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Abstract: Predicting traffic flow is critical in efficient maritime transportation management,
coordination, and planning. Scientists have proposed many prediction methods, most of which
are designed for specific locations or for short-term prediction. For the purpose of management,
methods that enable long-term prediction for large areas are highly desirable. Therefore, we propose
developing a spatiotemporal approach that can describe and predict traffic flows within a region. We
designed the model based on a multiple hexagon-based convolutional neural network (mh-CNN)
model that takes both the flow dynamics and environmental conditions into account. This model is
highly flexible in that it predicts zonal traffic flow within variable time windows. We applied the
method to measure and predict the daily and hourly traffic flows in the South Atlantic States region
by taking the impacts of extreme weather events into consideration. Results show that our method
outperformed other methods in daily prediction during normal days and hourly prediction during
hurricane events. Based on the results, we also provide some recommendations regarding the future
usage and customization of the model.

Keywords: traffic flow prediction; deep learning; spatiotemporal modeling; extreme weather

1. Introduction

Predicting traffic volume is critical in supporting efficient traffic management, design, and
planning. Earlier attempts on traffic flow prediction are largely based on aggregated data [1,2].
With the increasing availability and accessibility of sensor data (e.g., tracking data from automatic
identification systems (AIS)), scientists and practitioners can make predictions on vessel traffic at fine
spatial and temporal levels. Although researchers have formulated numerous prediction methods,
these methods tend to focus on predicting traffic volume for specific waterways or ports [3,4], or
predicting flow within a short time (e.g., minutes) period. The effectiveness of these methods in
providing a relatively longer term (e.g., a lead time of several days) prediction for large areas are
unknown. Such long-term predictions are of great value to everyday flow management. Furthermore,
among these models, the spatiotemporal characteristics of ship movements, weather, or environmental
conditions are missing. Therefore, they often fail to deliver accurate results in variable conditions such
as extreme weather conditions.

This paper presents an approach that can predict the traffic volume for regions of high traffic
volume such as ports and waterways [2,5]. These regions are termed as regions of interests (ROIs)
throughout the paper. We focused on busy regions because these regions are where frequent navigation
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activities occur and are thus associated with a high risk of accidents. In addition, those regions exhibit
relatively higher traffic volumes and may have higher irregularities during extreme weather events [6].
We proposed a new deep neural network-model to predict both short-term and long-term traffic in
those ROIs. Our method was built on a deep learning approach that leverages the convolutional neural
network (CNN) model, which can perform short term forecasting with different temporal intervals
ranging from hourly output to daily prediction. This model also considers the spatiotemporal factors
such as the influence of neighborhood flows as well as the vessel’s movement behaviors like direction
and different temporal granularities. We applied the method to investigate the model performance
on predicting daily and hourly traffic flows in the South Atlantic States region, which is frequently
affected by extreme weather events.

This research makes the following contributions:

(1) It proposes a novel method that can accurately capture the changes of traffic volume based on
spatiotemporal variations to make short-term and long-term predictions of future ship flow
during both normal conditions and extreme weather events.

(2) We customized the method to predict daily and hourly ship flow during normal and extreme
weather conditions and provide recommendations regarding the use of such method.

The rest of this paper is organized as follows. Section 2 reviews the existing work in the
field of machine learning algorithms to make predictions with a focus on ship flow forecasting.
Section 3 describes the development of the multiple hexagon-based convolutional neural network
model for making multivariate and multiple time-step ship flow prediction. In Section 4, we explain
the experiments conducted to evaluate the approach. Finally, we summarize the results and draw
conclusions in Section 5.

2. Related Work

Traffic prediction is an important topic in transportation research. Accurate traffic prediction
is critical in enhancing situational awareness, supporting just-in-time (JIT) operations, improving
monitoring, and navigation practices. Traffic prediction can predict the trajectory of a specific ship, the
traffic volume of a port, and the crossing behaviors of ships near bridges. Prediction can be based on
annual aggregated flow data, observations from remote sensing products, or the tracking information
from the AIS system [7–9].

