Journal of

Marine Science K\
and Engineering M D\Py

Article
Oil Spill Detection and Mapping Using
Sentinel 2 Imagery

Polychronis Kolokoussis * “ and Vassilia Karathanassi

Remote Sensing Laboratory, National Technical University of Athens, 15780 Athens, Greece;
karathan@survey.ntua.gr
* Correspondence: pol@surveyntua.gr; Tel.: +30-210-772-2599

Received: 4 December 2017; Accepted: 3 January 2018; Published: 6 January 2018

Abstract: Two object-based image analysis methods are developed for detecting oil spills from known
natural outflows as well as light oil spill events using Sentinel 2 imagery. The methods are applied
to Sentinel 2 images of a known area of natural oil outflow as well as on a Sentinel 2 image of a
recent oil spill event along the south coast of Athens, Greece. The preliminary results are considered
very successful and consistent, with a high degree of applicability to other Sentinel 2 satellite images.
Further testing and fine tuning of the proposed object-based methodology should be carried out
using atmospheric correction and ground truth.
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1. Introduction

Several times multispectral imagery has been used for the detection of oil spills. Although clouds
affect the temporal resolution of such images, the potential of optical sensors for detecting oil pollution
phenomena is considerable. An oil spill’s spectral signature depends on favorable lighting and sea
conditions, oil optical properties, film thickness, and the optical properties of the water column.
Based on spectro-radiometric measurements, Brown et al. [1] observed that oil has no specific
characteristics that distinguish it from the background. Klemas [2], in his study, states that oil sheen
shows up as silvery and reflects light over a wide spectral region. Heavy oil appears brown, peaking
in the 600 to 700 nm region, while mousse looks red-brown and peaks closer to 700 nm. A study of oil
spectra in shallow seawater showed that for crude oils and light petroleum product, a thin oil spill
has similar spectral characteristics to background spectra [3]. In the case of open ocean images [4,5],
the organic compounds in the oil and oil /water mixtures have absorption features that are distinct
from those from water and clouds. Simulations that have been performed by varying the water optical
properties and considering different crude and refined oils provided some general rules [6]: very
thin oil films (sheens) are more easily detected at viewing directions near the sun-glint zone, while
very thick films are more likely to be detected at viewing angles away from the sun. For films of
intermediate thickness, the detectability depends mainly on the oil’s specific optical properties.

Using Landsat 7 Enhanced Thematic Mapper (ETM) imagery, Zhao et al. [7] observed features
of weathered oil suspended in the water column with bright contrast, and oil film floating on the
sea surface with dark contrast. Lee et al. [8] developed an algorithm for discriminating film-like oil
from thick oil using DubaiSat-2 and Landsat Operational Land Imager (OLI) data. Taravat et al. [9]
performed ratio operations on Landsat 7 ETM images to enhance oil spill features. They concluded
that the bands’ difference between 660 and 560 nm, division at 660 and 560, and division at 825 and
560 nm, normalized by 480 nm, provide the best result. Then these ratio images fed the input nodes of
a multilayer perceptron neural network in order to perform a pixel-based supervised classification.
Bradford et al. [10] performed selective color band combinations, contrast enhancement, and histogram
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warping before applying an image segmentation process that separates out contiguous regions of oil
and provides a raster mask to an analyst. Corucci et al. [11] exploited many different machine learning
techniques such as simple statistical classifiers, radial basis function and multilayer perceptron neural
networks, adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) in
order to investigate the potential of oil spill classification from optical satellite images.

Object-based image analysis (OBIA) has often been applied, mainly to synthetic aperture radar
(SAR) imagery, for oil spill detection. The object-based process for typical SAR-based oil spill detection
consists of three steps: image segmentation for dark-spot identification, feature extraction, and oil spill
and look-alike discrimination. Segmentation techniques are used to create objects that exhibit high local
contrast and thus may be considered dark spots [12]. Then fine designed and appropriately combined
gray, geometric, and textural features, as well as fuzzy logic, are employed to classify dark spots as oil
spill or seawater. Although there are many recent studies [13-15] that profit from object-based SAR
image analysis to perform oil spill detection, studies employing object-based analysis on multispectral
image are rarely found in the literature. There are, however, certain limitations to detecting oil spills
in SAR images as oil spill detection relies on the fact that the oil film decreases the backscattering of
the sea surface, resulting in a dark formation that contrasts with the brightness of the surrounding
spill-free sea. For C band SAR images, like Sentinel 1a and 1B, a minimum wind field of 2-3 m/s
creates sufficient brightness in the image and makes the oil film visible. On the other hand, when
the wind speed is too high, it causes the spill to disappear [16,17]. Thus, an alternative method for
detecting oil spills with other types of data is considered very useful.

