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Abstract: Drainage conditions are supposed to have significant influence on sand liquefaction
behavior. An infiltration device was utilized in cyclic triaxial tests to reproduce different drainage
conditions by altering dry density of the within silt. Permeability coefficient ratio (kp) was utilized for
quantifying the drainage boundary effect. Cyclic triaxial tests were conducted on saturated Fujian
standard sand samples. Test results were used to evaluate the liquefaction potential by using the
energy approach. It can be concluded that, if kp increases slightly bigger than zero, excess pore water
pressure (EPWP) will respond more fiercely, and the dissipated energy that triggers sand liquefaction
will be less. By considering kp, an energy-based database was built by taking kp into consideration
and different neural network (NN) models were constructed to predict liquefaction potential by
energy approaches accurately under different drainage boundary conditions. It was suggested that
the neuro-fuzzy (NF)-based NN model has more satisfactory performance.
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1. Introduction

Earthquakes and associated aftershocks may cause liquefaction in sand sediments, which can
cause substantial damage—for example, excessive settlement and tilt of foundations, bearing capacity
failure, failure of offshore embankment, and slope engineering [1,2].

Drainage conditions refer to permeability of soil sediments, drainage path, and drainage boundary
conditions. Soil sediments used to be supposed at an undrained state in an earthquake, because the
liquefaction occurred rapidly and pore water pressure can hardly dissipate in a short duration of
loading. However, it is inferred that the drainage condition is not critically undrained with longer
duration of earthquake loading, larger permeability of sand sediments, and better drainage boundary
condition. Furthermore, the soil elements adjacent to the drainage boundary are considered under
different drainage conditions. Then, some of the excess pore water pressure (EPWP) generated during
seismic loading is being dissipated simultaneously. Thus, the effect of different drainage conditions is
hard to control and quantify. It is necessary to study the influence that drainage effect exerts on soil
liquefaction characteristics.
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Several research studies have been carried out to investigate the liquefaction potential and EPWP
response in sand sediments under different drainage conditions [3–7]. Ohara and Yamamoto [3] carried
out a series of shaking table tests. The drainage boundary condition was controlled by a valve. Then, a
parameter that reflected the rate of drain was introduced to quantify the drainage effect. Their study
provided an original thought to investigate drainage effect. Yamamoto et al. [5] developed the test
scheme and conducted a series of cyclic triaxial tests. The drainage boundary condition under seismic
loading was reproduced by employing a triaxial apparatus with a valve to precisely measure the amount
of squeezed water. In addition, the pore pressure was measured at the top and bottom of sand samples
to make sure no hydraulic gradient is within the specimen. They introduced parameters to consider the
drainage effect, which is a function of soil permeability coefficient, the length of drainage path, and
the loading frequency. Their study shows that soil samples under partial drained conditions can resist
liquefaction better than those under undrained conditions. Adamidis and Madabhushi [7] conducted
two dynamic centrifuge tests. The drainage of a part of a soil sample was enclosed in a chamber that
was constructed by different materials. Conclusions were drawn that the material property of drainage
boundaries influenced the response of EPWP evidently.

Evaluation of liquefaction potential in saturated sands is an important topic among liquefaction
research. A dissipated strain energy concept is introduced to analyze soil liquefaction characteristics
as an alternative analysis approach. Dissipated energy density (W) represents the energy that soil
particles consume in the process of reorganization under seismic loading per unit volume in soil.
Capacity energy (Wliq) is denoted as the W that achieves liquefaction and has been identified as a
representative indicator in the evaluation liquefaction potential [8–12]. When the test soil mechanical
parameters are provided, the Wliq can be predicted by employing different neural network (NN)
models [11,13–16]. Baziar and Jafarian [11] collected data from other energy-based researches [17–20]
and built a database. Considering the initial density parameters such as relative density (Dr, %), initial
effective mean confining pressure (σ’m0, kPa), grains size distribution parameters mean grain size
(D50, mm), coefficient of uniformity (Cu), and coefficient of curvature (Cc), and individual parameter
non-plastic fines contents (FC, %), a multilayer perceptron (MLP)-based NN model was proposed by
Baziar and Jafarian [11] to predict Wliq. The parameters aforementioned were set as input parameters
and Wliq was set as a target parameter. The training result of the model indicated that D50 and Cu

