

Argilly medium sandy
fine-grained

feldspathic quartz
sandstone

Same as above.
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Table 2. Petrophysics result of the WC 421 formation, where SH stands for saturation of hydrocarbons.

Depth
(m)

Thickness
(m)

VSH_GR
(%) VSH_C (%) VSH_S (%) PHIE

(%) SW (%) SH
(%)

3820–3837 17 39 24 20 11 45 55

Many clay minerals, including kaolinite, illite, and chlorite, were found in tight sand-
stone reservoirs, and their presence significantly impacts the quality of the reservoir. The
type of clay minerals was determined using a spectral gamma-ray (SGR) log [51,52]. The
precise assessment of mineral composition is crucial for enhanced reservoir characteriza-
tion. However, it presents significant difficulties in shale and tight units because of the
intricate mineralogical structure, minimal porosity, and extremely low permeability. Lab
measurements can be accessed more precisely [53]. The conventional practice used for the
assessment of porosity is lab-based measurement of rock samples as well as traditional
logging methods, which encounter constraints related to cost, and time. To address this
limitation, a machine learning-based method has been employed for estimating porosity
based on drilling data [47,54]. Figure 10 shows the cross plot between the potassium and
thorium, representing the amount of minerals present in the reservoir formation.
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the WC 421 formation are glauconite mica and illite.

4.2. ML Techniques

The detailed result of the ML technique is shown in Figures 11–13, while Table 3
demonstrates the detailed statistics of the log curve. Figures 11–13 represent the correlation
between the input parameters of shale volume, PHIE, and saturation and the calculated
parameter. Table 4 describes the error result of the calculated parameter. Figures 11–13
show the prediction result based on random forest algorithms. The testing and training
results vary from the estimated curve data. Figures 11–13 show the results of PHIE, SW, and
VSH_S, respectively; the testing and training results are green and blue in color, respectively,
and the regression line is orange. Most data points lie near the regression line, representing
a good testing and training result. The x-axis shows the actual parameters, and the y-
axis represents the predicted parameters. The curve is made by each parameter, which
represents the actual and predicted parameters corresponding to their depth.
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Figure 11. (a) The scatter plot of actual vs. predicted training data set points is shown in the
blue color of effective porosity. (b) The scatter plot of testing data set points of effective porosity.
(c) represents the actual vs. predicted PHIE, the x-axis represents the depth in meters, and the y-axis
shows the PHIE result in percentages. The blue color indicates the actual curve that is calculated
by the conventional method, and the orange curve is the predicted curve with the help of random
forest techniques.
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Table 3. Detailed statistical analysis of selected well-log curves. 

 Depth Sonic Shear GR SP PHIE SW Pp 

count 1090 1090 1090 1090 1090 1090 1090 1090 
mean 3861.4 49.97 72.53 92.00 1.77 0.04 62.00 6046.28 

std 31.48 16.13 28.56 23.71 1.05 0.02 26.34 48.23 
min 3807.0 33.60 47.04 55.38 2.79 0.00 0.18 −2315.2 
0.25 3834.2 38.40 53.76 77.08 1.67 0.02 45.00 567.25 

Figure 12. (a) The scatter plot of actual vs. predicted training data set points is shown in a blue
color of the saturation of water. (b) The scatter plot of testing data set points of water saturation.
(c) represents the actual vs. predicted SW, the x-axis represents the depth in meters, and the y-axis
shows the SW result in percentages. The blue color indicates the actual curve that is calculated
by the conventional method, and the orange curve is a predicted curve with the help of random
forest techniques.



J. Mar. Sci. Eng. 2024, 12, 703 16 of 25

J. Mar. Sci. Eng. 2024, 12, 703 17 of 26 
 

 

 
Figure 12. (a) The scatter plot of actual vs. predicted training data set points is shown in a blue color 
of the saturation of water. (b) The scatter plot of testing data set points of water saturation. (c) rep-
resents the actual vs. predicted SW, the x-axis represents the depth in meters, and the y-axis shows 
the SW result in percentages. The blue color indicates the actual curve that is calculated by the con-
ventional method, and the orange curve is a predicted curve with the help of random forest tech-
niques. 

 
Figure 13. The figure represents the actual vs. predicted VSH, the x-axis represents the depth in 
meters, and the y-axis shows the result of VSH in percentages. The blue color indicates the actual 
curve that is calculated by the conventional method and the orange curve is the predicted curve 
with the help of random forest techniques. 

Table 3. Detailed statistical analysis of selected well-log curves. 