Maianti et al. [18] applied OBIA on Moderate Resolution Imaging Spectroradiometer (MODIS)
bands and MODIS-based indexes for monitoring oil spill dynamics. Kolokoussis et al. [19] developed
an object-based method for oil spill detection using very high multispectral images such as Ikonos,
QuickBird, RapidEye, and WorldView?2, as well as high-resolution satellite images such as Landsat
TM. Reiche et al. [20] created an object-based mapping and classification system for terrestrial oil spill
pollutions in West Siberia using QuickBird data.

Sentinel-2A and Sentinel-2B high-resolution multispectral data are available since June 2015 and
March 2017, respectively. Nevertheless, their efficiency in oil spill detection has not yet been sufficiently
investigated. In this study, motivated by the high-quality results obtained by the OBIA method
presented in [19], we adapted the developed method for exploiting Sentinel-2 data characteristics.
Oil spills resulting from the underwater natural oil outflow close to Zakynthos Island, Greece, and
the oil spill caused by the “Agia Zoni II” tanker sunk in the Saronic Gulf, Greece, have been used for
evaluation of the results.

2. Materials and Methods

2.1. Study Areas

Two study areas (Figure 1) have been used in this work; the first (area A) is an area with a known
natural oil outflow, 6 km south of Zakynthos Island in Greece. This area has been pointed out by [19]
and is known to provide 15 km long natural oil spills during the summer period every year.

The second area (area B) is the Saronic Gulf, east of Salamina Island and south of Athens. In this
area an oil spill has been caused by the “Agia Zoni II” tanker sunk on 10 September 2017. As shown in
Figure 1, the sinking of the “Agia Zoni II” tanker had a largeenvironmental impact, affecting most of
the southern coastal area of Athens from Piraeus to Agios Kosmas (shown with red arrows in Figure 1).
The 45-year-old vessel has been carrying 2500 tons of crude oil.
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Figure 1. Study areas A and B. Within area A, the purple arrow shows the location of the natural
outflow. Within area B, the purple arrow shows the position where the “Agia Zoni II” tanker sunk,
while the red arrows show the coastal areas affected by the oil spill (coordinate reference system of the
map is WGS84/UTM zone 34 North).

2.2. Datasets

In this work three Sentinel 2A and one Sentinel 2B images have been used (Table 1). Furthermore,
two Sentinel 1A /1B images (Table 1) have initially been used for identifying the oil spill caused by the
“Agia Zoni II” tanker. Unfortunately, due to very low wind speeds in the days following the “Agia
Zoni II” sinking, the oil spill could not be safely detected on the Sentinel 1A and 1B images (Figure 2).

Table 1. List of the Sentinel satellite images used.

Geographic Area Date Sentinel Satellite Sentinel-2 Image
Zakynthos 7 August 2017 2A L1C_T34SDG_A011101_20170807T092725
Zakynthos 27 August 2017 2A L1C_T34SDG_A011387_20170827T092818
Salamina 13 September 2017 2A L1C_T34SGH_A011630_20170913T091832
Salamina 8 September 2017 2B L1C_T34SGH_A002650_20170908T091906
Salamina 15 September 2017 1A S1A_IW_GRDH_1WDV_20170915T042323

_20170915T042348_018381_01EF05_7D8E

(b)

Figure 2. Sentinel 1A and 1B images of the Saronic Gulf: (a) Sentinel 1B image of 14 September 2017;
(b) Sentinel 1A image of 15 September 2017. Both images present large dark areas, caused by low wind
speeds, which cannot be associated with oil spills.

For the object-based image analysis of the Sentinel 2 images, bands 1, 2, 3, 4, 8, 9, and 11 were
used. The spatial and spectral characteristics of the Sentinel 2A and 2Bimage bands are shown in
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Figure 3. The images were preprocessed (import, resampling to same resolution, subset) in Sentinel
Application Platform (SNAP) 5.0, but were not atmospherically corrected since the relevant module
sen2cor is not appropriate for water surfaces. Other, still experimental tools like ACOLITE and C2RCC
(the latter available in SNAP 6.0 prerelease) will be tried in the future. OBIA of appropriate subsets of
the Sentinel 2A and 2B images (Figure 4) has been carried out with eCognition Developer 8.7.
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Figure 3. The bands of Sentinel 2A and 2B.