seemed to be sufficient to represent the characteristics of grains size distribution, and the prediction
of FC was disputable since the complex nonlinear relationship between FC and Wliq need further
study. Cabalar et al. [15] built a neuro-fuzzy (NF)-based NN model with the same database. The result
showed that the NF-based model had high accuracy, and the relationship among input and output
parameters was obvious.

However, this energy-based liquefaction potential evaluation research did not consider the effect
of drainage boundaries. By the infiltration device installed in the triaxial apparatus, cyclic tests were
conducted on Fujian standard saturated sand to explore the effect of drainage conditions. To evaluate sand
liquefaction potential, an energy-based database was built, and different NN models were constructed.

2. Cyclic Triaxial Tests with Simulated Drainage Boundary

2.1. Basic Concepts and Realization of Different Drainage Conditions

The drainage condition of soil element is illustrated in Figure 1, where ki = permeability coefficient
of the soil at the drainage path; k0 = permeability coefficient of the soil element; and u = excess pore
water pressure. It is assumed that the resistance of permeability at the drain is zero, and the EPWP here
is zero. Thus, the water head difference among analyzed specimens and the drain mainly descends at the
drainage path. In addition, there is another assumption in this research: only one plane of the drainage
boundary is taken into consideration as shown in Figure 1. The influence of other planes remains to
be explored by applying biaxial dynamic loading [21,22]. By controlling ki, the permeability of the
drainage path can be simulated. ki = 0 represents the undrained state. Therefore, the in-situ drainage
condition under seismic loading theoretically is able to be reproduced by regulating a drainage system.
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Figure 1. Assumed drainage conditions of soil element.  
The simplified illustration of the employed triaxial apparatus is shown in Figure 2. To reproduce 

different drainage conditions, an infiltration device connecting a flowmeter was installed onto the 
top of specimen to control permeability of the silt. The infiltration device can retain soil and free the 
drained water. More detail was mentioned by Wang et al. [23]. Note that the difference in cross 
sections between the infiltration device and the drain pipe results in no head loss, considering the 
hypothesis that the EPWP is zero at the drain pipe. The valve at the bottom is closed, and the valve 
at the top is open during a test. With the designed infiltration device, the cyclic triaxial equipment 
can conduct tests under the replicated drainage boundary conditions. 

 
Figure 2. Schematic of the infiltration device in cyclic triaxial equipment. 

The position of drainage path in the infiltration device was illustrated in Figure 2; tests were 
carried out to calibrate the permeability of silt layer with varied dry density. Then, kp was introduced 
to represent the effect of the drainage boundary condition considering permeability of the soil 
element, which is shown as 

kp= ki
k0

. (1). 

kp can represent the silt with different density, which is only appropriate for silt and sand used in this 
research. The result of calibration was depicted in Figure 3. There is a strong negative correlation 
between kp and ρd. When ρd is larger than 1.3 g/cm3, the kp descends more slowly. It is suggested the 
permeability resistance of infiltration device develops mostly when the density reaches a certain 
value. In addition, kp = 0 represents the undrained state. With the calibration test results, the response 
of a soil element adjacent to a soil layer of arbitrary permeability can be predicted. 

Figure 1. Assumed drainage conditions of soil element.

