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Abstract: Marine cables are primarily designed to support axial loads. The effect of bending stiffness
on the cable response is therefore often neglected in numerical analysis. However, in low-tension
applications such as umbilical modelling of ROVs or during slack events, the bending forces may
affect the slack regime dynamics of the cable. In this paper, we present the implementation of
bending stiffness as a rotation-free, nested local Discontinuous Galerkin (DG) method into an existing
Lax–Friedrichs-type solver for cable dynamics based on an hp-adaptive DG method. Numerical
verification shows exponential convergence of order P and P + 1 for odd and even polynomial
orders, respectively. Validation of a swinging cable shows good comparison with experimental data,
and the importance of bending stiffness is demonstrated. Snap load events in a deep water tether
are compared with field-test data. The bending forces affect the low-tension response for shorter
lengths of tether (200–500 m), which results in an increasing snap load magnitude for increasing
bending stiffness. It is shown that the nested LDG method works well for computing bending effects
in marine cables.

Keywords: cable dynamics; bending stiffness; discontinuous Galerkin method; snap loads;
low-tension cables; ROV tethers

1. Introduction

Cables are used in many marine operations and installations. Examples include lifting operations,
mooring lines, Remotely Operated Vehicles (ROV), umbilicals, power cables and towing operations.
Snap loads may arise in all of these applications. In lifting operations and in the mooring of ships,
the phenomena of snap-back when a cable accidentally breaks during operation is an important safety
issue [1]. When mooring lines, power cables or umbilicals become slack (i.e., completely unloaded with
zero tension), a snap load of potentially large amplitude is soon to follow when the cable enters back
into tension. When such a snap occurs, it is characterised by a sharp rise in axial tension that effectively
is a shock wave that propagates in the cable [2]. In the current guidelines, incidents of slack in mooring
lines are to be avoided in design calculations [3]. However, in many developing applications such as
wave energy converters or floating wind turbines, combinations of device motion, water depth and
environmental conditions increase the probability of snap loads occurring [4–7]. Snap loads have been
identified as a potential hazard to the structural integrity of the installation, but the uncertainties in
their occurrence, identification and simulation is still high [8–10].
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Snap loads in marine cables have been extensively studied experimentally [6,11–14],
analytically [15,16] and numerically [2,17–20]. Snap load generation is due to the interaction of the
axial tension and the transverse motion of the cable, which is a complex problem with significant
nonlinearities [21]. Arguments regarding the influence of bending stiffness on the snap load however
vary in the literature depending on the type of cable studied and how it is used or operated.

The most intuitive snap load appears when a mooring cable returns to tension after a period of
slack. In this context, cable slack is associated with a loss of axial tension force at any point along the
cable. The loss of stiffness in the equation of motion makes the system ill-posed [15] in the absence
of bending stiffness, and simulations of a hanging chain were shown to be significantly improved by
the addition of a small bending stiffness into a finite difference solver [22]. However, this problem is
closely connected with the numerical solution procedure. Many implicit time stepping schemes rely
on an estimate of the Jacobian matrix, which becomes singular during free-fall of the cable in the slack
regime. Therefore, a small artificial bending stiffness is often recommended to model cable slack in
chains, where there is no restoring bending stiffness [23,24]. In explicit simulations, the simulation
typically remains stable also in the slack regime, although other restrictions such as the time step size
may become prohibitive for very stiff cables [20]. However, with the exception of chains, mooring
cables of rope or wire do have a small bending stiffness. The stiffening effect is typically negligible
in relation to the working range of axial forces of the mooring in operational conditions, but during
slack events, the bending forces may affect the response of the cable. The bending stiffness is also
considered important in low-tension applications such as umbilical cables for ROVs, where the cable is
designed to operate in slack condition. Cable model developers generally agree that models require
bending stiffness to produce accurate and stable simulations of the low-tension cable position [21,25,26].
Although the axial stiffness is significantly higher than the bending stiffness, the forces in low-tension
cables are by definition mostly small, and it has been shown by Buckham et al. [27] that transverse
and axial forces are of the same magnitude. In the same study, the authors designed experiments
specifically for ROV umbilical validation purposes with good results. Two experimental studies
hosting both freely hanging cable slack-snap behaviour and bending stiffness effects (i.e., not made on
chains) were made by Koh et al. [28,29] on a neoprene rubber cable. In [28], they made a swinging
cable experiment, but in contrast to other similar tests (see e.g., [30]), the tension force at the pinned
node was carefully recorded.

