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Abstract: A hybrid method—coupled with the boundary element method (BEM) for wave-making
resistance, the empirical method (EM) for viscous resistance, and the boundary layer theory (BLT) for
capture of an area’s physical parameters—was proposed to predict waterjet propulsion performance.
The waterjet propulsion iteration process was established from the force-balanced waterjet–hull
system by applying the hybrid approach. Numerical validation of the present method was carried out
using the 1/8.556 scale waterjet-propelled ITTC (International Towing Tank Conference) Athena ship
model. Resistance, attitudes, wave cut profiles, waterjet thrust, and thrust deduction showed similar
tendencies to the experimental curves and were in good agreement with the data. The application
of the present hybrid method to the side-hull configuration research of a trimaran indicates that
the side-hull arranged at the rear of the main hull contributed to energy-saving and high-efficiency
propulsion. In addition, at high Froude numbers, the “fore-body trimaran” showed a local advantage
in resistance and thrust deduction.

Keywords: boundary element method; boundary layer theory; waterjet propulsion; numerical
validation; trimaran

1. Introduction

The prediction of the waterjet thrust and thrust deduction is an important part of the hydrodynamic
performance of the waterjet propulsion system. There are mainly three kinds of prediction methods:
the theoretical analysis method, the model test method, and the CFD (computational fluid dynamics)
method. The first method is based on experimental statistic data. The equilibrium equation composed
of the Bernoulli equation and the energy loss equation determined by empirical coefficients was
established to solve the equation of thrust. The model test method was proposed by the ITTC
(International Towing Tank Conference). Thrust was obtained by direct measurement or by using
the momentum flux method with a measured velocity field at both the inlet and the jet. The CFD
method based on the momentum flux theory has been widely applied to obtain waterjet propulsion
performance in recent years.

The research on waterjet propulsion carried out in the 1990s concentrates on waterjet–hull
interaction [1–4]. The standardization of waterjet thrust prediction and measurement, which was
proposed by the Specialist Committee on Waterjets of the ITTC [5], greatly contributes to the
development of the CFD method in the waterjet propulsion field. The intake duct system was
researched based on the viscous CFD method [6–10]. This research focuses on the ducting system itself
without considering the influence of the ship due to the limitation of computer hardware. Later, the rapid
development of the computer provided the basis for a large-scale parallel CFD numerical simulation.
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Takai et al. [11,12] completed a multi-objective optimization of a ship with the waterjet propulsion
system. The research of Altosole et al. [13] provides a reliable and effective method to optimize the
parameters of the waterjet propulsion system for a high-speed vessel. Eslamdoost [14,15] used the
potential flow module XPAN and the double model module XBOUND to study the waterjet–hull
interaction problem based on the pressure jump method.

The numerical research of hydrodynamics of marine structures mainly adopts the potential flow
CFD [16,17] and the viscous flow CFD method [18], which captures more details of the flow field.
However, the computational efficiency of viscous flow CFD still needs to be improved, and a rapid
thrust prediction method is required in the preliminary design stage for the waterjet ship. In this
present study, the potential flow theory and boundary layer theory-based hybrid method is proposed
to rapidly and efficiently achieve the calculation of waterjet propulsion performance. The validation
process was also carried out.

2. Theory

2.1. The Force-Balanced Waterjet–Hull System

The waterjet–hull system consists of two parts: the waterjet system and the rest hull surface.
In the waterjet duct, the fluid pressure and velocity of the fluid change is greatly due to the rotation of
the pump rotor. In this study, the rotor and stator are assumed to be a virtual disk, and the pressure
jump occurs when the fluid passes the virtual disk [14]. The longitudinal force of the hull motion
resistance is considered as follows (details of the symbols are listed at the end of the article):

Rp,x = RH + N ·RD,x + N ·RN,x (1)

where N is the number of waterjet sets (waterjets units are assumed to be the same), RH is the total
resistance of the hull (excluding the duct), RD,x is the longitudinal force of each duct before the pump,
and RN,x is the longitudinal force of each nozzle chamber after the pump.