The simplified illustration of the employed triaxial apparatus is shown in Figure 2. To reproduce
different drainage conditions, an infiltration device connecting a flowmeter was installed onto the
top of specimen to control permeability of the silt. The infiltration device can retain soil and free the
drained water. More detail was mentioned by Wang et al. [23]. Note that the difference in cross sections
between the infiltration device and the drain pipe results in no head loss, considering the hypothesis
that the EPWP is zero at the drain pipe. The valve at the bottom is closed, and the valve at the top is
open during a test. With the designed infiltration device, the cyclic triaxial equipment can conduct
tests under the replicated drainage boundary conditions.
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Figure 2. Schematic of the infiltration device in cyclic triaxial equipment.

The position of drainage path in the infiltration device was illustrated in Figure 2; tests were
carried out to calibrate the permeability of silt layer with varied dry density. Then, kp was introduced
to represent the effect of the drainage boundary condition considering permeability of the soil element,
which is shown as

kp =
ki
k0

. (1)

kp can represent the silt with different density, which is only appropriate for silt and sand used in this
research. The result of calibration was depicted in Figure 3. There is a strong negative correlation
between kp and ρd. When ρd is larger than 1.3 g/cm3, the kp descends more slowly. It is suggested the
permeability resistance of infiltration device develops mostly when the density reaches a certain value.
In addition, kp = 0 represents the undrained state. With the calibration test results, the response of a
soil element adjacent to a soil layer of arbitrary permeability can be predicted.
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Figure 3. Relationship between kp and ρd of silt in the infiltration device.

2.2. Sand Properties and Experiment Conditions

Fujian standard sand was employed in the tests. Some important parameters of the sand are listed
in Table 1. The average relative density before consolidation (Dr0, %) of specimens were controlled to
50.0% approximately, and the average relative density post consolidation (Dr, %) was 48.7%. The fractal
dimension of sand particles may be an influential parameter and need further investigation [24].
The specimens were constituted by the water pluviation because this method can ensure the uniformity
of relative density of specimens [25]. Then, the specimens were saturated by applying back pressure of
500 kPa until the B value surpassed 0.95. The dense silt layer in the infiltration device may cause the
applied back pressure much higher than common value.

Table 1. Properties of Fujian standard sand.

emax emin Cu Cc D50 (mm)

0.848 0.597 5.6 0.45 0.63

The employed cyclic triaxial apparatus is electric servo-type. With the flowmeter fitted to the
infiltration device, the amount of water drained out of soil can be measured. Considering high
permeability of the saturated sand specimens, the EPWP is assumed to equally-redistributed rapidly
under the stress condition in short time intervals. Thus, this study measured the pore water pressure
at the bottom of specimen to represent the whole element approximately.

Table 2. Cyclic triaxial tests series at different boundary drainage states.

Test No. Dr (%) σ’0 (kPa) σd (kPa) kp

1 48.7 200 50 0
2 48.7 200 50 0.107
3 48.7 200 50 0.119
4 48.7 200 50 0.132
5 48.7 200 50 0.17
6 48.7 200 50 0.54
7 48.7 200 50 0.68
8 48.7 200 50 0.84

The cyclic triaxial tests series were performed according to ASTM D5311/D5311M-13, Standards
Test Method for Load Controlled Cyclic Triaxial Strength of Soil [26]. The scheme of test series was concluded
in Table 2. The tests were conducted under isotropic consolidation with 200 kPa initial effect confining
pressure (σ′0) and the top valve was unbolted and connected to the infiltration device; then, the
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specimen was applied a cyclic loading. The applied loading was a sinusoidal wave with amplitude
(σd) of 50 kPa. The tests were stress-controlled with loading frequency of 1.0Hz. Initial liquefaction
is obvious to observe herein and appropriate to be the liquefaction criterion. Two stress parameters
were shown to present the traditional triaxial test results: deviator stress: q = σ1−σ3, average effective
principal stress, p′ =

(
σ′1+2σ′3)/3.