Numerical models for marine cable dynamics are many and frequently occur in the literature,
both with and without bending stiffness included [31]. Examples with bending stiffness accounted
for include solvers based on finite differences [2], lumped masses [32], linear finite elements [33,34],
curved elements [35], cubic splines (finite elements) [26] and iso-geometric mapping [36,37]. In this
paper, the bending forces of the cable are introduced with a new numerical approach: a rotation-free
Local Discontinuous Galerkin (LDG) formulation within a high-order Lax–Friedrichs-type discontinuous
Galerkin (DG) method.

Scope of the Paper

In our previous work (see Palm et al. [20]), we developed an hp-adaptive DG method for mooring
dynamics, where both the mesh size (h) and the expansion order (p) are allowed to dynamically change
during the simulation. The method was developed with the aim to capture snap loads with high
accuracy. The present contribution aims to extend the capabilities of the solver (named Moody) to
include cables with bending stiffness and to begin an investigation into the bending stiffness influence
on snap load generation. The paper starts with describing the conservative form of the equations of
motion in Section 2, followed by the DG formulation in Section 3. We then present two verification
cases in Section 4, followed by a validation against the swinging cable experiment of Koh et al. [28]
in Section 5. Section 6 discusses the bending influence on the deep water tether-cage system for ROV
operations described by Driscoll et al. [13]. The paper ends with conclusions in Section 7.
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2. Numerical Method

2.1. Preliminaries

A structure can be approximated as a cable if its cross-section diameter d is significantly smaller
than its length, L. The cable position~r = [x(s), y(s), z(s)] is at each point expressed in terms of the
curvilinear material coordinate s ∈ [0, L]. We denote the inertial (global) system base vectors by x̂, ŷ
and ẑ and, following [34], introduce the Frenet frame coordinates ı̂, ̂ and k̂ as the tangential, normal
and binormal directions of the cable, respectively. The Frenet frame is defined from the mean cable
line as:

ı̂ =
∂~r
∂s

∣∣∣∣∂~r∂s

∣∣∣∣−1
, (1)

̂ =
∂ı̂
∂s

∣∣∣∣ ∂ı̂
∂s

∣∣∣∣−1
, (2)

k̂ = ı̂× ̂ , (3)

The projection of any vector ~p onto the cable normal is written ~p⊥ = ~p− (~p · ı̂) ı̂. ~p⊥ is thus in the
osculating plane formed by ̂ and k̂.

We will throughout the paper use both standard notations of the time derivative of a quantity: ẋ =
dx
dt

.

2.2. Governing Equations

The cable equation of motion is the balance between inertial, internal and external forces on
the cable:

d~ν
dt

=
d~T
ds

+ ~fe , (4)

in which ~ν = γ0~v is the cable momentum per meter (mass per meter γ0 times velocity ~v), ~T is the
internal tension force and ~fe represents the external forces.

We denote the axial cable strain (elongation) by ε with elongation factor lε = 1 + ε. The cable
tension force can be divided into axial and transversal forces as:

~T = T (ε, ε̇) ı̂ + ~Ts , (5)

where T is the axial force magnitude and ~Ts is the shear force vector. The axial tangent vector ı̂ and the
strain ε can be written in terms of the cable position vector~r as:

~q =
d~r
ds

, (6)

ε =
√
~q ·~q− 1 , (7)

ı̂ =
~q
lε

. (8)

We use ~ν and ~q as independent variables in the inertial frame and use the time derivative of
Equation (6) to arrive at an expression for ~̇q,

d~q
dt

=
d~v
ds

=
d
ds

(
~ν

γ0

)
. (9)
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Equations (4) and (9) can be written in conservative form as:

d
dt

[
~q
~ν

]
=

d
ds

[
~ν/γ0
~T

]
+

[
~0
~fex

]
, (10)

which transforms to:

d~u
dt

=
d~F (~u)

ds
+ ~G (~u) , (11)

in terms of a single state vector, ~uT =
[
~q ~ν

]
, a flux vector, ~F, and a source term, ~G.