The pressure before and after the pump (virtual disk) is Pb and Pa, respectively, and the section
area of duct at rotor is Ai. There is a balance between the resultant force of the hull and the thrust of
the waterjet system while taking the trim angle θ into account:

Rp,x = Fx = NAi(Pa − Pb) cosθ = N∆pAi cosθ (2)

The longitudinal force of the duct in waterjet propulsion can be calculated by using the
following equation:

RN,x = N
x

Sn

σt · nxds = N
x

Sn

(p + τ)nxds (3)

where Sn is the inner surface of the nozzle chamber.
The flow passing through the pump area gets an acceleration in velocity due to the pressure

jump. The pressure after the virtual disk can separate to a constant flow pressure, Pc, and the pressure
difference ∆p: x

Sn

p · nxds =
x

Sn

pc · nxds+
x

Sn

∆p · nxds (4)

Inside the nozzle chamber:
x

Sn

∆p · nxds = ∆p(Ai −An) cosθ (5)
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From Equations (1)–(5), we obtained:

N∆p ·An cosθ = RH + NRD,x + N

x
Sn

pc · nxds +
x

Sn

τ · nxds

 (6)

Equation (6) is the sum of forces except the pressure jump at the virtual disk in the whole system:

RRT = RH + NRD,x + N

x
Sn

pc · nxds +
x

Sn

τ · nxds

 (7)

Then, the expression of the pressure jump is obtained using the equation: ∆p =
RRT

NAn cosθ
.

2.2. Iterative Solution Model

The thrust of the waterjet propulsion was solved in a virtual control volume based on the
momentum flux method [19]. A closed control volume consists of the capture area (1a), the duct
surface (3), the virtual boundary surface (4), and the nozzle discharge (5), as shown in Figure 1.
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Figure 1. Definitions of the reference stations of the waterjet vessel.

Considering the local losses caused by frictional retardation, flow direction changes in the duct,
duct expansion, and contraction, the pressure head balance applied in the center of the capture area
and the nozzle discharge, there is:(

p1a + ρgh1a +
1
2
ρu2

1a

)
+ ∆p = p5 + ρgh5 +

1
2
ρu2

5 + K
1
2
ρu2

0 (8)

The nozzle velocity ratio was obtained using the following equation:

NVR =
u5

u0
=

√√
2(p1a − p5)

ρu2
0

+
2∆p

ρu2
0

+
2g(h1a − h5)

u2
0

+ IVR2 −K (9)

where u0 is the advance velocity of the ship, IVR = u1a/u0 is the inlet velocity ratio, u1a and u5, p1a
and p5, and h1a and h5 represent the average velocity, average pressure, and average height above the
baseline of the capture area and nozzle respectively. K is the local loss coefficient of the duct, including
friction loss, flow direction loss, and duct contraction loss. Xia provides more details in his book [20]
about the local loss coefficient.

NVR was set as the initial input value in the calculation and a new velocity ratio NVR′ can be
obtained by using Equation (9), once the force acting on ship and the pressure jump ∆p are solved.
Therefore, the size correlation between the ratio |∆NVR|/NVR and the residual ε we set was the
criterion used to determine whether the stop criterion was reached. This concept is illustrated in
Figure 2. The waterjet thrust could be computed once the stop criterion was reached.
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Figure 2. Iteration illustration of the waterjet thrust and thrust deduction.

3. Numerical Method

3.1. Wave-Making Resistance

Based on the basic assumption of the potential flow theory, the fluid is in-viscid, in-compressible,
and ideal. The total velocity potential without considering the unsteady disturbances is written as:

Φ(x, y, z) = −u0x + ϕ(x, y, z) (10)

where −u0x represents the velocity potential of uniform flow, and ϕ is the perturbation velocity
potential caused by the uniform velocity motion of the ship, there is:

∇
2ϕ = 0 (11)

The free surface boundary condition is:

∂2ϕ

∂x2 +
g

u2
0

∂ϕ

∂z
= 0 (12)

The hull boundary conditions should be specially treated. An additional boundary condition
for the nozzle discharge was added to the waterjet propulsion calculation. The hull and duct surface,
except the nozzle discharge, were similar to the wall without penetration. The nozzle discharge was
set as the velocity boundary with a fixed velocity of NVR · u0. The two boundary conditions were
defined as follows: 

∂ϕ

∂n
= u0 · nx (Hull except nozzle discharge)

∂ϕ

∂n
= NVR · u0 · nx (The nozzle discharge)

(13)

The infinite boundary condition and transom boundary condition [21] were written as:
ϕ→ 0 (At in f inity)

ϕxx − 2ϕx/∆x = −
g

u0
(2hT(xT − yT)/∆x +

∂hT

∂x
(xT − yT)) (Transom)

(14)

where nx is the outward normal component of the ship hull surface in the x direction and NVR is the
nozzle velocity ratio. In the transom condition, hT is the height of the transom stern edge. xT and yT
are the longitudinal and transverse coordinates of the transom stern, respectively. ∆x is a the finite
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distance on the free surface after the transom stern, which can be evaluated as half the longitudinal
scale of the panel.

