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Abstract: It is necessary to investigate the contamination of beach sands to ensure water safety, as
they may contain potentially toxic trace elements. Tourists, oil spills, or replenishing sands can cause
beach sand contamination. In this study, heavy metal contamination maps of lead (Pb) and zinc
(Zn) were created for Wolpo Beach, on the eastern coast of Korea, using portable X-ray fluorescence
and geographic information systems (GIS). Interpolation methods, such as kriging and inverse
distance weighting, were used in this study and their results were compared. Understanding the
spatial variation of potentially toxic trace elements in beach sand is necessary to determine suitable
measures for preventing contamination. Sufficient sand data for understanding spatial patterns can
be acquired by using rapid portable X-ray fluorescence analysis. As a result, we could create heavy
metal concentration maps for the sand of Wolpo Beach. It was confirmed that the southern part of
the target area is more contaminated than the northern part. However, there are no sand areas with
highly concentrated heavy metal levels. In addition, no sample data exceed the soil contamination
standards. This study demonstrates that portable X-ray fluorescence and geographic information
systems can be utilized for investigating and preventing the contamination of beach sands by creating
heavy metal concentration maps.

Keywords: kriging; inverse distance weighting; beach sand; portable X-ray fluorescence; potentially
toxic trace elements

1. Introduction

Many people visit the eastern coast of Korea for vacations every summer. Therefore, it is important
to preserve and clean the sandy beaches on the coast to ensure human health and safety. However,
the coastal environment is vulnerable to pollution from tourists or oil spills. In addition, coastal
sand is continually eroded and supplemented with replenishing sand, which can contain potentially
toxic trace elements (PTEs). Therefore, to prevent the damage caused by heavy metals in the sand,
it is necessary to investigate the harmful heavy metal content of coastal sand and map the degree
of contamination.

To evaluate the contamination of replenishing sand, several studies have been conducted,
analyzing their heavy metal content. Di Lauro et al. [1] analyzed the concentrations of some heavy
metals along the coastline of the bay of Nice using a geochemical approach to determine the impact
of replenishment. Pezzuto et al. [2] sampled the Balneario Camboriu replenishment operations to
assess their environmental impacts. In Korea, the Petroleum Management Service [3] reported that
the beaches on the western coast of Korea are safe for human health. Park et al. [4] conducted an
elemental analysis for five heavy metals using inductively coupled plasma (ICP) and atomic absorption
spectrophotometry (AAS) on the eastern coast of Korea.
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These studies did not analyze the overall spatial distribution of the heavy metals in sand, however,
the degree of pollution in the sample was evaluated. The following studies aimed to map the
distribution of pollution at beaches. Jensen et al. [5] proposed and mapped the coastal environmental
sensitivity for oil spills in the United Arab Emirates using remote sensing and geographic information
system (GIS) technologies. Nobi et al. [6] studied the spatial distribution of metal concentrations in
surface sediment samples collected from 16 marine locations covering different coastal ecosystems on
the Andaman Islands, India. Ip et al. [7] analyzed the distribution of Cu, Cr, Pb, and Zn in the Pearl
River Estuary and its surrounding coastal area in China, and exhibited a typical diffusion pattern from
the land to the direction of the sea.

In addition, some studies have been conducted using portable X-ray fluorescence (PXRF) to
analyze PTEs in soil. Higueras et al. [8] estimated the spatial distribution of PTEs cost-effectively, by
applying PXRF to the soil in abandoned mines in developing countries. Kalnicky and Singhvi [9]
confirmed that the PXRF analysis of environmental samples can save time and money without
complicated preprocessing. PXRF and GIS have been used together to effectively identify and map
the spatial distribution of PTEs. Lee and Choi [10] analyzed the spatial distribution of PTEs in the
soil for both operating and abandoned mining areas using PXRF and GIS techniques, and proposed
appropriate measures to prevent contamination. However, there are few cases where PXRF and GIS
techniques are applied to determine the spatial distribution of PTEs in beach sands.