 Depth Sonic Shear GR SP PHIE SW Pp 

count 1090 1090 1090 1090 1090 1090 1090 1090 
mean 3861.4 49.97 72.53 92.00 1.77 0.04 62.00 6046.28 

std 31.48 16.13 28.56 23.71 1.05 0.02 26.34 48.23 
min 3807.0 33.60 47.04 55.38 2.79 0.00 0.18 −2315.2 
0.25 3834.2 38.40 53.76 77.08 1.67 0.02 45.00 567.25 

Figure 13. The figure represents the actual vs. predicted VSH, the x-axis represents the depth in
meters, and the y-axis shows the result of VSH in percentages. The blue color indicates the actual
curve that is calculated by the conventional method and the orange curve is the predicted curve with
the help of random forest techniques.

Table 3. Detailed statistical analysis of selected well-log curves.

Depth Sonic Shear GR SP PHIE SW Pp

count 1090 1090 1090 1090 1090 1090 1090 1090
mean 3861.4 49.97 72.53 92.00 1.77 0.04 62.00 6046.28

std 31.48 16.13 28.56 23.71 1.05 0.02 26.34 48.23
min 3807.0 33.60 47.04 55.38 2.79 0.00 0.18 −2315.2
0.25 3834.2 38.40 53.76 77.08 1.67 0.02 45.00 567.25
0.50 3861.4 43.20 60.48 87.26 1.96 0.04 23.00 2708.00
0.75 3888.6 55.71 80.36 103.14 2.25 0.06 125.0 4586.20
max 3915.9 153.29 273.388 149.3 3.20 0.093 0.80 7126.25

Table 4. Error results of the Random Forest.

Error PHIE VSH_S SW

Mean Absolute Error (MAE) 0.013 0.022 0.048
Mean Square Error (MSE) 0.015 1.13 0.054
Root Mean Square Error (RMSE) 0.018 0.034 0.065

4.3. Pore Pressure Prediction Result

Figure 14 shows the prediction of the Pp by using the conventional method. Five
different tracks are present, which represent the different log curves. The Pp is shown
in green in the last column, and overburden pressure is shown in red while hydrostatic
pressure (HP) is blue. If the HP is greater than the Pp, it is overpressure. Figure 15 shows Pp
prediction using ML by the sonic log. The first two tracks represent the input parameters
for predicting Pp and the last two tracks represent the Pp prediction result. Different
curves are plotted on these tracks; the red in the last track represents the Pp, the blue color
demonstrates the lithostatic pressure, and the green color shows the HP. Generally, if the
lithostatic pressure is less than the Pp, it is considered an overpressure zone. In contrast, it
is regarded as an under-pressure zone if it exceeds the Pp.
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Figure 14. Predicted pore pressure and porosity results of formation of interest in HZ-26-A well.
Plotted data include the GR curve in the correlation track; GRT as the gamma-ray trend line; the
sonic log (DT) curve; the normal compaction trend (NCT) line; DPHI and SPHI as density- and
sonic-derived porosities; hydrostatic pressure (HP) in a blue color; overburden pressure (OB) in a red
color; and PP_DT as predicted pore pressure in a green color.
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Figures 14 and 15 show the Pp prediction of the interested formation in HZ-26-A. The
output of Figure 14 is generated with the help of conventional software, while Python
algorithms calculate the output of Figure 15. The initial track shows the input parameter
for the pressure prediction, and the last two tracks represent the Pp result. The grey color
in track 4 shows the sonic log, and the red represents the normal compensate trend line.
Track 5 shows the pore pressure prediction in which the blue line represents the hydrostatic
pressure, and the green color shows the Pp. If the Pp is greater than the hydrostatic pressure,
it represents the overpressure. If hydrostatic pressure is greater than the pore pressure, it
shows under-pressure. The machine learning results are better than those of conventional
techniques. Figure 16 demonstrates the heat map in which the correlation between different
parameters and Pp is defined, showing a correlation of 84% between the sonic log and Pp.
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Figures 17 and 18 represent the Pp prediction using gradient boost and ADA boost
regression algorithms. Both algorithms give the best prediction of Pp and the best match
of correlation between the training and testing data. The green color shows the predicted
pressure, while the red color shows the actual pressure. Figure 19 shows the core and
predicted pressure using ML and conventional techniques. The R2 calculated by the
traditional method is 0.85, while the R2 from the ML method is 0.95 in the testing well.
The result of R2 shows that the Pp prediction of machine learning is excellent as compared
to a conventional technique. Figure 20 shows the testing of the Pp in blind well HZ-26-B.
The first three tracks show the training well parameter and tracks 4 to 6 show the testing
well parameter. The prediction is made on the blind well with the R2 of 0.98. Track 7
shows the result of both the training and the blind well. The grey color represents the
prediction made on the blind well, and the red color represents the actual training curve.
Figure 21 demonstrates the cross plot of predicted versus actual pore pressure with the
square regression of 0.98 on the blind well.
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Figure 20. Three types of log curves. The first three tracks are the training well of HZ-26-A, the green
color represents the GR log, the yellow shows the density log (RHOB), and the red and grey color
represents the Pp. The extra regression algorithm is used to estimate the predicted Pp. The R2 score
for the testing result is 0.98, which represents the best regression results. The grey Pp is predicted
pore pressure on the well HZ-26-B.
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It has been inferred based on the literature survey that studies on the prediction of
Pp taking into account various ML models are minimal and obtain popularity due to
better performance than conventional theoretical models (e.g., Eaton’s method) in geo-
sciences to enhance drilling operations to overcome well failure [22,55]. A heterogeneous
lithology presented ML models for Pp prediction that take advantage of well-log curve
inputs (sonic velocity, porosity, and shale volume) and depend on geological formation
composition [56–58]. The following ML techniques were assessed: a support vector ma-
chine (SVM), gradient boosting, MLP neural network, and RF were employed to predict
Pp as input of petrophysical logs computed from well-log data sets. To precisely estimate
Pp, a set of petrophysical data sets is required through a multivariate prediction model.
However, in heterogeneous lithologies, the parametric multivariate models with assump-
tions on lithology require a calibration procedure [59]. Yu et al.’s [57] findings suggested
that Pp measurements and predictions obtain better results with the RF method surpass-
ing other ML techniques. Zhao et al. [60] applied different ML models. They concluded
that ML models perform better than theoretical models in predicting pore pressure and
obtained much better results through decision trees in high-temperature and high-pressure
geological formations.