The Rankine source panel method [22–24] was used to obtain the perturbation potential in the
flow field using the discretization of the above equations. The Rankine source Green function can be

expressed as G(p, q) =
1

r(p, q)
, where p(x, y, z) is the field point and q(x′, y′, z′) is the source point.

Then, the potential velocity at p can be denoted as:

Φ(p) =
N∑

i=1

x

Si

σ(qi)

4πr(p, qi)
dSi (15)

where r(p, q) is the distance between p and q. The total number of panels (Nt) can be divided into the
panels of the hull (Ns), panels of the nozzle discharge (Nz), and panels of the free surface (Nf). This can
be represented as Nt = Ns + Nz + Nf. Si indicating the number i panels. Applying Equations (13)–(15),
we can obtain the discrete hull surface boundary equation:

−
1
2
σ(p j) +

N∑
i=1, j,i

σ(qi)
x

S

∂
∂n

(
1

4πr(p j, qi)
)dS =

 u0 · nx(p j) ( j = 1, 2, · · ·, Ns)

NVR · u0 · nx(p j) ( j = Ns + 1, · · ·, Ns + Nz)
(16)

Free surface and transom boundary condition are converted to the new discrete form:

N∑
i=1, j,i

σ(qi)
x

S

(
∂2

∂x2 +
g

u2
0

∂
∂z

)(
1

4πr(p j, qi)
)dS = 0 ( j = Ns + Nz + 1, · · ·, N) (17)

N∑
i=1, j,i

σ(qi)
x

S

(
∂2

∂x2 −
2

∆x
∂
∂x

)(
1

4πr(p j, qi)
)dS = −

g
u0

(2hT(xT − yT)/∆x +
∂hT

∂x
(xT − yT)) (18)

To fulfill the infinity radiation condition and avoid the singularity in the integration of the free
surface panels, the source points of the free surface panels should manually rise up for 0.5–2.5 ∆x
and the field points should move forward about ∆x. By combining the discrete Equations (15)–(18),
the source strength could be solved to get the potential velocity.

Then the hull surface pressure distribution was obtained according to the Bernoulli equation:

P = ρ

(
u0
∂ϕ

∂x
−

1
2
∇ϕ · ∇ϕ− gz

)
(19)

The fluid force in the x directional was obtained by integration of the pressure distribution P,
which is the wave-making resistance of the hull:

Rw = −Fx =
x

S

P · nxdS (20)

The trim and sinkage of the ship were resolved though the force and moment balance equations
as follows [25,26]:

x

S

Cpnzds =
∫ L

0
(s− x tanθ)y(x, 0)dx = s

∫ L

0
y(x, 0)dx+ tanθ

∫ L

0
xy(x, 0)dx (21)

x

S

xCpnzds =
∫ L

0
(s− x tanθ)xy(x, 0)dx = s

∫ L

0
xy(x, 0)dx + tanθ

∫ L

0
x2y(x, 0)dx (22)
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where Cp = P/(0.5ρu2
0) is the pressure coefficient of the control point on the hull panel, s represents

the sinkage, and y(x, 0) is the width of the waterline at x under floating in an even keel state. The initial
value of s and θ was set as 0. The continuous iteration was used to calculate a new s and θ value along
with the mesh being updated until the balance equations converged.

3.2. Viscous Resistance

The 1957ITTC friction resistance coefficient formula was used to calculated the friction resistance
of the ship hull:

R f =
1
2
ρu2

0Sw

∆C f +
0.075

(lgRe− 2)2

 (23)

The Reynolds number was defined using the equation Re = u0Lwl/ν, where Lwl is the waterline
length, ν is the kinematic viscosity of water, and the roughness allowance is ∆C f = 0.4× 10−3 in the
process of converting the model-scale results to the full-scale ship.

According to the approximate formula of the viscous-pressure resistance coefficient [27]:

Cpv =
Rpv

1
2
ρu2

0Sw

= 0.09
Am

Sw
=

√√
Am/2Lr (24)

The ship’s viscous pressure resistance is:

Rpv =
9ρu2

0Am

200

√√
Am/2Lr (25)

where Am is the cross section area at midship, and Lr is the run length, which should meet the condition:
Lr ≥ 4.08

√
Am.

3.3. Physical Quantities of the Capture Area

The velocity and pressure distribution at the capture area were calculated using the boundary
layer theory. The velocity distribution formula in the turbulent boundary layer theory is as follows:

u
u0

=


( y
δ

)1/n
(y ≤ δ)

1 (y > δ)
(26)

where y is the vertical distance from the hull, and u is the local velocity. The index n was 7 in
the model-scale, and 9 in the full-scale [19]. δ is the thickness of the boundary layer, which is
calculated using the Weighardt formula, δ = 0.27x(u0x/υ)−1/6, at high Re or the plate flow formula,
δ = 0.37x(u0x/υ)−1/5 [28].