Interpolation methods, such as kriging and inverse distance weighting (IDW), are used in this
study to understand the spatial variation and map the risk of PTEs in beach sands. PXRF analysis,
which is relatively cost- and time-effective, was used to acquire the heavy metal concentrations from
sand sampling data. Sand data were acquired from the Wolpo Beach on the eastern coast of Korea and
were used to map heavy metal concentrations.

2. Materials and Methods

2.1. Target Area and Sand Sampling

Wolpo Beach was selected as the target area to analyze the distribution of heavy metal
contamination on the eastern coast. Some coasts in Korea are consistently eroded and supplemented
with replenishing sand, and this is the case for Wolpo Beach [11]. The target area covered 60 × 50 m of
the area where sampling can be conducted without the effect of waves. Sampling and geochemical
analysis were performed at 68 points using PXRF (Figure 1).
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PXRF can analyze multiple elements at the same time. In this study, an Innov-X DELTA Handheld
XRF analyzer operating at 40 kV and 0.1 mA was used to acquire the dataset (Olympus, Japan), which
is equipped with a gold anode as the excitation source and a silicon drift detector. Using a hand auger,
surface sand samples were disaggregated and sieved through a <2 mm mesh to generate loose powders
in the field for PXRF analysis. The results of the elemental analysis by the PXRF instrument may vary
depending on the moisture in the sample. Tolner et al. [12] confirmed that the metallic element content,
measured in soil with high water content, is lower than that measured in completely dried soil. In
this study, elemental analysis using PXRF was performed after confirming that the water content in
the sample was less than 10%, using a portable soil moisture meter (PMS-714, Lutron, Taiwan). To
support quantitative analysis, the fundamental parameters (FP) method was employed, which uses
stored libraries for elemental analysis [13].

The instrument used in this study is capable of analyzing more than 30 elements, including PTEs
such as cadmium (Cd) and arsenic (As), but PTEs other than lead (Pb) and zinc (Zn) were not detected
in most samples. Therefore, geochemical mapping was conducted using the measured concentration
values for Pb and Zn in this study. Pb is a heavy metal that can fatally affect humans and can cause
symptoms such as malacosteon, kidney damage, and relatively complex cancers [14]. Zn is an essential
element in the human body, found in trace amounts, and is relatively less harmful than other heavy
metals. However, long-term exposure to high levels of Zn can cause symptoms such as sideroblastic
anemia, hypochromic microcytic anemia, leukopenia, lymphadenopathy, neutropenia, hypocupremia,
and hypoferremia [15]. Therefore, it is necessary to maintain an awareness of these heavy metals and
to understand their degree of pollution and distribution in the sandy beaches on the eastern coast,
which many people visit.

2.2. Geostatistical Spatial Interpolation

The best method of determining the spatial distribution of heavy metals is to sample as much of
the target area as possible. It would be best to use a high-precision instrument, such as an inductively
coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES instruments are known to have
a high accuracy in chemical element analysis [16,17]. Therefore, it has been used to analyze PTEs
in soils and in spatial distribution analysis combined with GIS [18–20]. However, it is difficult to
analyze many samples because ICP-AES is relatively time-consuming and costly, due to the complexity
of the preprocessing process. Therefore, geostatistical spatial interpolation, using the data of PXRF
analysis, was used to create a grid-based contamination map in this study. Interpolation is a method
of predicting unknown values from limited data, and excellent results can be obtained when large
amounts of data are used. However, due to the limited availability of such data, various geostatistical
interpolation methods have been developed to obtain optimal prediction results.