Currently, many methods are available for prediction. Two major categories are parametric and
non-parametric. The literature shows that both methods deliver different performances under different
conditions. A large number of parametric methods are time series models. One notable example is the
autoregressive integrated moving average (ARIMA), which examines the periodical patterns of traffic
flows and builds regression models to predict traffic flows [10,11]. Since parametric models heavily
rely on a priori distribution, they perform well with normal operations while they fail to deliver a
high-level performance in situations where the traffic flow is highly dynamic. On the other hand,
non-parametric model such as the k-nearest neighbors (k-NN), which does not assume the regularity
of traffic flow, can model complex non-linear patterns in data [12]. One of the popular sub-categories
in non-parametric models are the deep learning-based methods. Deep learning methods predict traffic
volume with knowledge derived from massive historical data. The deep learning model can take
advantage of large volumes of data to explore patterns [13]. Deep learning architectures like deep
belief networks [14] and convolutional neural networks have been successfully applied in many fields
(e.g., speech recognition, computer visioning, and natural language processing) [13]. For example,
the CNN model has been used to make supply and demand prediction of ride-sourcing services [15].
Considering the traffic flow patterns and the availability tracking data, we chose machine-learning
methods, specifically, the CNN model as the main prediction method.

While scientists have proposed a few machine-learning methods to support marine traffic flow
prediction [16], these methods are usually applicable to port regions or straits with rigid routing
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reporting mechanisms and redefined routes. Providing prediction on coastal waters is still rare, as
methods usually do not take the following three factors into account. First, traditional methods
stemming from network flow prediction treat the transportation network as a static system and usually
do not incorporate the motion and movement patterns of ships. Predicting approaching vessels often
becomes an important factor in determining the traffic volume in a region [16]. Second, the majority of
methods are only applicable to controlled regions or predict traffic flow for a specific time window. In
particular, the configuration that enables the prediction of the variability from short term to long term
is missing. Third, environmental factors are usually not included in these methods. Research shows
that periodic patterns in ferries may change during hurricane seasons [17]. Lacking environmental
factors can lead to a low degree of prediction accuracy under extreme weather conditions.

Therefore, the purpose of the proposed method is to make short-term and long-term predictions
for hurricane-prone regions like the South Atlantic States to help people better prepare for extreme
weather events. This method is applicable in a variety of locations (e.g., not limited to a specific harbor
or waterway). By taking multivariate input data and using multiple time steps as inputs, the models
can provide ship flow forecast at different spatiotemporal scales in an accurate manner.

3. Method

In this study, we analyzed the South Atlantic States region due to its unique geographical settings.
With more than one thousand miles of coastline, the South Atlantic States region mainly consists of
Florida, Georgia, North Carolina, and South Carolina. Nevertheless, in the past decades, as the sea
surface temperature has risen, the power of Atlantic tropical cyclones has risen dramatically [18,19] and
made this region particularly vulnerable to extreme weather events. During the extremely active 2017
Atlantic Basin hurricane season, 17 named tropical cyclones (of which six became major hurricanes) and
two weaker systems developed from April to early November [20]. It was one of the most destructive
hurricane seasons in history, costing more than $250 billion in damage alone in the U.S. [21]. To
demonstrate the performance of our model, we used the AIS data of the Universal Transverse Mercator
(UTM) Zone 17 dataset of 2017. This dataset is provided by marine cadaster [22], which are mainly
located in the South Atlantic States region. These regions are featured with their high density of ship
flows (more detail on the selection procedure is provided in Section 3.1.1). As the original datasets do
not explicitly define the boundaries of zones, we used hexagons to partition and group ship flow data
for the following reasons. First, no widely-accepted boundary partition mechanism is available for this
region. Second, hexagons can better support algorithmic efficiency, data representation, and semantic
expressiveness [23,24]. To examine the impacts of hurricanes, we reconstructed the paths and impacted
regions of hurricanes using the data from the National Oceanic and Atmospheric Administration
Hurricane Center [25].