The experiments used to measure the capture area with the series IVR (inlet velocity ratio) ranged
from 0.25 to 0.71 in front of the inlet point of the tangency carried out by Roberts [7]. It showed that, for
a low IVR of <0.39, the capture area occurs as a concave phenomenon. For higher values (i.e., >0.58),
the capture area resembles a semi-elliptical. This agrees with the elliptic capture area phenomenon
noticed by Alexander [2].

The semi-elliptical shape was used to represent the transverse section of the capture area:

(
x

W/2
)

2
+ (

y
Y0

)
2
= 1 (27)

where W is the width of capture area recommended to be 50% larger than the geometrical intake
width [19]. Y0 is the effective inflow thickness of the capture area.
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There is a basic definition as follows:

Qi =

∫
A1a

uidA (28)

where, in the equation i = 1, 2, 3. Q1, Q2, and Q3 represent the inflow volume, inflow momentum, and
inflow kinetic energy, respectively. The correlation between the hull boundary layer thickness δ and Y0

determined the above parameters and the inlet momentum coefficient.
These parameters were deduced in Liu’s paper [28]. While Y0 > δ, the capture area was divided

into two parts, as shown in Figure 3. Liu took the upper part as a rectangle to do the integration. Under
this assumption, as the difference between δ and Y0 becomes smaller, the numerical error increases.
In the present work, the accurate integral formulas were expressed to improve the calculation while
Y0 > δ:

Qi =

∫
A1a

uidA = ui
0Y0W

(
π
4
−C′Qi +

n
n + i

(
Y0

δ
)

i/n
C′′Qi

)
−

ui
0Wδ

n + i
(1−

δ2

Y2
0

)
1/2

(29)

When Y0 ≤ δ:

Qi =

∫
A1a

uidA =
n

n + i
CQiui

0Y0W(
Y0

δ
)

i/n
(30)

where CQi =
∫ 1

0 (1− t2)

n + i
2n dt, C′Qi =

∫ 1√
1−δ2/Y2

0
(1− t2)

i
2 dt, C′′Qi =

∫ 1√
1−δ2/Y2

0
(1− t2)

n + i
2n dt.
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The average velocity of the capture area can be calculated as u1a = Q1/A1a. The average pressure
of the capture area was determined using the formula p1a = pd + ps. pd is the average dynamic pressure
and ps is the average static pressure.

Y0 is obtained by solving Equations (29) or (30) when NVR or Q1 is given. Then, IVR and the inlet
momentum coefficient cm1a can be calculated at capture area station 1a, as shown in Figure 1:

IVR =

∫
A1a

udA

u0
∫

A1a

dA
=

Q1

u0A1a
(31)

cm1a =

∫
A1a

u2dA

u0
∫

A1a

udA
=

Q2

u0Q1
(32)
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4. Validation of the Numerical Method

4.1. Athena Model and Barehull Validation

As an early developed standard ship model, the Athena ship with a transom stern and V-shape
stem, can be used as a platform to test ship resistance [29], motions [30], wave field [31], and wake
flow [32,33] over a large Froude number range both at a model-scale and full-scale. The ITTC waterjet
committee recommends the Athena ship as the baseline hull for waterjet propulsion research [19].
The principal dimensions are listed in Table 1.

Table 1. Data of the full-scale ship and 1/8.556 model-scale ship.

Athena Ship Length
Lpp (m)

Beam
B (m)

Mean Draught
T (m)

Displacement
∆ (t)

Transom Width
Ratio b/B

Full-scale 46.94 6.68 1.72 264.2 0.828
Model-scale 5.486 0.781 0.201 0.425 0.828

The ITTC provided the barehull experimental data, including total resistance, trim angle, and
sinkage from seven different respondents for the 1/8.556 scale Athena ship model with the inlet covered.
The EFD (experimental fluid dynamics) data originally named Set A to Set I by the ITTC.

In the present method, a half hull and free surface were taken into account to decrease the number
of panels used in calculating wave-making resistance. The half hull surface was formed from 740 panels
(Figure 4). The free surface was a 3.5Lpp × 1.0Lpp ranged area with 1776 panels distributed which meets
the panelization requirements mentioned by Janson [34] and Eslamdoost [14].
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Figure 4. Mesh of the free surface and the Athena barehull model.