© @

Figure 4. The Sentinel 2A subsets used for OBIA: (a) Zakynthos, 7 August 2017; (b) Zakynthos
27 August 2017; (c) Saronic Gulf (Salamina) 9 September 2017, before the oil spill event and (d) Saronic Gulf
(Salamina) 13 September 2017, after the oil spill event. Natural color composite 432(RGB).

2.3. The Developed Methodology

Initial step for any OBIA methodology is the segmentation of the remote sensing images in order
to create image objects. Segmentation involves merging the pixels in the image into image object
primitives called objects or segments with certain homogeneity and geometric criteria. Multiresolution
segmentation is a process that creates several levels with image objects at various scales. Lower-level
image objects (sub-objects) are smaller in size while higher-level image objects (super-objects) are larger.
There is a topological restriction in multiresolution segmentation that smaller objects are contained but
never intersect with larger objects. In eCognition the criteria used during multiresolution segmentation
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are: (a) the scale, which defines the maximum size of the objects; (b) the color and shape weights
(with sum to 1 constraint), which give priority to spectral homogeneity or to shape characteristics;
and (c) the smoothness and compactness weights (with sum to 1 constraint), which have to do with
the shape characteristics and force the segmentation to create regular shaped or compact objects.
Additionally, the weights of the image layers (bands), which are taken into consideration during
segmentation, can be adjusted appropriately and it is a common practice that, unless needed, the
lower-resolution image bands are not used during segmentation in order to achieve better image
object shapes.

The basic spectral signature of an image object can be derived from the mean value of its pixels
for every image band. Nevertheless, image objects have a large variety of useful features besides
their spectral information; a few of them are listed later on since they have been used in this study
(Tables 2 and 3). Standard deviation (StdDev) can be calculated within an image object for every band.
Brightness difference of an object to its neighbor, sub- or super-objects, or even to the whole scene
can be calculated for every image band as well. Any custom ratio (e.g., B2/B11) or index (e.g., NDVI,
NDWI, etc.) can be calculated for an object based on its mean values at the relevant image bands.
Image objects also have geometric features like area, border length, length, width, length/width, etc.
Additionally, in OBIA class-related features (e.g., distance to a certain class) are also available and can
be applied after an initial classification. Thus, the final classification of an image object can depend
on the classes of its neighbor, sub- or super-objects. In order to take these class-related features into
consideration, OBIA classification procedures are usually iterative processes.

After several trials for the best segmentation of Sentinel 2 images for oil spill detection, it has been
decided that the most appropriate procedure is the multiresolution segmentation of the images in two
levels. The scope of the first level was to create small objects based mostly on spectral behavior, while
the objects of the second level were much larger but as compact as possible in order to create uniform
objects. The second level with the large objects was necessary as it has been shown [19] that one of the
oil spill detection features is the brightness difference of the smaller with the larger objects.

The segmentation parameters that have been used can be summarized as follows:

e  Level-1 segmentation (small objects)

Weight for high resolution (10 m) bands 2, 3, 4, and 8:1
Weight for lower resolution (60 and 20 m) bands 1, 9, and 11:0
Scale 10, color 0.8—shape 0.2, compactness 0.5—smoothness 0.5

o Level-2 segmentation (large objects)

Weight for high resolution (10 m) bands 2, 3, 4, and 8:1
Weight for lower resolution (60 and 20 m) bands 1, 9, and 11:0
Scale 80, color 0.1—shape 0.9, compactness 1.0—smoothness 0.0

Using the above scale parameters and segmentation criteria, the size of the image objects of the
lower level (Level 1) ranged from 0.001 to 0.15 km?, while the image objects of the upper level (Level 2)
ranged from 0.3 to 1.5 km?.

After segmentation, interpretation of the images and examination of various features of the image
objects in various band ratios has been performed. After several trials it has been decided that the
following ratios had to be used:

e thenormalized difference water index (NDWI)Sentinel 2 equivalent: (B2 — B11)/(B2 + B11), for
the discrimination of sea from land (Figures 5a, 6a, and 7a),

e theratio B2/B11 (Figures 5c, 6¢, and 7c), and

e the custom feature: StdDev(B2)*B2/B11, which multiplies the band 2 standard deviation of
an image object with the previous ratio value, which has been calculated for the same object
(Figures 5d, 6d, and 7d).
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As already pointed out in [19], the oil spill objects present higher standard deviation and higher
brightness compared to their much larger super-objects (Figures 5b, 6b, and 7b). In addition, the ratio
B2/B11 proved to perform well in the detection of oil spill areas when away from sun-glint, while the
custom feature StdDev(B2)*B2/B11 proved to be a much better indicator of oil spill objects even in
sun-glint areas. Their combined use provided the best results.