3. Test Results and Analysis

3.1. Preliminary Results

Figures 4 and 5 showed the liquefaction behavior characteristics of test results conducted under
a certain drainage condition (kp = 0.17). Time histories of axial deviator stress (q), axial strain (εa),
and EPWP were plotted in Figure 4 at the same time scale. Stress path and stress–strain curves were
plotted in Figure 5. As pore pressure in the sand specimen accumulated under cyclic loading, the
effective confining stress decreased. Then, the deformation resistance ability of specimen decreased.
Then, EPWP increased to σ′0 and initial liquefaction achieved, accompanied by a sudden increase in
the q and εa. Cyclic mobility behavior was also displayed, leading to a near zero effective stress state
with a typical “butterfly” stress path as illustrated in Figure 5a. The hysteresis loops of specimen were
plotted in Figure 5b, and the first few circles of loops are indiscernible. As the axial strain increased,
the shape of the loops demonstrated a nonlinear hysteresis stress–strain behavior.
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Comparing with the aforementioned test results in Figure 5, stress path and stress–strain curves
of an unliquefied condition (kp = 0.84) were plotted in Figure 6 to discriminate different patterns of soil
liquefaction behavior characteristics. Both curves in Figure 6 are indiscernible; the variation of stress
and strain are in a narrow scale, and no sudden increase occurred. The value of p′ under cyclic loading
remains a relative high level, which means that the pore water dissipated rapidly with a good drainage
boundary condition. Thus, the ability to resist deformation mostly remains under a good drainage
boundary condition. Note that the polylines in Figure 6a resulted from the fact that the amount of
water that passed through the drainage boundary under cyclic loading was not proportional to the
deviator stress.
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The EPWP response time–history was provided in Figure 7. N refers to the loading cycles. Two
groups were divided by whether liquefaction achieved. The response regularity of EPWP and the
influence of kp have been discussed [24].
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Drainage boundary conditions have a strong influence on the liquefaction behavior of sand
specimens. In Figure 8, schematic diagrams were plotted based on the observation in each group to
illustrate a probable cause of the sand liquefaction under different drainage boundary conditions. The
mechanism of how the drainage boundary influences the liquefied specimen is discussed: cyclic loading
acts on the sand element under different drainage boundaries. The sand particles were condensed
from the bottom of specimens under the effect of loading and gravity. The condensing of sand and
seismic loading both cause a process of upward seepage, which accumulates the pore water at the top.
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The poor drainage boundary condition may induce the sand more susceptible to liquefy at a localized
zone. The more significant of the seepage effect will make pore water response more fiercely.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 7 of 15 
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3.2. Liquefaction Potential Evaluation

3.2.1. Energy-Based Analysis and Database Building

As Figure 9 depicted, in cyclic triaxial tests, W can be calculated using trapezoidal rule results as
follows:

W =
n−1∑
i=1

(q i+1+qi)(εi+1 − εi), (2)

where n = number of total loading cycles; qi = deviatoric stress in the ith cycle; εa,i = axial strain in
the ith cycle; and the stored energy is denoted as Ws. Physically, W represents the energy inside sand
sediments that need to be dissipated and indirectly reflects the friction of sand particles and the extent
that the sand skeleton breaks down. Thus, employing W as an indicator for liquefaction evaluation is
rational because the energy approach accounts for both seismically induced stress and strain.

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 7 of 15 

 

  
(a) (b) 

Figure 8. The schematic diagrams for phenomena under different drainage conditions: (a) liquefied 
group; (b) unliquefied group. 

3.2. Liquefaction Potential Evaluation 

3.2.1. Energy-Based Analysis and Database Building  

As Figure 9 depicted, in cyclic triaxial tests, W can be calculated using trapezoidal rule results as 
follows: 

W=∑ (qi+1+qi)(𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖)n−1
i=1 , (3) 

where n = number of total loading cycles; qi = deviatoric stress in the ith cycle; εa,i = axial strain in the 
ith cycle; and the stored energy is denoted as Ws. Physically, W represents the energy inside sand 
sediments that need to be dissipated and indirectly reflects the friction of sand particles and the extent 
that the sand skeleton breaks down. Thus, employing W as an indicator for liquefaction evaluation is 
rational because the energy approach accounts for both seismically induced stress and strain.  