For barehull resistance, this method showed a good agreement with the EFD data at Fr = 0.3–0.5
in Figure 5. While Fr > 0.5, the computed resistance scatters were distributed near the Set C, D, H, and
I curves. The mean error of the other three sets of EFD data was about 7% at Fr = 0.5–0.7.

For Fr = 0.3–0.6, the calculated trim angle (Figure 6) had almost the same value as Set H, but
was larger than the other data sets. The trim distribution trend line was fit with the mean EFD data.
The computed sinkage reached the lowest point of −15 mm at Fr = 0.45 and matched the trend line of
Set E, H, and I, as shown in Figure 7.

The noticeable distinction between the EFD data from the seven institutes mainly resulted from
the non-uniform test conditions and differences in data measurements. The model differences of
weight and temperature ranged from −2.6% to +3.9% and −20.7% to +14.7% compared with the mean
values, respectively. Temperature determines the water density and viscosity, while weight determines
the ship shape immersed in water. Furthermore, towing tanks of different sizes have been used by
each institute. Different blocking effects significantly contributed to the observed differences. The joint
effect of different factors led to a scatter in the experimental data. Despite the difference among the
EFD data sets, their good agreement with the majority of the EFD data validates the present method
for calculating ship resistance with free trim and sinkage.
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Figure 5. Barehull resistance of the present method and the International Towing Tank Conference
(ITTC) experimental fluid dynamics (EFD) data.

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 10 of 22 

 

differences. The joint effect of different factors led to a scatter in the experimental data. Despite the 219 
difference among the EFD data sets, their good agreement with the majority of the EFD data 220 
validates the present method for calculating ship resistance with free trim and sinkage. 221 

 222 
Figure 5. Barehull resistance of the present method and the International Towing Tank Conference 223 
(ITTC) experimental fluid dynamics (EFD) data. 224 

 225 
Figure 6. Trim angle of the present method and the ITTC EFD data. 226 

 227 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-50

0

50

100

150

200

250

300

350

400

 Set A
 Set B
 Set C
 Set D
 Set E
 Set H
 Set  I
Present

 

R
es

ist
an

ce
 (N

)

Fr

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 Set A
 Set B
 Set C
 Set D
 Set E
 Set H
 Set  I
Present

Tr
im
(d

eg
)

Fr

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015
 Set A        Set E
 Set B        Set H
 Set C        Set  I
 Set D       Present

 

Si
nk

ag
e(

m
)

Fr

Figure 6. Trim angle of the present method and the ITTC EFD data.
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Figure 7. Sinkage of the present method and the ITTC EFD data.
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4.2. Validation for Capture Area Parameters

The validation of the capture area parameters was carried out for two real ships mentioned in
Jin’s [35], Zhang’s [36], and Liu’s papers [28]. The data for this calculation is listed in Table 2.

Table 2. The main data of the real ship for validation.

Speed
(m/s)

Flow Volume
(m3/s) Distance Between the Inlet Point of the Tangency and Bow (m)

Ship 1 16.00 1.09 5.0
Ship 2 20.58 5.23 38.0

The results in Table 3 show that the momentum coefficient cm1a agrees well with the other methods
for both two ships. For Ship 1, Y0 and δ had a value closer to Liu’s results. For Ship 2, Y0 was very
similar to Liu’s results, and δ was closer to Zhang’s. The differences in the values of δ that occurred
between the three methods was mainly due to the variety of dynamic viscosity and δ formulas. The
validation results indicate that the present method gave a reasonable and acceptable calculation of
parameters for the capture area.

Table 3. Comparison of results between different methods.

Method δ (m) W (m) Y0 (m) cm1a

Ship 1
Jin’s 0.0846 0.750 0.1342 0.9482
Liu’s 0.0677 0.750 0.1241 0.9399

Present 0.0651 0.750 0.1239 0.9414

Ship 2
Zhang’s 0.350 0.852 0.5160 0.8710

Liu’s 0.451 0.852 0.4378 0.8752
Present 0.338 0.852 0.4342 0.8809

4.3. Validation of Self-Propulsion for the Athena Ship

The ITTC waterjet self-propulsion experimental test for the waterjet Athena model was carried
out at Fr = 0.6. The measured data included waterjet thrust, rope force, trim, sinkage, IVR, NVR, thrust
deduction, etc. Among the data, only the reported scatter points were displayed in the following
comparison figures. The numerical results from Eslamdoost [14] were taken as contrast for the present
hybrid method in the self-propulsion validation procedure.