In this study, kriging, a common interpolation method used in geostatistics, was used to predict
the Pb and Zn concentrations in beach sand from the target area. Kriging is a geostatistical technique
that estimates values at unknown locations by considering both the distance and degree of variation
between known data points.

z∗ =
N

∑
i=1

λizi (1)

In Equation (1), z∗ denotes the kriging prediction result for an unknown point, and zi denotes a
known value obtained from sampling. λi corresponds to the weight of each data point for the unknown
value, and N is the total amount of data used in the kriging prediction, i.e., the number of sampled
datapoints. Kriging is divided into several methods based on the method used to determine the
weight and ordinary kriging was used in this study, which is the most commonly used geostatistical
estimator, and has been widely applied in the fields of soil pollution [21,22] and mineral resource
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exploration [23,24]. In this method, the equation is not biased when estimating unknown values and
minimizes error variance. The conditions for ensuring that the equation is not biased are as follows:

bz∗ = E(z)− E(z∗) = E(z)− E

(
N

∑
i=1

λizi

)
(2)

where bz∗ denotes the bias of z∗, and the sum of the weights must be equal to 1, according to the above
equation. Therefore, the condition that the kriging estimation equation is unbiased can be expressed as
the following equation:

1 −
N

∑
i=1

λizi = 0 (3)

In this study, we also utilized IDW for a comparison with the results from the kriging analysis. The
values assigned to unknown points were calculated using a weighted average of the values available at
the known points. In IDW, the inverse of the distance to each known point is assigned as the weights,
as follows:

z∗ = ∑N
i=1 wizi

∑N
i=1 wi

, wi =
1

d(x, xi)
p (4)

where x denotes an interpolated point, xi is an interpolating (known) point, d is the distance from
the known point xi to unknown point x, N is the total number of known points, and p is a power
parameter. The p-value used in this study was 2. IDW is simple and can produce stable results from
a small dataset. However, the result is greatly affected when the predicted point is located near the
sample data.

3. Results

The PXRF analysis results for the Pb and Zn concentrations are shown in Table 1. The Pb data
were positively skewed, as shown in the histogram presented in Figure 2a. Pb was not detected
in 49 of the 68 samples. According to the chemical analysis of the beach sand in Korea [4], Pb in
pure sand was estimated to be about 8.3 mg/kg, and the result was similar to 10.33 mg/kg in this
study. The maximum value of the Pb concentration, 58 mg/kg, was well below 200 mg/kg, which
is the value of the soil contamination warning standards. The Zn data were also positively skewed,
as shown in Figure 2b. There are few cases of Zn analysis in beach sand, but the mean value of
39.79 mg/kg of this study was smaller than the mean value of soil in Korea (80 mg/kg) [25]. The
maximum Zn concentration was 149 mg/kg, which was also lower than the value of 300 mg/kg
stated in the soil contamination warning standards. In Korea, the criteria for soil contamination are
defined [26] by dividing land use into three types. The beach sand is not specified in these types, but
because it corresponds to a tourist spot, the most stringent standards were considered in this study.
Compared to the soil contamination warning standards which require attention, the soil contamination
countermeasure standards that require substantial response have higher values. It was confirmed that
contamination is not a concern in this study area because the maximum value of each element was
smaller than the warning standard of each element.
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Table 1. The portable X-ray fluorescence (PXRF) results of the Pb and Zn concentrations of each sample.

Sample ID Pb (mg/kg) Zn (mg/kg) Sample ID Pb (mg/kg) Zn (mg/kg)

1 N.D. 30 35 44 149
2 N.D. 29 36 N.D. 48
3 N.D. 46 37 N.D. N.D.
4 N.D. 24 38 N.D. N.D.
5 N.D. 27 39 N.D. 46
6 N.D. 40 40 24 52
7 N.D. N.D. 41 47 89
8 N.D. N.D. 42 N.D. 42
9 N.D. 38 43 23 40
10 28 N.D. 44 N.D. 42
11 N.D. 34 45 N.D. 34
12 N.D. 44 46 31 80
13 58 113 47 N.D. 27
14 N.D. N.D. 48 22 35
15 N.D. N.D. 49 37 36
16 28 54 50 N.D. 44
17 N.D. 31 51 30 N.D.
18 N.D. 38 52 N.D. 42
19 N.D. 42 53 N.D. 38
20 N.D. 28 54 N.D. 58
21 N.D. 39 55 N.D. 50
22 N.D. 34 56 N.D. 30
23 N.D. N.D. 57 N.D. 29
24 N.D. 34 58 21 38
25 N.D. 41 59 26 137
26 29 47 60 N.D. 41
27 26 46 61 N.D. N.D.
28 N.D. 39 62 N.D. 38
29 N.D. 38 63 25 N.D.
30 30 36 64 N.D. 32
31 26 61 65 25 53
32 N.D. 30 66 N.D. 65
33 N.D. N.D. 67 N.D. 67
34 N.D. 39 68 N.D. 32