(d)

Figure 5. Image object features calculated for the Sentinel 2A subset of the Zakynthos image
acquired on 7 August 2017: (a) NDWI; (b) Band 2 mean difference to super objects; (c) B2/B11;
and (d) StdDev(B2)*B2/B1.

(b)

(d)

Figure 6. Image object features calculated for the Sentinel 2A subset of the Zakynthos image
acquired on 27 August 2017: (a) NDWI; (b) Band 2 mean difference to super objects; (c) B2/B11;
and (d) StdDev(B2)*B2/B11.
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Figure 7. Image object features calculated for the Sentinel 2A subset of the Saronic Gulf image acquired
on 13 September 2017: (a) NDWI; (b) Band 2 mean difference to super objects; (c) B2/B11; and
(d) StdDev(B2)*B2/B11.

Figure 8 summarizes the OBIA method developed within this study for the detection of oil
spills using Sentinel 2 imagery, for single date processing. The criterion “Distance to neighbor land
objects” has been set in order to avoid misclassification of shallow waters as oil spills due to bottom
contributions in the reflectance values.

| Multispectral Sentinel 2 satellite image

NDWI
threshold

I
Segmentation Level 1 (fine)

—

Band 2 mean difference to

super object > [defined value] no

‘ StdDev(B2)*B2/B11 > [defined value]

B2/B11 > [defined value] ‘

Distance to Oil spill < [defined value]

Areain pixels > [defined value]

‘ StdDev(B2)*B2/B11 > [defined value]

Distance to neighbor
land objects > [defined value]

______________ S A S

Figure 8. Single-date OBIA method.

Table 2 summarizes the fuzzy rule set values that have been used for the image object

features used.
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Table 2. Feature values used for the fuzzy rules of the single-date OBIA method.

Class Feature Decision Value Fuzzy Limits
Seawater NDWI >0.4 0.35 =~ 0.45
B2 mean difference to super objects >11 10 =12
StdDev(B2)*B2/B11 >135 130 =140
Oil spill B2/B11 >13 125714
Area in pixels >20 19 Zp1
Distance to Land objects (meters) >350 300 =~ 400
Distance to oil spill (meters) <275 250 2 300

Possibly dissolved oil spill
StdDev(B2)*B2/B11 >125 120 #1309

There is a drawback to using single-date images: false detection of oil spills in areas of high
bottom reflectance. This mostly happens close to the seashore, but could also happen in areas of low
depth elsewhere. The best way to avoid these errors is to use multitemporal imagery and require that
the oil spill is detected only in one image. The combined use of multitemporal images is shown in
Figure 9. In case application of the multitemporal mode of the proposed methodology is not possible, it
is better to keep oil spill detection at a sufficiently large distance from the seashore using the “distance
from land” rule (Figure 8).

| Multispectral Sentinel 2 satellite image |

r
Segmentation Level 1 (fine)

no

threshold super object > [defined value]

NDWI ‘ Oil spill date: B2 mean difference to ‘

No oil spill date: B2 mean difference to
super object < [defined value]

‘ Distance to Qil spill < [defined value] ‘

Qil spill date:
StdDev(B2)*B2/B11 > [defined value]

Qil spill date:
StdDev(B2)*B2/B11 > [defined value]

No oil spill date:
StdDev(B2)*B2/B11 < [defined value] No oil spill date:
StdDev(B2)*B2/B11 < [defined value]

‘ B2/B11 > [defined value]

‘ Areain pixels > [defined value] |

Figure 9. Multitemporal OBIA method.

Table 3 summarizes the fuzzy rule set values for the multitemporal OBIA method. These values
have been applied to all the Sentinel images used in this work, providing successful oil spill
detection results.

Table 3. Feature values used for the fuzzy rules of the multitemporal OBIA method.

Class Feature Decision Value Fuzzy Limits
Seawater NDWI >0.4 0.35 =045
B2 mean diff. to sup. obj. (oil spill date) >11 10 %12
Qil spill B2 mean diff. to sup. obj. (no oil spill date) <11 10212

StdDev(B2)*B2/B11 (oil spill date) >135 130 <140
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Table 3. Cont.