For the waterjet Athena model in the experiment, water flowed into the duct, passed through the
transom, and then sprayed out from the nozzle. This process in the wave-making resistance calculation
could not be achieved by using the boundary element method, which is based on the potential theory.
Panel penetration between the free surface and nozzle at the stern results in a numerical error in the
computation. To avoid this situation and proceed with the calculation, the Athena waterjet model was
modified by cutting the outside part of the nozzle, as Figure 8 shows. Figure 9 displays the mesh of the
free surface and the Athena hull with an intake duct.
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Figure 9. Mesh of the free surface and the Athena waterjet model.

The waterjet self-propulsion was computed over the Fr range of 0.3–0.7 based on the present
hybrid method. The trim and sinkage of the barehull and self-propulsion were compared in Figure 10.
The trim under two conditions stayed almost the same at Fr < 0.4. However, when Fr > 0.4, the trim
difference increased as the Fr increased, and the maximum gap reached 0.135◦ at Fr = 0.7. The two
sinkage curves deviated from Fr = 0.4. The observed maximum difference was at Fr = 0.625. Data at
Fr = 0.6 show that the computed trim was closer to the Set H data point, with a 0.26% error. The sinkage
was closer to Set A and was 1.7 mm shallower. For the self-propulsion hull, the hydrodynamic force
acting on the duct generated a forward moment which reduced the trim. Meanwhile, the low pressure
distribution on the hull surface around the intake duct resulted in a deeper immersion.
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Figure 10. Calculated trim and sinkage of the barehull and self-propulsion.

The wave cut profiles of the barehull and waterjet hull were generated in y/Lpp = 0.106, 0.246 at
Fr values of 0.424 and 0.608. The experimental data was referenced from Fu’s model test report for
the 1/8.25 model-scale Athena ship [29]. The four wave cut profiles showed the same trend with the
measured results (The computed data has been converted using the coordinates of the model test),
as illustrated in Figure 11. The peak and trough points matched well with the EFD curves. Even the
wave fluctuation was observed after the stern, as shown in Figure 11b. As the nozzle was cut off

outside the hull to ensure wave-making resistance computation went smoothly, the wave patterns at
the stern showed a similar trend between the barehull and waterjet hull.
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IVR and NVR are the important parameters of waterjet thrust in the momentum flux method.
A sharp contrast of IVR and NVR values between the present method and the comparison results is
illustrated in Figure 12. The reason for this difference is the consideration of the local loss coefficient in
the present method, which resulted in the decrease of NVR in Equation (8). The present results had a
lower value at Fr values of 0.35–0.7. Both the two NVR curves increased steadily and reached their
peak at Fr = 0.5. The IVR value based on the boundary layer theory appears to be underestimated
compared with the results of Eslamdoost [14], based on the viscous CFD method. The relationship
between the δ and Y0 curves illustrates that the capture area was located inside the boundary layer,
which resulted in an underdeveloped velocity distribution in the capture area and the relatively lower
position of IVR, as shown in Figure 12.

A good agreement between Q1 and Y0 was observed between the prediction and Set H data at
Fr = 0.6 in Figure 13. This was despite the fact that the predicted Q1 curve had an average 4.67% lower
than the comparison curve.
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Figure 11. Wave cut profiles: (a) Fr = 0.424, y/Lpp = 0.106; (b) Fr = 0.424, y/Lpp = 0.246; (c) Fr = 0.608,
y/Lpp = 0.106; (d) Fr = 0.608, y/Lpp = 0.246.
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Considering the influence of the boundary layer, in theory, the waterjet thrust calculated by the
momentum flux method in the virtual control volume was:

Tg = NρQ1(um5 − um1a) (33)

where um1a and um5 are the average momentum velocity at the capture area and nozzle
discharge, respectively.

Hu and Zangeneh [37] researched the waterjet pump flow using the RANS CFD method. They
calculated the momentum velocity of the pump nozzle discharge. um5 was found to be 0.4% higher
than the average volumetric velocity, u5. Regardless of the tiny difference between the two average
velocities, u5 was used instead of um in Equation (33). The waterjet thrust formula was:

Tg1 = NρQ1u0(NVR− cm1a) (34)

While the assumption was equally applied to the capture area, um1a was taken as u1a.
Equation (34) becomes:

Tg2 = NρQ1u0(NVR− IVR) (35)

Equations (34) and (35) are the two widely used waterjet thrust formulas. In the present work,
cm1a was 1.49% larger than IVR on average, as shown in Figure 12. The difference between the two
formulas led to a 1.64% average discrepancy in waterjet thrust, as illustrated in Figure 14. The two
waterjet thrust curves were more consistent with the Set B and C data at Fr = 0.6. As Eslamdoost
uses a correction coefficient to correct the wave-making resistance during computation, the correction
greatly increased the total resistance at high Froude numbers. Meanwhile, no correction was made in
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the present work as the calculated resistance was within the range of the experimental scatter, which
resulted in the gap between the two resistance curves. A highly similar result for rope force was
reported within the two curves and average EFD data.
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The thrust deduction fraction prediction formula for the full-scale ship is:

t = 1−
RBH −Rrope

Tg
(36)