To generate spatially continuous hexagons, we used Uber’s H3 hexagonal hierarchical spatial
indexing (H3) grid system [26]. The H3 grid system developed by Uber is originally used for ride
optimization, spatial data visualization, and data exploration. The H3 system can be used to group
geolocation data points into hexagonal areas or cells. Furthermore, this H3 system supports 16 different
resolutions to group data at different spatial scales. There is also a hierarchical relationship for cells at
different resolutions. The smaller hexagonal cell (child cell) with a finer resolution is approximately one
seventh of the area of its hexagonal cell (parent cell) with coarser resolution. Furthermore, since each of
the H3 cells has a unique identifier, it is easy for a child cell to locate its parent cell at coarser resolution
and identify the unambiguous neighboring hexagons with the same resolution based on a specific
search radius. This efficient indexing system allows us to group and search hexagonally grouped data
in an efficient manner to analyze the pattern of ship flow. We only used level 3 and 4 hexagons because
these are reasonable sizes for traffic flow management in the coastal waters. Hexagons with coarser
resolution cover much greater regions (e.g., states or nations) where prediction results can be less
meaningful, whereas hexagons with finer resolution only cover smaller regions where there are only
a few ships. For instance, Figure 1 shows the 11 hexagons considered as ROIs at level 3 for the case
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studies, which included four regions for the hourly prediction test and one region for the hurricane
impact test. The details on selecting these regions are described in Section 3.1.1. We prepared two
sets of ship flow data using different hexagon sizes (Table 1) based on the processing procedures as
explained in the following sections.
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Figure 1. Distribution of the 11 selected H3 hexagons at level 3 used for the case studies. Zones are
labeled as ‘lx_Zy’ because this indicates the resolution/level of the hexagons and the unique zone
identifier at that level.

Table 1. Summary of the datasets generated based on H3 hexagons.

Dataset Spatial (Coverage) Temporal (Frequency,
Start and End Time) Central Zone Count Surrounding Zone Count

Level 3 Hexagons South Atlantic States
Region

Daily ship flow data for
2019 and hourly ship flow
data for September, 2019

11 66

Level 4 Hexagons South Atlantic States
Region

Daily ship flow data for
2019 and hourly ship flow
data for September, 2019

21 126

3.1. Traffic Flow Analysis

Before formulating a prediction method, we examined the typical spatiotemporal factors in
determining the traffic flow in ROI regions. The classic ship traffic simulation contains both micro
(focusing on the performance of the individual ship’s navigation) and macro models (treat vessel traffic
flow as a whole) based on the ‘Network Simulation’ of nodes and lines [27]. Our method was adapted
from the macro method by considering the relative motions and distributions of ships. According to
Xie and Liu (2018), traffic flow usually exhibits temporal regularity except for special conditions such
as flooding events, hurricane seasons, and regulations. Furthermore, as ships move across different
regions, the spatial association among regions can also alter the level of traffic flow. Therefore, we
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performed the pattern analysis outlined below to verify the impacts of typical spatiotemporal factors
in contributing to the flow level. The pattern analysis serves as the basis of understanding the changes
in traffic flow and the model formulation. In the context of this work, for a given hexagon cell, we
defined the two types of ship traffic volume as follows: (1) ship flow in same direction where the total
number of ships that move from each of the adjacent surrounding hexagons toward the center hexagon
within the given interval of time (e.g., one hour or one day); and (2) the total ship flow where the total
number ships with a unique identification is located within each of the hexagons within the given
interval of tie.

Below, we explain the analysis methods and use our case study region as an example to assess the
impacts of different factors. We recognize that the impacts of different factors may change over regions.
When performing predictions, our data-driven machine learning model automatically adjusted the
weight of factors based on the data in the South Atlantic States region.

3.1.1. ROI Identification

In order to extract high density regions, we used the ship tracking points to reconstruct the
ship trajectories to calculate (1) the track point-based density and (2) the track line-based density by
assigning points and line segments to grids (Figure 2). Then, we performed reclassification based
on the density threshold to identify high density cells as ROIs in the South Atlantic States region.
After we identified the ROIs, we used the honeycomb model for spatiotemporal partitions to generate
dynamic models [23]. Finally, we selected level 3 and level 4 hexagons that overlapped with high
density regions and identified them as the final ROIs for ship flow analysis (Figure 1 and Table 1).
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3.1.2. Spatial Distribution of Traffic Flow

We developed two ways to identify ship flow in the surrounding regions. For the first method, we
simply calculated the total number of ships in each of the surrounding hexagons (Figure 3a). For the
second method, we calculated the total number of ships moving toward the central hexagon (Figure 3b).
In order to select the ships moving toward the central zone, we (1) calculated the compass bearing
between the center of the of the surrounding H3 zone and the central H3 zone; (2) calculated the
compass bearing between the start and end point of the ship; and (3) calculated the absolute difference
between the bearings to select ships with bearing differences smaller than 30 degrees. The second
method is more ideal for hourly prediction since ships may have moved across several hexagonal
zones, covered longer distances, and show more complicated moving patterns at a daily level.



J. Mar. Sci. Eng. 2019, 7, 463 6 of 18

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 6 of 19 

 
Figure 2. Flow chart of ROI identification and H3 zone selection. 