  

Figure 9. Energy density and hysteresis loop modified after Yang and Pan [12]. 

In the liquefied group, test results were analyzed by an energy approach. An example ( kp = 0.17) 
was plotted in Figure 10. Time-history of W and the calculated Wliq were shown, which is a typical 
curve of stress-controlled test results. The majority of the strain energy was dissipated in the last 
several cycles close to liquefaction occurrence. It has been proved that both the stress- and strain- 
controlled cyclic triaxial undrained tests have similar EPWP generation results analyzed by an energy 
approach [27]. 

Figure 9. Energy density and hysteresis loop modified after Yang and Pan [12].

In the liquefied group, test results were analyzed by an energy approach. An example (kp = 0.17)
was plotted in Figure 10. Time-history of W and the calculated Wliq were shown, which is a typical curve
of stress-controlled test results. The majority of the strain energy was dissipated in the last several cycles
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close to liquefaction occurrence. It has been proved that both the stress- and strain- controlled cyclic
triaxial undrained tests have similar EPWP generation results analyzed by an energy approach [27].
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In the unliquefied group, different drainage conditions showed evident influence on the behavior
of W. As shown in Figure 11, W would rise to a peak value and then decreased, which is different
with the cyclic rising curve in Figure 10 of liquefied groups. Then, the peak value of W was denoted
as Wmax. Considering the physical meaning, the trend that W decreases circularly indicates that the
structure of soil is repaired or densified, rather than being damaged or broken down in case of good
drainage boundary conditions.
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To numerically investigate how the drainage effect influenced W, the generalized W (Wg) are
defined including both Wliq and Wmax. The relationship between Wg and kp was shown in Figure 12. It is
indicated that Wliq and Wmax can be correlated through parameter kp. The function is shown as follows:

Wg =5391.3e−6.6kp . (3)

The liquefaction probability of a certain ground condition can be evaluated by considering drainage
boundary conditions. The evaluation system based on sand liquefaction behavior characteristics
is concluded: the effect of drainage boundary condition can be quantified to the corresponding kp

according to the permeability of soil. It can be discriminated whether the sand specimen will achieve
liquefaction based on the value of kp. The probability of liquefaction occurring is high, if the kp

represents that the sand is under bad drainage boundary conditions. The Wliq can be roughly predicted
by Equation (3).
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The energy-based database was developed by taking in new test results [8,9,12,28], and these
tests were undrained with kp = 0. Whether before or post consolidation, relative density is almost
the same for saturated sand under undrained conditions. While the data from research focused
on drainage conditions are shown in Table 3. To analyze these test results with different drainage
effects quantifying parameters by an energy approach, the different parameters were converted into
kp uniformly. The hysteresis loop curves were reconstituted based on the provided stress and strain
time-histories; then, the corresponding Wliq can be calculated.
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Table 3. Summary of sand liquefaction potential under different drainage boundary conditions using
an energy approach.

σ’m0 (kPa) Dr0 (%) kp Cu D50 (mm) Wliq (J/m3)

Niigata sand, cyclic triaxial tests, Umehara et al. (1985)
100 45.8 0.108 1.9 0.32 271

Toyura sand, cyclic triaxial tests, Yamamoto et al. (2009)
200 49.9 0.03 1.2 0.2 3494
100 91.5 0.03 1.2 0.2 2797

Fujian standard sand, cyclic triaxial tests, this study
200 50.0 0 5.6 0.63 5067
200 50.0 0.107 5.6 0.63 3402
200 50.0 0.119 5.6 0.63 2119
200 50.0 0.132 5.6 0.63 2706
200 50.0 0.17 5.6 0.63 2191