Two thrust deduction fraction curves were formed from the two waterjet thrust curves in the
present method, which had a 1.65% difference in their averages, as shown in Figure 15. Negative thrust
deduction occurred at Fr = 0.3–0.45, as the thrust deduction fraction increased steadily. The peak point
was reached at Fr = 0.55. The thrust deduction fraction was underestimated in the present method
compared with the average EFD data at Fr = 0.6, but this was within the scope of scatter.

Although some differences in the forces and deduction fraction were reported between the present
hybrid method and the contrast data, in general the computation results generally met the experimental
data well. The algorithm was validated to be applicable in a wide range of Froude number values,
which could be applied to other ship types.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 16 of 22 
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Figure 15. The thrust deduction fraction.

4.4. Application in the Side-Hull Configuration Research for a Trimaran

The target ship was a 120 m length waterjet-propelled trimaran with a service speed of 40 kn
(Fr = 0.6). A 1/30 scale ship model was constructed, as shown in Figure 16. The previous research
on the side-hull configuration was focused on added mass research [23,24] and resistance based
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optimization [38,39]. As the hybrid method was validated on the Athena mono ship, the waterjet
performance based side-hull configuration research for the trimaran model was numerically performed
at Fr = 0.3–0.6 using the discussed method. The side-hull layout parameters and main data of the
trimaran are provided in Figure 16 and Table 4.

Depending on the design, four positions were used in both the longitudinal (a/Lpp) and transverse
(b/Lpp) directions, resulting in a total of 16 different side-hull layouts. Both the barehull and waterjet hull
were used in the same side-hull configuration to generate a mesh and compute the waterjet performance.
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Figure 16. The trimaran model and side-hull configuration parameters.

Table 4. The main data of the trimaran and side-hull layout.

Main Hull
Length (m)

Main Hull
Breadth (m)

Draught
(m)

Side-Hull
Length (m)

Full-scale 120.0 10.50 3.6 67.00
Model-scale 4.0 0.35 0.12 2.23

Side-Hull Parameters

a/Lpp –0.25 0.00 0.25 0.50
b/Lpp 0.10 0.15 0.20 0.25

The barehull resistance was computed based on the barehull model. Figure 17 shows the resistance
distribution of different side-hull layouts. Evidently, in the range of Fr = 0.3–0.6, the side-hull located
at a/Lpp = −0.25 had an obvious advantage of low drag in the longitudinal position. Meanwhile,
the smaller the lateral position of the side-hull, the closer the side-hull was to the main hull. The closer
the side-hull was to the main hull, the better the drag reduction. This low-resistance layout distribution
is well understood. When a/Lpp < 0, a part of the side body beyond the main hull transom is equivalent
to an increase in the “effective ship length”, which is beneficial to the reduction of the wave-making
resistance. When the body is laterally close to the main hull, the “effective ship width” of the trimaran
is reduced and the trimaran becomes more slender, which is also contributes to the wave-making
resistance reduction. It is worth noting that, at a high speed of Fr = 0.6, the trimaran with a side-hull
located at a/Lpp = 0.5 near the bow (i.e., a ”fore-body trimaran” [40]), shows the characteristics of
reduced resistance. This is shown in Figure 17, which is consistent with the conclusions obtained in
the model test in Jia’s paper [40].

Waterjet thrust and other parameters were calculated using the waterjet hull models. Then,
the thrust deduction was obtained using Equation (36), and the thrust deduction with the Fr distribution
curve is shown in Figure 18.

Similar to what was shown regarding resistance distribution, Figure 18a shows that the trimaran
with a side-hull located at a/Lpp = −0.25, b/Lpp = −0.1 had an advantage in thrust deduction, which
means this side-hull layout has an efficient propulsion performance. As displayed in Figure 18c,d,
when b/Lpp > 0.2, the “fore-body trimaran” had the lowest thrust deduction at Fr > 0.35.
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Figure 18. Waterjet thrust deduction fraction curves of different side-hull layouts.
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5. Conclusions