3.1.2. Spatial Distribution of Traffic Flow 

We developed two ways to identify ship flow in the surrounding regions. For the first method, we 
simply calculated the total number of ships in each of the surrounding hexagons (Figure 3a). For the second 
method, we calculated the total number of ships moving toward the central hexagon (Figure 3b). In order 
to select the ships moving toward the central zone, we (1) calculated the compass bearing between the 
center of the of the surrounding H3 zone and the central H3 zone; (2) calculated the compass bearing 
between the start and end point of the ship; and (3) calculated the absolute difference between the bearings 
to select ships with bearing differences smaller than 30 degrees. The second method is more ideal for hourly 
prediction since ships may have moved across several hexagonal zones, covered longer distances, and 
show more complicated moving patterns at a daily level.  

 
 

 
Figure 3. Methods to compute ship traffic. (a) Counting total ship traffic in the surrounding regions and (b) 
counting ship flows moving toward the central zone. 

To measure the spatial association, we used local indicators of spatial association (LISA) to explore the 
degree of spatial autocorrelation [28] at each unique location based on the local Moran’s I. This can help us 
find clusters based on each zone’s ship flow values. The local Moran’s I is calculated as follows: 

Figure 3. Methods to compute ship traffic. (a) Counting total ship traffic in the surrounding regions
and (b) counting ship flows moving toward the central zone.

To measure the spatial association, we used local indicators of spatial association (LISA) to explore
the degree of spatial autocorrelation [28] at each unique location based on the local Moran’s I. This can
help us find clusters based on each zone’s ship flow values. The local Moran’s I is calculated as follows:
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where n is the total number of features; xi is the attribute of feature I; the average of the corresponding
attribute is X; and the spatial weight between i and j.

For each of the hexagons identified based on ROIs, we performed the following analysis to explore
the clustering pattern as the distance of the adjacent hexagons from the central hexagon increased.
We first identified hexagons at level 3 that intersected with the ROIs and selected the neighboring
hexagons with the same resolution based on the H3’s traverse function with a distance of five. Figure 4
shows an example of all the neighboring hexagons selected based on the central hexagon (zone l3_Z2).
Then, we calculated the total amount of ship flow in each of the hexagons. Based on the ship flow
information, we analyzed the hexagons’ clustering pattern using LISA. The result of the local Moran’s
I analysis based on a sample daily data was about 0.2, indicating that there is a clustering of cells
with similar values. In addition, there was also a significant clustering pattern in the central region
(Figure 4), demonstrating that the central hexagon cell is more likely to be affected by its adjacent cells.
Therefore, we used the H3’s traverse function at the distance of one to select adjacent hexagons based
on the central one’s index to construct the ship flow. forecasting model.
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3.1.3. Time Series Analysis

To perform time series analysis, we examined the temporal changes in traffic flow of a region
and its neighbors. For example, Figure 5a,b show the daily ship flow fluctuations in two zones near
Port Miami. Since we leveraged the hexagon decomposition systems, we created seven hexagonal
areas including one central area for both regions and six others for the adjacent regions, respectively
(e.g., zone l3_Z6 is the central zone and Z1–6 are the neighboring hexagons). First, we extracted
the daily total ship flow in each of the seven hexagons. Then, we plotted the daily ship flow of all
seven hexagons to explore their patterns. In Figure 5, we selected Port Miami (i.e., zone l3_Z6) and
Key West (i.e., zone l3_Z2) with their surrounding coastal waters as an example to demonstrate how
factors in the surrounding zones can make an impact on the traffic flow in this region. Both regions
have high daily ship flow. For instance, Port Miami is one of the largest passenger and cargo ports in
the United States [29]. We found that the total ship flow in the central hexagonal region was highly
correlated to the traffic flow in the surrounding regions that they demonstrated similar fluctuation
patterns. Nevertheless, these two plots showed different fluctuation patterns. First, the peak seasons
for Port Miami and Key West are different, and there is a much higher number of ship counts around
Port Miami in general. Moreover, different regions show different latencies for ship flow changes. For
instance, when the central region is experiencing an increasing number of ship flow counts, some
of the surrounding regions remain relatively stable due to the fact that they may not contain major
shipping routes and exhibit low traffic density [30]. This shows that (1) simple statistical/machine
learning models may not perform well if applied directly to any high-density region without sufficient
training and taking of other variations into consideration, and (2) surrounding regions can contribute
to the central region differently, so it is important to configure sub-models to capture their variations.