To predict Pp hybrid ML approaches, improve estimation accuracy by designating the
optimal specific parameters of procedures. Moreover, Pp prediction by a combination ap-
proach is more efficient and offers a limited measured direct Pp data set availability [57,61].
Das and Maiti [62] performed a study to predict Pp through ML models in New Zealand. It
is inferred that predicting the Pp trend in complicated geological provinces can be difficult
because various intricate geo-processes can influence Pp. In complex geological provinces,
conventional classical empirical techniques combined with advanced ML models can tackle
these challenges. The stages of model establishment and data pre-processing make up
the empirical method for PP prediction. The theoretical framework was developed from
well-log data. The decision tree regression (DTR) algorithm provided the best results in the
limited data set. Its performance is evaluated with the model to estimate the Pp and locate
the overpressure zone.
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By employing deep learning, Wei et al. [56] estimated pore water pressure and sug-
gested that recurrent neural network results are much better than traditional methods.
Precise pore pressure prediction was achieved by combining a mix of a random forest and
least-square support vector machines with an optimization technique. Drilling data are
less valuable than conventional well logs for machine learning-based formation pressure
estimation. In our study, we employed different ML algorithms and performed validation
with core measure Pp and found the best results to match predicted vs. actual Pp with the
help of the ADA boost algorithm on the blind well with a correlation of 0.98.

5. Conclusions

This study investigates the efficacy of machine learning tools in predicting subsurface
pore pressure, particularly when pore pressure data from core samples and well-log vari-
ables are limited. The capability of these ML models to accurately predict Pp was evaluated
by comparing their performance with that of traditional theoretical methods.

(1) The current study aimed to assess whether machine learning tools could mitigate
uncertainty in pore pressure prediction compared to conventional theoretical methods
and identify the most effective predictive models by comparing the predictions made
by machine learning and those made by traditional methods. The results were vali-
dated by comparing the predicted pore pressure values derived from conventional
and ML techniques with the actual values derived from core sample measurement.

(2) It has been inferred that the Stieber correction provided the best results for the shale
volume based on the analysis results with a correction efficiency of approximately
20%. Therefore, this technique can significantly enhance the accuracy and reliability
of our predictions of pore pressure.

(3) In a nutshell, it has been concluded that machine learning techniques provide superior
prediction accuracy by comparing machine learning methods with conventional
theoretical approaches. The ADA boost algorithm produces the best results on the
blind well to predict pore pressure with correlation values of 0.98. It is evident from
this study’s outcomes that ML models have the potential to improve the accuracy of
subsurface Pp predictions with good performance.

6. Future Studies and Implications

It is suggested that to improve the predictive capabilities of machine learning models
for estimating pore pressure, additional geophysical and geological data parameters should
be incorporated. This is because the theoretical models used for pore pressure estimation
depend on the geological features of the formation. Factors such as lithology, rock proper-
ties, and other geological features could potentially increase the accuracy and robustness of
the predictive models. Furthermore, combining multiple ML models to make predictions
could also prove to be beneficial. This method can be applied globally in areas with similar
geological settings.
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