Toyura sand, centrifuge tests, Ohara and Yamamoto (1982)
9.4 48.7 0 1.6 0.27 84
9.4 53.6 0.08 1.6 0.27 67

For example, Figures 13 and 14 illustrate the procedure of Wliq calculation in a centrifuge test
under different drainage conditions performed by Ohara and Yamamoto [3]. In Figure 13, the shear
stress time–history was reconstructed based on the recorded acceleration time–history within the zones
between the accelerometers by a technique [29], and the shear strain time–history was shown together.
The technique can evaluate the shear stress curve according to acceleration curve based on shear beam
theory and was depicted as

τmax= ρhamax, (4)

where ρ is the mass density of sand and assumed 2000 kg/m3, h is the depth of liquefaction zone,
and amax is the peak acceleration. The technique has been proved effective [9,11,30]. In Figure 14,
reconstructed shear stress–strain loops were shown for calculation of Wliq and recalculated parameters
σ’m0 and kp were also provided. In anisotropically consolidated tests, the parameter σ’m0 was calculated
as follows:
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σ′m0 =
σ′v0(1 + 2K 0

)
3

, (5)

where σ’v0 is the initial vertical effective stress acting on the specimen and K0 is the at-rest lateral earth
pressure coefficient and is assumed as 1 for saturated sand. The drainage parameter was converted
into kp: based on Darcy’s law, ki can be converted by parameter vt that employed in their research to
quantify drainage effect, and k0 has also been shown.
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With all the research mentioned above, the corresponding database of 217 test results was built
containing input parameters, such as initial effective mean confining pressure (σ’m0, kPa), Dr0, kp, Cu,
and Cc and target parameter Wliq (J/m3). Since the complex nonlinear relationship remains disputable
between FC and Wliq [11,15,28], only the data with FC = 0 were chosen to build the database.

3.2.2. MLP-Based and NF-Based NN Model

The performance of a widely used model was shown. Multiple-linear regression (MLR) is a sort of
a statistic model, in which different parameters exert the influence on the dependent variable of function
through linear regression. It used to be primary option in Wliq prediction to obtain approximations of
the relations between variables for its convenience and high-efficiency [11,13,31,32]. The MLR-based
model previously developed by Baziar and Jafarian [11] was employed on the new database as

LogWliq =2.1028+0.004566σ′m0+0.005685Dr0+0.001821FC− 0.02868Cu+2.0214D50. (6)
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In terms of Figure 15 and the corresponding parameters such as correlation coefficients (R2), root
mean square error (RMSE), and mean absolute error (MAE), the MLR-based model did not predict the
Wliq with a good degree of accuracy. Values of the Wliq in tests under different drainage conditions
appear to be overestimated as marked. It can be indicated that kp is an influential parameter and the
necessity for developing a model of better performance is obvious.
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NN practitioners can handle sophisticated problems and the complexity of NN models can
be varied simply by altering the network architecture [33]. As for architecture of NNs, multilayer
perceptron (MLP) and neuro-fuzzy (NF) are different kind feedforward (FF) NNs [34]. MLP is the most
basic kind NN. It is adaptive and widely applied. The NF-based NN is based on an integration of NNs
and fuzzy logic, which means a complex fuzzy system is designed to obtain the learning capability
of networks. NF-based models offer the advantages of both fields and have provided more accurate
results than a simple NN model in many prediction applications [34]. Moreover, the relationship
between input parameters can be illustrated by a visual perception figure in an NF-based model.

With the new parameter kp taken into account, the performance of two sort of NNs mentioned
above are supposed to be different in Wliq prediction. The MLP-based and NF-based NN models were
both constructed on the new database and the proceedings were concluded:

In data division aspects, both NN models chose the random approach and the data group can
be divided into training, testing, and validation data sets [35]. Testing data will be also used to train
the network and the division of it can be omitted. Validation data will be used to check whether the
model performs well. In architecture design aspects, both NN models are feedforward (FF) and back
propagation (BP), which means that the direction of calculation is from input parameters to target
parameters, and the calculated error will be distributed back forward to calibrate the networks till the
model meets the criterion set at beginning. In structure aspects, the neuros number in the hidden-layer
of an MLP-based NN model is 5, which is the same as the number of input parameters [33], and
the number of membership functions (MFs) is 3, which can represent the results well enough and is
less computationally-consuming.