In addition, we conducted regression to explore the relationship of ship flow near the region of
Port Miami (zone l3_Z6) as an example, and it is calculated as follows:

C = aS + b (6)

r =
n(

∑
CS) − (

∑
C)(

∑
S)√[

n
∑

S2 − (
∑

S)2
][

n
∑

C2 − (
∑

C)2
] (7)

where n is the total number of observation; C is the total number of ship flow in the central region; and
S is the total number of ships in the surrounding regions. We used simple linear analysis to explore the
relationship between the ship flow in the central zones and ship flow in the surrounding zones for the
selected sample zone. The results showed that the r-squared value for the sample zone was (1) 0.763
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using the total number of ships in the surrounding zones and (2) 0.571 using the total number of ships
moving toward the central zone, which indicates that around half of the observations can be explained
by the ship flow in the surrounding regions.
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3.1.4. Impacts of Extreme Weather Conditions

Extreme weather events are unusual, severe, or unseasonal weather conditions [31]. Although
extreme weather events like tropical storms tend to last for a shorter period of time, they can still
significantly affect the ship flow in the short term and can have a great impact on global commodity
supply chains like marine transportation [6]. In our study, we mainly considered the impact of
hurricanes due to the fact that they are very frequent in the South Atlantic States region, making many
regions particularly vulnerable and can significantly change the traffic flow in the region. We used
H3’s hexagons to establish a search radius (distance = 5 in this case) to find the presence of hurricanes
and record the information as binary data (Figure 6). For example, Figure 7 shows that the change in
the total number of ships when the region (i.e., zone l3_Z2) is affected by hurricanes with a drastic
decrease in ship flow. Nevertheless, the number of ship counts return to a normal level quickly after
the extreme weather event and remain stable. In our experiment, we generated a sub-model for the
presence of hurricanes using the same procedure as above.
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3.2. Our Proposed Model

In order to predict total ship flow within H3 cells by capturing the variations of zonal ship flow, we
proposed a H3-based multivariate CNN model to extract and predict ship flow patterns using multiple
previous time steps. Based on the analysis in previous sections, we constructed a deep neural network
to make ship flow prediction by (1) using ship traffic around the high-density regions selected based
on ROIs, and (2) taking the impact of hurricanes into consideration as an additional factor to predict
ship flow during extreme weather events. In this framework, we integrated deep learning algorithms
of CNN and H3 grid search to support ship flow prediction. We (1) incorporated the Uber’s hexagonal
hierarchical spatial index method (H3) to partition and organize trajectory points into identifiable grid
cells; (2) unitized the deep learning architecture of CNN, which is a type of neural network (NN) to
predict ship flows in H3 zones at different scales; and (3) used multiple time-steps and multivariate
inputs to train the model. The CNN model has been widely used for forecasting analysis. For instance,
Kim and Lee (2018) developed the STENet model based on CNN to predict ship traffic in crowded
harbor water areas [32]; Wu and Tan (2016) combined CNN with long short-term memory (LSTM) for
traffic prediction [33]; and Ma et al. (2017) used CNN for large-scale transportation network speed
prediction [34]. Furthermore, Yu et al. (2019) used a social media dataset to train a CNN model for
typhoon disaster assessment [35].
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This model extends the basic CNN model so that it contains separate sub-CNN models to process
each input variable. We used the actual ship flow and extreme weather data by splitting them into
training and testing datasets to train and validate our model. We generated a sub-model for each of the
variables (e.g., ship flow in the neighboring cells or the presence/absence of extreme weather events)
that took a one-dimensional sequence of a pre-defined time window. The total ship flows across the
time in each of surrounding regions and the central region can be fed into their own sub-models
respectively. Each of the sub-models contains a separate kernel to read the ship flow input sequence
onto a separate set of filter maps to learn features from the input time series data. We normalized the
ship counts in the surrounding regions due to their high variation. Each sub-model contained two
convolutional layers followed by a max-pooling layer as a down-sampling strategy. The first layer has
a kernel size of three, whereas the second layer had a kernel size of one [36]. We used ADAM for the
optimization algorithm [37]. A regularization technique of early stopping was used to fine-tune the
mode. Then, the sub-model summarized the learned features from the sequence and produced a flat
vector. All these flat vectors were merged through concatenation and interpreted by a fully connected
layer to make a prediction (Figure 8).
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By utilizing the H3 system, we pre-processed the AIS trajectory points based on three steps so the
model could run with the dataset: (1) we assigned unique H3 identifiers at different resolutions (level
3 and level 4) to the trajectory points using the H3 system based on their location; (2) calculated the
total number of ships in each H3 cell; and (3) calculated the total number of ships moving toward the
center cell.