Class Feature Decision Value Fuzzy Limits
StdDev(B2)*B2/B11 (no oil spill date) <135 130 22l 140
QOil spill B2/B11 >13 12 214
Area in pixels >20 19 “pq
Distance to oil spill (meters) <275 250 2l 300
Possibly dissolved oil spill StdDev(B2)*B2/B11 (oil spill date) >125 120 139
StdDev(B2)*B2/B11 (no oil spill date) <135 130 2 140

3. Results

Figure 10a—c presents the classification results for Zakynthos, 7 August 2017; Zakynthos,
27 August 2017; and the Saronic Gulf, respectively. The Sentinel 2 images of Zakynthos and the Saronic
Gulf have been processed with both the single-date and multitemporal OBIA methods, with the latter
providing better results. No ground truth was available for any of these areas, but: (a) the natural oil
spill of Zakynthos is a well-known area whose behavior has been studied by Kolokoussis et al. [19],
and accurate results can be drawn by photointerpretation; and (b) the oil spill detections on the Saronic
Gulf image are realistic and in accordance with the reported seashore pollution. According to careful
photointerpretation of the images, the Zakynthos classification results, at least for the known natural
flow, are considered very successful. Moreover, evidence of smaller natural outflows close to the
shore (Figure 10a,b) is also provided. The Saronic Gulf image oil spill classification seems to present a
significant commission error close to the refinery area at the north of Salamina Island, which cannot
be linked to the sinking of the Agia Zoni IL. If indeed false, this detection has to be studied further.
Since this is a more complex and unstudied area, ground truth would be necessary in order to estimate
the classification accuracy and, thus, no further processing was carried out at this point.

Legend
.Land
{oil spill
@ o oil spill

.Possibly dissolved oil spill

(©)

Figure 10. OBIA classification results for: (a) Zakynthos, 7 August 2017; (b) Zakynthos, 27 August 2017;
and (c) Saronic Gulf, 13 September 2017.
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4. Discussion

Sentinel 2 imagery offers fine spatial and spectral resolution for oil spill detection, and the
proposed methodology seems to provide successful results in the case of natural oil outflows as well
as light oil spill events. The proposed oil spill detection methodology has been based on OBIA, which
is considered to be of fundamental importance. Some of the main image object features (standard
deviation within an object, brightness difference to larger super objects, and size of objects) that were
used for the detection cannot be utilized by pixel-based classification methods. Moreover, class-related
features are not available in most pixel-based classifiers. Among the two proposed methods, the first
method can be applied on single-date images, but its results will suffer from some commission errors
in shallow water. The second method is applied on multitemporal data, with one image acquired
on a date without oil spills and a second one after an oil spill event. With the latter method, the
aforementioned commission errors in shallow water can be successfully avoided.

The proposed multitemporal OBIA methodology has provided very accurate results and is in
accordance with the previous work of the authors [19], where Ikonos, QuickBird, RapidEye, and
Landsat Thematic Mapper (TM) images were used for the detection of natural oil flows. Sentinel 2
gives timely and freely available satellite image data and, due to the fine resolution, provides much
better results than Landsat imagery, comparable to those achieved with the high-resolution satellite
images in [19]. The proposed methodology has been tested on natural oil outflows as well as light oil
spill events but has not been tested on heavy oil spill events like the Deep Horizon oil spill [21], which
are known to have different spectral behavior.

Atmospheric corrections are a very important preprocessing step in remote sensing, but the
existing algorithms for water areas are still experimental and thus were not used at this point, but
should be used in future experiments. Ground truth data are of fundamental importance for the
development of any remote sensing methodology, but in the case of oil spills it is very difficult to
organize and carry out this type of data collection. The main reason for this is that there are absolute
restrictions concerning experiments with oil in seawater, and thus someone has to be ready to act only
when an oil spill event takes place. Nevertheless, this work has to be validated in the future with
ground truth data in order to derive valid conclusions.

5. Conclusions

Two OBIA methods have been developed and used on Sentinel 2 imagery in order to detect oil
spills, with the latter providing more consistent results. The first method can be applied on a single
date Sentinel 2 image, but its results suffer from some commission errors in shallow water areas.
For improving the methodology performance for oil-spill events close to shore, a second improved
multitemporal method has also been proposed. Using this method, oil spills close to shore, such as
those caused by the accident of the Agia Zoni II tanker in the Saronic Gulf, have been successfully
detected. The preliminary results are considered successful and consistent, with a high degree of
applicability to other Sentinel 2 satellite images. Further testing and fine tuning of the proposed
object-based methodology has to be carried out using atmospheric correction and ground truth.
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