2.3. External Forces

The ~fex in Equation (4) represents the total body force on the cable segment. The force can be
divided into:

~fex = ~fa + ~fb + ~fc + ~fd , (12)

where ~fa is the force from the added mass and the Froude–Krylov effect, ~fb is the buoyancy force, ~fc

represents contact forces and ~fd stands for the drag force.
Added mass ~fa: In the Morison equation [38], the added mass force on a slender body is assumed

to be proportional to the relative acceleration between the body and the flow. Hence, the added mass
acting on the cable cross-section is:

~fa = ρf A (~aw⊥ + Cmı~a∗ı + Cm⊥~a∗⊥) , (13)

where A is the cross-section area of the cable, ρf is the fluid density, ~a∗ = ~aw − ~̇v is the relative
acceleration of the fluid with respect to the cable, and subscripts ı and ⊥ denote the tangential and
perpendicular components of a vector quantity. Cmı and Cm⊥ represent the added mass coefficients
in the tangential and perpendicular direction of the cable, respectively. Please note that there is no
dependency of cable strain as we assume a volume-preserving material, in which the cable elongation
factor lε is cancelled by the same decreasing factor on the cross-section area.

Buoyancy, ~fb: The buoyancy term includes the sum of the cable weight and the buoyant
Archimedes force, written as:

~fb = Ag (ρf − ρc) ẑ , (14)

where g = 9.81m/s2 is the gravitational constant. For the same reason as in the added mass force,
the cable elongation factor does not affect the buoyancy force.

Contact forces, ~fc: Contact forces refer to the contact between the cable and the ground. This is
modelled as a vertical bilinear spring-damper system with dynamic friction in the horizontal direction.
The vertical force is computed from the cable penetration depth δ = zg − rẑ and the vertical cable
velocity vẑ as:

~f (z)c =
√

lε
(

Kgdδ− ξ2
√

Kgdγ0vẑ

)
, (15)

where Kg is the bulk modulus of the ground, zg is the vertical coordinate of the ground and ξ is the
damping coefficient (ξ = 1 indicates critical damping). The horizontal friction force is proportional
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to the horizontal velocity of the cable, ~vx̂y = ~v− vẑ ẑ, up to a threshold speed vµ beyond which the
magnitude is constant. The dynamic friction force is computed from:

~f (xy)
c =

√
lεµ tanh

(
π
|~vx̂y|
vµ

)
~vx̂y

|~vx̂y|
min

(
~f (z)b , 0

)
, (16)

where µ is the fully developed dynamic friction coefficient.
Drag forces, ~fd: The cable drag is also modelled as in the Morison equation [38]. Based on the

relative velocity between the fluid and the cable, ~v∗ = ~vf −~v, we compute it as:

~fd = 0.5dρf
√

lε (Cdı |~v∗ı |~v∗ı + Cd⊥ |~v∗⊥|~v∗⊥) , (17)

with d being the nominal diameter of the cable and Cdı and Cd⊥ being the drag coefficients in the
tangential and perpendicular directions.

√
lε comes from assuming a volume preserving cable material

as the cable stretches. The nominal diameter therefore decreases by a factor
√

lε with increasing ε,
while the cable length factor is by definition lε. In combination, the drag force therefore scales with√

lε as the cable stretches.

2.4. Shear Force Modelling

We model the cable by adapting the local Lagrangian frame formulation described in [2] to the
inertial frame of reference. The main assumptions are: (i) that there are no distributed moments
acting on the cable; (ii) that the cable cross-section is axisymmetric; and (iii) that the inertial effects of
rotating the cross-section can be neglected. The balance of moments equation for a linearly visco-elastic
material with bending stiffness EI, bending damping ξb, and torsional stiffness GIp thus reads:

0 =
∂

∂s

(
~M
l2
ε

)
+ lε ı̂× ~Ts , (18)

~M = GIpΩ1 ı̂ + ı̂× (EIκ + ξbκ̇) , (19)

in which we define the curvature ~κ =
∂ı̂
∂s

and its time derivative κ̇ =
∂

∂s

(
~̇q−~qε̇

lε

)
. The bending

moment vector is thus acting in the binormal direction. Taking the cross-product from the left on
Equation (18) allows us to solve for the shear force as:

~Ts =
1
lε

ı̂× ∂

∂s

(
~M
l2
ε

)
=

1
lε

ı̂× ∂ ~M∗
∂s

, (20)

where ~M∗ =
~M
l2
ε

represents the moment in the stretched domain used for boundary conditions.