Based on the analysis on patterns, we formulated the model to include the following factors
(Table 2):

Table 2. Summary of the model.

Factor Scale Note

Time series flow data Daily and hourly Produce daily and hourly total ship flow
within the zones

Extent of hurricane paths Distance of 5 using level
3 hexagonal zones

Use the extent to search if hurricane is in
the range and produce a binary result.

Existing boundaries Level 3 and 4 hexagonal zones 11 sets of level 3 and 21 sets of level 4
are produced.

To demonstrate the performance of the model, we also selected other models for comparison:
the auto regressive integrated moving average (ARIMA) model, lasso model, stochastic gradient
descent (SGD) mode, long short-term memory (LSTM) model, convolutional long short-term memory
(ConvLSTM) model, and multilayer perceptron (MLP) model [11,16,38–40]. Of the six comparison
models, Lasso, ARIMA, and SGD are statistical models. ConvLSTM and LSTM were developed based
on a recurrent neural network (RNN) model where the connection between nodes can help them to
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process a sequence of inputs. The MLP model is a class of feedforward artificial neural network (ANN)
model that contains an input, a hidden, and an output layer. We divided each dataset into training
data and testing data. Due to the wide range of geolocations and complexity of ship flow patterns, we
adopted a variable multiple time-step approach to train the models and find the optimal results. To
train and evaluate the model accuracy for predicting a ship flow of certain number of days/hours in
the future, we used the past 3-day ship flow data to predict the next 1-day and 3-day ship flow, and
used the past 8-hours of ship flow data to predict the ship flow for next 4-hours and 8-hours.

As mentioned earlier, we compared our model with six other machine learning methods. In order
to compare the prediction performance, we configured the models for the two groups of tests. We
tested the seven predictive models to forecast the total number of ships in the selected central zones for
each day/hour over the next few days/hours by using multiple time-steps as inputs. For the statistical
model using Lasso and SGD, we used a recursive forecast strategy by making a prediction and feeding
it into the model for subsequent prediction. The MLP model has a 2-layer structure with 50 nodes
in the hidden layer. ConvLSTM is a class of LSTM, but LSTM takes multiple variables as inputs for
our comparison. We used the root mean square error (RMSE) and mean absolute error (MAE) as
evaluation metrics to gauge the prediction accuracy. The RMSE and MAE evaluation matrices are
defined as follows:

RMSE =

√∑N
i=1(Predictedi −Actuali)

2

N
(8)

MAE =

∑N
i=1|Predictedi −Actuali|

N
(9)

where N is the number of test samples; Predicted is the predicted ship flow value; and Actual denotes
the real ship flow value.

4. Model Evaluation

We conducted two different groups (denoted as “Group 1” and “Group 2”) of tests for ship flow
prediction analysis. We pre-processed all data by assigning H3 identifiers (at resolutions of level 3 and
4). Group 1 contained the dataset of ship flow at the daily level, whereas Group 2 contained datasets at
an hourly level. We selected vessel track points from hurricane events in September 2017 to test the
impacts of hurricanes on ship flow prediction. Tests in Group 1 compared the performance of ship
flow prediction using H3 hexagons at level 3 and 4 resolution using annual data. Tests in Group 2
compared the performance of ship flow prediction at an hourly level using monthly data. A separate
test in Group 2 was conducted to compare the performance of ship flow prediction using H3 hexagons
at level 3 resolution by taking the impact of hurricanes into consideration. We tried 10, 20, and 30 for
the convolutional layer’s filter size, and found that the prediction performance of convolution layer
with the filter size 20 was superior to that with 10 and 30. Moreover, as for the learning rate for the
Adam optimization algorithm, we tried 0.0001, 0.0002, and 0.001. We found that the model performed
better when the learning rate was set to 0.001 when the model used level 3 hexagons, and 0.0001 when
using level 4 hexagons. For the model input data, we found that the model performed better using
the number of ships in the surrounding hexagons for daily-level prediction and the number of ships
moving toward the center in the surrounding hexagon for hourly-level prediction. This is probably
because ships can move a longer distance and demonstrate more complicated moving patterns at daily
levels, thus using a simple ship direction calculation may be insufficient to capture the changes, thus
affecting the accuracy of prediction. We adopted the optimal configurations described above for the
two groups of tests.