Other main features of the two kind NN models are listed in Table 4.

Table 4. Different features between MLP-based and NF-based NN models.

NF MLP

Fuzzy Inference System Type Sugeno Training function Trainlm
Input membership function type Triangular Adaption learning function Learngdm

Output membership function type Linear Transfer function Tansig
Performance criterion Epochs Performance criterion MSE
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The training results of the MLP-based and NF-based NN models were given in Figure 16.
The accuracy of the models was verified by validation sets, and the results were plotted in Figure 17.
By comparison of R2, RMSE, and MAE, the accuracy of an MLP-based model is slightly better than the
NF-based model. However, it has a data point whose error is about 30%. It may result from the fact
that the data were collected from the centrifuge test, in which the stress condition is uncertain and
needs to be calculated according to the acceleration time–history. In the NF-based model, errors of all
data are less than 20%. For the centrifuge test data, performance of NF-based model is better than an
MLP-based model. Compared with the prediction performance of an MLR-based model shown in
Figure 15, both NN models perform better than MLR-based models (R2 = 0.231, RMSE = 0.474, MAE
= 0.303). The capacity energy of a certain kind sand specimen under different drainage boundary
conditions can be evaluated by imputing soil mechanical parameters to the developed NF-based model
with accuracy of about 80%.
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As elucidated in Figure 18, a visual perception figure was provided by an NF-based NN model to
analyze the influence of input parameters on the Wliq prediction. It can be concluded that the drainage
condition effect on Wliq will increase as σ’m0 increases. When other soil parameters are constant, Wliq
will increase as drainage conditions get worse slightly (kp decreases) as well as σ’m0 increases. These
results are in agreement with the observed phenomena in cyclic triaxial tests (as shown in Figure 8);
when kp increases, sand will achieve liquefaction with less dissipated energy density, and the loading
cycling number for liquefaction will be less.
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4. Conclusions

The study was to exploit the influence of different drainage boundary conditions on the liquefaction
behavior characteristics of saturated sand. The infiltration device was utilized to simulate drainage
boundary effects. The parameter kp was introduced to quantify drainage boundary effects. Cyclic
triaxial tests were carried out to assess the drainage effect on the liquefaction behavior characteristics.
Test results were analyzed by the energy approach. Different NN models were constructed to evaluate
liquefaction potential. The main conclusions were drawn as follows:

(1) The test results indicate that the drainage boundary evidently affect the EPWP response regularity.
The sand specimens will not achieve liquefaction under cyclic loading as drainage ability is good
(0.54 ≤ kp ≤ 1.0). Otherwise, the specimens will liquefy under poor drainage boundary conditions
(0 ≤ kp ≤ 0.17). Analyzed by an energy approach, it results from the fact that the sample consumes
less capacity energy as the drainage boundary alerts better. It is assumed that a seepage in sand
caused by the partial drainage boundary condition results in pore water accumulating and EPWP
increases rapidly in a liquefied group.

(2) A technique was employed to calculate Wliq from the stress–strain curves of other research. After
gathering data and conversion of the drainage effect quantifying parameter from drainage effect
research, a database considering kp was built for Wliq prediction.

(3) The traditional statistical model and different NN models were constructed for Wliq prediction.
Results indicate that an NF-based NN model has better performance and the accuracy rate of
capacity energy assessment under different drainage is about 80%. The visual perception figure
provided by an NF-based model suggests that the dense specimen will consume more capacity
energy (as Dr0 increases).
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