The hybrid method for determining wave-making resistance, viscous resistance, and capture
area physical quantities was proposed to calculate waterjet propulsion performance using iterative
computation. The validation process for the barehull, capture area, and self-propulsion was applied.
The differences of the IVR, NVR, resistance, waterjet thrust, and thrust deduction fraction values
between the present method and contrast results were discussed. In the results of the present study,
the lower NVR was obtained by considering the local loss in the iteration equation. This shows a
0.2% error compared to the EFD Set B data. As the location of the computed capture area was inside
the boundary layer, the lower IVR was obtained, which had a 0.4% difference compared to the EFD
Set B data. The error of waterjet thrust was 2.5% compared with the EFD Set B data. Although the
differences exist, the present work showed similar tendencies in the comparison curves and reached a
good agreement with the experimental data. A comparison between two widely used waterjet thrust
formulas was investigated while using the volumetric inlet velocity instead of the momentum inlet
velocity. On average, their difference and that of the waterjet thrust and thrust deduction was 1.49%,
1.64%, and 1.65%, respectively.

In addition, the application of the hybrid method in the side-hull configuration research further
verified the applicability of the present method. While the side-hull position of the trimaran was
located on the rear side of the main hull, its layout was conducive to energy-saving and efficient
waterjet propulsion performance. Furthermore, if a large deck area was required and the side-hull was
relatively far from the main hull, the layout of the “fore-body trimaran” could be selected to reduce the
drag and thrust deduction at a high Froude number.

The hybrid method presented in this paper was preliminarily verified as an effective way to
research and predict the characteristics of waterjet propulsion without considering the impeller rotation
and cavitation. Research on more waterjet hull types and applications based on the hybrid approach
will be undertaken in further works.
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Notation

A1a Area of the capture surface (m2) a/Lpp Logitudinal distance of side hull
Ai Duct section area at the impeller (m2) b/Lpp Transverse distance of the side hull
Am Cross section area at midship (m2) cm1a Inlet momentum velocity coefficient
An Area of the nozzle discharge (m2) g Gravity acceleration (m/s2)
Cp Pressure coefficient of hull panel hT Height of the transom edge (m)
Cpv Pressure viscous coefficient h1a Centroid height of the capture area (m)

Fx Pump force along x-direction (N) h5
Centroid height of the nozzle discharge
(m)

IVR Inlet velocity ratio nx
Surface normal component along
x-direction

K Local loss coefficient p Field point
Lr Run length of the ship (m) p1a Average pressure of Capture area (Pa)
N Number of the waterjets units p5 Average pressure of nozzle discharge (Pa)
N f Panel number of free surface pd Average dynamic pressure (Pa)
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Ns Panel number of hull ps Average static pressure (Pa)
Nt Total panel number q Source point

Nz Panel number of nozzle discharge r(p, q)
Distance between field and source point
(m)

NVR Nozzle velocity ratio s Sinkage of the ship (m)
P Pressure force (N) t Thrust deduction
Pa Pressure after pump area (Pa) u0 Ship speed (m/s)

Pb Pressure before pump area (Pa) u1a
Average volumetric velocity of capture
area (m/s)

Pc Constant pressure in the duct (Pa) u5
Average volumetric velocity of nozzle
discharge (m/s)

Q1 Inflow volume per second (m3/s) um Average momentum velocity (m/s)

Q2 Inflow momentum per second (kg·m/s) um1a
Average momentum velocity of capture
area (m/s)

Q3 Inflow kinetic energy per second (J/s) um5
Average momentum velocity of nozzle
discharge (m/s)

RBH Barehull resistance (N) xT Longitudinal coordinates the transom (m)

Rd,x
Duct resistance before pump along
x-direction (N)

yT Transverse coordinates of the transom (m)

Re Renold number τ Shear stress (Pa)
R f Frictional resistance (N) σt Normal stress (Pa)
RH Hull resistance in x-direction (N) θ Trim angle (degree)

Rn,x
Nozzle chamber resistance after
pump in x-direction (N)

∆p Pressure jump of virtual disk (Pa)

Rpv Pressure viscous resistance (N) ρ Density of fluid (kg/m3)

Rp,x
Hull and duct resistance along
x-direction (N)

∆C f Correction of frictional coefficient

Rrope Rope force (N) δ Boundary layer thickness (m)

RRT
The total force of the waterjet-hull
system excludes pressure jump (N)

υ Fluid viscosity (Pa·s)

Rw Wave-making resistance (N) Φ Total velocity potential
Sn Surface of the nozzle chamber ϕ Perturbation velocity potential
Sw Wetted surface are of the ship (m2) σ Source strength
Tg1 Gross thrust of Equation (34) (N) W Width of the capture area (m)
Tg2 Gross thrust of Equation (35) (N) Y0 Height of the capture area (m)
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