4.1. Group 1: Daily Ship Flow Prediction

For the daily ship flow prediction, we separated the annual ship flow data and used the first
300 days for training and the last 65 days for testing. Eleven sets of daily traffic flow data at the H3
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level 3 resolution and 21 sets of daily traffic flow data at the H3 level 4 resolution were selected. In this
test, we used seven different models to predict ship flows for the next day and three days in the central
zone based on ship flows in the surrounding hexagonal zones. We used an input of 3-day of ship flow
from the historical data for model training. The test results showed that using the mh-CNN method
could significantly improve the ship flow prediction accuracy (see complete results in Appendix A).
The average MAE was about 11.65 for 1-day prediction and 13.75 for 3-day prediction, whereas the
average RMSE was about 15.01 for 1-day prediction and 15.20 for 3-day prediction (Appendix A).
Although the mh-CNN method outperformed the other methods in general, there were some cases
where this method did not perform on par to the others. This is probably because the ship flow can be
affected by many other factors and using the surrounding zone’s ship flow is insufficient to reflect
and capture the impacts on the ship flow in the central zone. Furthermore, for about 48% of cases,
mh-CNN outperformed other models, which was the highest record.

As we increased the hexagon resolution to level 4 (Appendix B), using the mh-CNN method could
significantly improve the ship flow prediction accuracy (see Appendix B for the complete results). The
average MAE was about 7.38 for 1-day prediction and 8.77 for 3-day prediction, whereas the average
RMSE was about 9.54 for 1-day prediction and 11.38 for 3-day prediction. In about 30% of the cases
mh-CNN outperformed other models. Although the performance decreased slightly when compared
to the level 3 cases, mh-CNN was still better than the other models.

4.2. Group 2: Hourly Ship Flow Prediction

In this group of tests, we compared the model performance for these two cases: (1) Four sets of
hourly traffic flow data in September at level 3 resolution, and (2) one set of hurricane traffic flow data
at the H3 level 3 resolution were selected (Figure 1). Level 3 hexagons were used to test the model
performance at variable spatial scales. Ships usually cannot move over such a large area within a short
period of time. In this group of tests, we used seven different models to predict ship flows for the next
four hours and eight hours in the central zone based on ship flows moving toward the central zone
in the surrounding hexagons. We used the first 600 hours of ship flow for model training and the
remaining 120 hours of ship flow for testing. In addition, we also prepared a dataset to test the model
performance during the hurricane period. We used the h3 hexagons to establish a search radius of five.
A separate column of binary data (one for present and 0 for absent) was recorded to see if extreme
weather events were present in the search area and created an additional sub-CNN model.

Results showed that using the mh-CNN method did not outperform other prediction models for
hourly prediction using monthly data (Appendices C and F). This is probably because there is less
variation of ship flow at the hourly level. Therefore, it is more difficult for mh-CNN to detect pattern
changes in an accurate way when compared to the other models. Nevertheless, the mh-CNN still
performed reasonably well as the RMSE and MAE results were very close to the other deep-learning
models. This shows that it can still more accurately predict than the LSTM-based models and traditional
statistical methods using Lasso or SGD. For the hurricane impact test, using the mh-CNN method
performed better than other models for the next 4-hour and 8-hour forecasting. This is probably due to
the greater change caused by the impact of hurricanes where it is more difficult for other models to
capture the variation of ship flow patterns over time.

4.3. Discussion and Recommendations

In summary, our approach introduced performance gains in most of the experiences as
summarized in Table 3. Our results confirm that in combination with the daily ship flow from
surrounding H3 hexagonal cells, our mh-CNN model can accurately capture the ship flow variation
at multi-spatiotemporal scales. Our mh-CNN model significantly outperformed other modes for
long-term prediction (e.g., one day and three days or four hours and eight hours of prediction in our
case). However, when the hourly data were applied to our model for hourly prediction based on
general monthly data, the model showed an average performance when compared to the other classic
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models. Nevertheless, the model performance increased significantly when we took the presence of
hurricanes into consideration for ship flow prediction during extreme weather events. The model
showed much better performance for predicting the ship flow in the next four and eight hours when
the region is affected by extreme weather events by creating a sub-model based on the search for the
presence of hurricanes.

Table 3. Model performance and recommendation (n/a: tests are not available).