Finally, we note that the torsional stiffness is the only ı̂ component in Equation (18), which leads to a
simplistic model for the torsional curvature Ω1:

∂

∂s
(
GIpΩ1

)
= 0 . (21)

This is a consequence of all three assumptions (i)–(iii) stated above (see [2] for further information);
however, the most important factor is the assumption of a circular cross-section. The torsional moment
is constant along the cable, and Ω1 can be globally computed from the boundary conditions of the
cable system at each time step. Torsion has been left outside the modelling in the computational
examples of this paper.
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2.5. Tension-Strain Relations

To complete the set of equations, we need to define the scalar function T(ε, ε̇) relating cable
strain and its rate of change to the axial tension force. Several material models are implemented in
the numerical method (see [39]), but the simulations in the present study are made with bi-linear
visco-elastic material properties according to:

T(ε, ε̇) = EAmax (ε, 0) + ξε̇ . (22)

Please note that the cable does not support compression loads in the simulations of this paper.

3. Finite Element Method

We use a Discontinuous Galerkin (DG) finite element formulation of Equation (11).
The computational domain Ω is partitioned into N elements Ωe ∈ [se

L, se
R] with size he. A function

x(s, t) is approximated to an arbitrary order P within Ωe as:

x(s, t) ≈ xe(s, t) =
k=P

∑
k=0

φk(s)x̃e
k(t) ,

where φk(s) is the kth order trial function with expansion coefficient x̃e
k. Legendre polynomials are

used as test and trial functions in this study. Defining the inner product operator ()Ωe as:

(a(s, t), b(s, t))Ωe =
∫

Ωe
a(s, t)b(s, t)ds ,

the DG formulation expressed in strong form within Ωe reads:

(φl , φm)Ωe ˜̇ue =

(
φl ,

∂φm

∂ξ

)
Ωe

F̃e +
[
~̂F− ~F+

]se
R

se
L

+ (φl , G)Ωe . (23)

The DG method uses a numerical flux (denoted with ·̂ in Equation (23)) to express the value of a
quantity on an element boundary. In this paper, we use:

~̂F =
1
2

(
~F+ + ~F− + λ

(
n−~u+ + n+~u−

))
, (24)

λ =

√
1

γ0

∂T
∂ε

, (25)

where n is the outward pointing unit normal, λ is the speed of sound in the cable and ~̂F is represented
by the Lax–Friedrichs flux of ~F. Superscripts + and − indicate if values are taken from the interior
domain (i.e., from Ωe in this case) or from the neighbouring element of the boundary (i.e., Ωe+1 or
Ωe−1, respectively). See [20] for details.

Bending stiffness is introduced via the shear force using a local DG (LDG) [40] approach to
compute the derivatives in Equations (19) and (20). We need to define three auxiliary variables to
arrive at an LDG formulation for the modal shear force T̃s: (i) κ, the cable curvature, (ii) κ̇, the curvature
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rate of change, and (iii) τ, the spatial derivative of the moment vector. The modal coefficients, ·̃, of these
auxiliary variables are for each element found from:

(φl , φm)Ωe κ̃e =

(
φl ,

∂φm

∂ξ

)
Ωe

˜̂ıe +
[̂
ı̂− ı̂+

]se
R

se
L

, (26)

(φl , φm)Ωe ˜̇κe =

(
φl ,

∂φm

∂ξ

)
Ωe

˜̂̇ıe +
[̂

˙̂ı− ˙̂ı+
]se

R

se
L

, (27)