Limit of detection
(mg/kg) 5 15 Mean (mg/kg)2 10.33 39.79

Minimum (mg/kg)1 21 24 Standard deviation
(mg/kg) 14.66 28.49

Maximum (mg/kg) 58 149 Skewness 1.49 1.53
1 Where the minimum value means the smallest value of the detected values. 2 The mean value is calculated
assuming that the undetected value is half of the limit of detection value.
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PXRF is known to be less accurate than ICP-AES, but the elemental analysis results of PXRF and
ICP-AES were highly correlated. In addition, the content of element found by PXRF analysis was
generally slightly higher than that of ICP-AES [22]. The purpose of this study was to evaluate the
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feasibility of using PXRF for the analysis of PTEs contamination distribution in beach sand, rather
than analyzing the accurate pollution degree. Therefore, we used the results of PXRF directly, which
is highly correlated with ICP-AES. The spatial locations of the PXRF Pb and Zn data are shown in
Figure 3a,b, respectively. Pb was not detected in most of the samples, but relatively high values were
distributed in the northwest and southeast regions of the target area, while Zn was mainly distributed
in the southwest and southeast. However, high concentrations were found in some samples from the
northwestern part of the target area.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 6 of 10 
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Prior to the kriging analysis, variogram modeling was conducted to determine the spatial
correlation of the Pb data (Figure 4). No significant spatial correlation was observed, because there
were many samples in which Pb was not detected and the degree of contamination was not severe.
Therefore, the influence of the nugget value was larger than that of the typical variogram. Several lag
distance conditions were considered to examine the theoretical variogram, which fitted the overall
pattern of an experimental variogram. An exponential model was selected as a fitting function for
the theoretical variogram, and an isotropy model was selected as there was no distinct anisotropy in
the data. The variogram modeling parameters of the nugget, sill, and range were set to 170, 50, and
20, respectively.
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Figure 5a,b shows the Pb contamination maps obtained from the kriging and IDW analyses,
respectively. Both analysis results exhibited a high overall Pb distribution in the southern region,
and it can be confirmed that the southwestern region had a greater influence than it did when the
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distribution of the data was observed visually (Figure 2a). For the kriging analysis, the effect of high
values was reduced by the smoothing effect, however, the bull’s eye effect could be observed for the
IDW analysis, which was influenced by high values. For example, the kriging analysis presented a
maximum value of 18.36, which was much lower than the maximum value of 58 for the measured
data. However, the maximum value obtained by the IDW analysis was 53.86, which was similar to the
maximum measured value. This was because the influence of the nugget value greatly affected the
kriging analysis process [24,27]. It was difficult to determine which one was correct, but the spatial
correlation of the data in the target area was not large, therefore, it is possible that the influence of the
data itself in the IDW analysis were exaggerated.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 7 of 10 
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Figure 6 shows the result of the variogram modeling for the Zn PXRF data and indicates that there
was no significant spatial correlation among the Zn data. Therefore, the model for these data differs
from the typical variogram form. An exponential and isotropic model was selected for the theoretical
variogram. The parameters of the nugget, sill, and range for the generation of the Zn contamination
map were set to 600, 200, and 13, respectively.
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Unlike Pb, Zn was distributed throughout the target area (Figure 7). High values were mainly
distributed in the south rather than the north, and this trend was similar to that of Pb. The predicted
maximum value from the kriging analysis was 67.18, which indicated that the value was predicted
smoothly, while the maximum value of the measured data was 149. The maximum value of the IDW
analysis was 148.93, which was similar to the maximum measured value.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 8 of 10 
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The maximum value of Pb from the PXRF measurement was 58 mg/kg, and that of Zn was 149 218 
mg/kg. The kriging analysis results were predicted to be considerably lower than the measured 219 
values. This is the result of the smoothing effect of kriging, caused by the nugget effect and may be 220 
because the spatial correlation of the pollution in the target area is low. However, in the case of IDW, 221 
the effect of the data itself was remarkable. Kriging is the most commonly used geostatistical 222 
technique for contamination mapping, but the preservation of original data may be difficult if there 223 
is a lack of data or a weak spatial correlation. Therefore, it is necessary to conduct a complex analysis 224 
using other methods, such as IDW. 225 