3-day 2-day 1-day 4 hours 8 hours

Normal Model + Normal Days mh-CNN mh-CNN mh-CNN mh-CNN mh-CNN
Normal Model + Hurricane Days n/a n/a n/a ARIMA MLP

Hurricane Model + Hurricane Days n/a n/a n/a mh-CNN mh-CNN

5. Conclusions and Future Work

In this paper, we present a multiple hexagon-base CNN approach to predict ship flow by taking
different variables into consideration so that it can be applied to regions involving major shipping
activities. The forecast model implementation involves three major steps of data processing including
(1) data partition using H3 hexagons at various resolution, (2) preparing sub-CNN models to process
the inputs from each hexagonal cell, and (3) searching extreme weather events to capture the changes
and handle the spatiotemporal variations of ship movements. According to the test results, our
approach can significantly outperform other state-of-the-art forecasting models for long-term hourly
and daily ship flow predictions. Our hexagonal based machine learning approach outperformed these
comparison models for predicting more drastic ship flow change during the hurricanes to addresses
the gap of existing models in predicting traffic flow in open water under extreme weather conditions.
Nevertheless, due to its complexity, this model may require reconfiguration to optimize its performance
for making forecasts in a specific region.

In the future, there are several options that can take this research to the next level: (a) using H3
hexagons with different resolutions to test the model performance at other scales; (b) collecting more
historical data to forecast for longer periods of time in the future; (c) using a hybrid deep-learning
model to improve the accuracy; and (d) using more detailed extreme weather events data to fine-tune
the model.
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Appendix D

Table A1. Summary of best model performance (daily) at level 3 for Group 1.

RMSE MAE

ID 1 Day 3 Days 1 Day 3 Days

l3_Z1 MLP MLP MLP MLP
l3_Z2 MLP ARIMA ARIMA ARIMA
l3_Z3 MHCNN MHCNN ARIMA ARIMA
l3_Z4 MLP ARIMA MHCNN MHCNN
l3_Z5 ARIMA MHCNN ARIMA MHCNN
l3_Z6 MHCNN MHCNN MHCNN MHCNN
l3_Z7 MHCNN MHCNN MHCNN MHCNN
l3_Z8 MHCNN MHCNN MHCNN MHCNN
l3_Z9 MHCNN LSTM LSTM MLP

l3_Z10 MLP LSTM ARIMA MLP
l3_Z11 ARIMA MHCNN ARIMA MHCNN



J. Mar. Sci. Eng. 2019, 7, 463 16 of 18

Appendix E

Table A2. Summary of best model performance (daily) at level 4 for Group 1.

RMSE MAE

ID 1 Day 3 Days 1 Day 3 Days

l4_Z1 MLP MLP MHCNN MLP
l4_Z2 MLP MLP ConvLSTM MLP
l4_Z3 ARIMA MLP LSTM MLP
l4_Z4 MLP MHCNN ARIMA MLP
l4_Z5 ConvLSTM ARIMA ConvLSTM ARIMA
l4_Z6 MLP LSTM LSTM LSTM
l4_Z7 MLP SGD ARIMA MHCNN
l4_Z8 ARIMA ARIMA ARIMA ARIMA
l4_Z9 MHCNN MHCNN MHCNN MLP

l4_Z10 MHCNN SGD MHCNN SGD
l4_Z11 ARIMA SGD LSTM MHCNN
l4_Z12 MHCNN ARIMA MHCNN LSTM
l4_Z13 ARIMA ConvLSTM ARIMA LSTM
l4_Z14 MHCNN MHCNN MHCNN MHCNN
l4_Z15 MHCNN ARIMA ARIMA ConvLSTM
l4_Z16 LSTM MLP ARIMA MLP
l4_Z17 LSTM ARIMA ConvLSTM MLP
l4_Z18 MLP MLP MLP MLP
l4_Z19 ARIMA MHCNN MLP MHCNN
l4_Z20 MHCNN MHCNN MHCNN MHCNN
l4_Z21 MHCNN MHCNN ARIMA MHCNN

Appendix F

Table A3. Summary of best model performance (hourly) at level 3 for Group 2.

RMSE MAE

ID 4 hours 8 hours 4 hours 8 hours

Z1 ARIMA ConvLSTM ARIMA ConvLSTM
Z2 ARIMA SGD ARIMA MLP
Z3 MLP MLP MLP MLP
Z4 ARIMA LASSO ARIMA LASSO
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