As a result of the PXRF and the interpolation analyses, beach sands in the target area were 226 
presumed not to be significantly affected by pollution. Pb, which has a higher risk, was not detected 227 
in most samples. Zn was detected in more samples, but their maximum Zn values did not exceed the 228 
soil contamination warning standards. 229 

The PXRF used for conducting the elemental analysis in this study can be used in conjunction 230 
with geostatistical methods, such as kriging and IDW, to determine the distribution of heavy metal 231 
contamination in sandy beaches. The results of this study indicate that heavy metal pollution in the 232 
sandy beaches on the eastern coast of Korea is not serious. However, there is a possibility that the 233 
sand is contaminated. If contamination of the beach sand is more serious, additional sampling and 234 
more precise chemical analysis such as ICP analysis are needed. A variety of spatial analysis 235 
techniques can be applied to identify areas where further investigation is required. Therefore, the 236 
proposed method will be a countermeasure to rapidly address the contamination of beach sands. 237 
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Figure 7. Sand contamination map of Zn. (a) Kriging result and (b) IDW result.

4. Conclusions

In this study, kriging and IDW analysis methods were employed to create contamination maps of
Pb and Zn in the sands of a beach on the eastern coast of Korea. We used a PXRF instrument to conduct
elemental analysis as it can obtain data relatively cheaply and quickly. The spatial interpolation
analysis confirmed that both Pb and Zn are mainly distributed in the south. The reason for this is
unclear, but it may be because some of the replenishing sand supplied to prevent the erosion of sandy
beaches could contain some heavy metals.

The maximum value of Pb from the PXRF measurement was 58 mg/kg, and that of Zn was
149 mg/kg. The kriging analysis results were predicted to be considerably lower than the measured
values. This is the result of the smoothing effect of kriging, caused by the nugget effect and may be
because the spatial correlation of the pollution in the target area is low. However, in the case of IDW,
the effect of the data itself was remarkable. Kriging is the most commonly used geostatistical technique
for contamination mapping, but the preservation of original data may be difficult if there is a lack of
data or a weak spatial correlation. Therefore, it is necessary to conduct a complex analysis using other
methods, such as IDW.

As a result of the PXRF and the interpolation analyses, beach sands in the target area were
presumed not to be significantly affected by pollution. Pb, which has a higher risk, was not detected in
most samples. Zn was detected in more samples, but their maximum Zn values did not exceed the soil
contamination warning standards.

The PXRF used for conducting the elemental analysis in this study can be used in conjunction
with geostatistical methods, such as kriging and IDW, to determine the distribution of heavy metal
contamination in sandy beaches. The results of this study indicate that heavy metal pollution in the
sandy beaches on the eastern coast of Korea is not serious. However, there is a possibility that the sand
is contaminated. If contamination of the beach sand is more serious, additional sampling and more
precise chemical analysis such as ICP analysis are needed. A variety of spatial analysis techniques can
be applied to identify areas where further investigation is required. Therefore, the proposed method
will be a countermeasure to rapidly address the contamination of beach sands.
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