(φl , φm)Ωe τ̃e =

(
φl ,

∂φm

∂ξ

)
Ωe

M̃e
∗ +

[
~̂M∗ − ~M+

∗

]se
R

se
L

, (28)

remembering that ~M∗ is the stretched domain moment from Equation (20). ~Ts is then recovered from

~Ts =
1
lε

ı̂×~τ. The numerical fluxes are chosen as:

̂̂ı = 1
2
(
ı̂+ + ı̂−

)
+ β

(
ı̂+n− + ı̂−n+

)
, (29)

~̂M∗ =
1
2

(
~M+
∗ + ~M−∗

)
− β

(
~M+
∗ n− + ~M−∗ n+

)
, (30)

where the β ∈ [−0.5, 0.5] parameter governs the amount of flux taken from the left and right side
respectively for each equation. In this paper, we used a centred scheme (β = 0) to avoid one-sided bias
on the auxiliary variable ~M∗ in the results.

3.1. Boundary Conditions

The boundary conditions are introduced via numerical flux values at the edges of the finite
element domain. The original Lax–Friedrichs formulation without bending stiffness [20] required the

numerical fluxes of velocity ~̂v or the tension force vector ~̂T to be given as the boundary condition on the
domain boundaries. The implementation of the nested LDG method for bending stiffness additionally

requires that fluxes for the cable tangential vector ̂̂ı or for the total moment vector ~̂M∗ be defined.
Finally, if bending damping is included, also the time derivative of the cable direction ̂̂̇ı is required.
Boundary conditions for the auxiliary variables ı̂ or ~M∗ associated with the bending stiffness may be
specified independently of the conditions set for the cable velocity and tension force at each end point.
Variables for which no boundary condition is specified are reactions and are simulated by collecting
the flux from the interior domain. Table 1 describe the combinations of boundary conditions required
to model some typical end point properties for marine cables. We use the term pinned to describe a
point where no moments are transferred. When moments are transferred, we label the condition as a
clamped one.

Table 1. Table of fluxes required for different typical connections used in a mooring system. Index BC
indicates a prescribed value at the boundary, and "+" indicates a value taken from the internal domain.

~v(RBP) is the velocity of the connection point P of the rigid body.

Description ~̂v ~̂T ̂̂ı ̂̂̇ı ~̂M∗

Prescribed motion, pinned ~vBC ~T+ ı̂+ ˙̂ı+ ~0
Pinned joint ~0 ~T+ ı̂+ ˙̂ı+ ~M+

∗
Free cable end ~v+ ~0 ı̂+ ˙̂ı+ ~0
Clamped fixed end ~0 ~T+ ı̂BC ~0 ~M+

∗
Point force and moment ~v+ ~TBC ı̂+ ˙̂ı+ ~M∗BC

Rigid body connection at point P ~v(P)RB
~T+ ı̂+ ˙̂ı+ ~0
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3.2. Time Integration

The third-order strong stability preserving explicit Runge–Kutta (RK) method [41] is used for
the time evolution of Equation (23). Keeping with the traditions of the RKDG framework, we first let
Ln = L(un, tn) = u̇n at time index n and allow ∆t = tn+1 − tn to be the time step size. Then:

u(1) = un + ∆tLn , (31)

u(2) = 0.75un + 0.25
(

u(1) + ∆tL(1)
)

, (32)

un+1 =
1
3

un +
2
3

(
u(2) + ∆tL(2)

)
, (33)

where u(1) and u(2) are intermediate solution states and un+1 is used to update the solution at the next
time step.

4. Verification

4.1. Ring-Shaped Beam

The bending stiffness implementation is verified in this example. We show how a clamped
cantilever beam, subjected to a constant edge moment My = 1 Nm at the free end conforms to a
circle. See Table 1 for an explanation of the boundary conditions. The numerical example is taken
from Raknes et al. [36], but we extend it here to a static convergence analysis. The beam is initially
unstretched with material properties: L = 2π m, EA = 100 N, γ0 = 10 kg/m and EI = 1 Nm.
The moment is smoothly ramped from zero to one over the first 500 s of simulation. Snap shots of
the transient beam response at six different times, taken 100 s apart, are shown to the lower left in
Figure 1. The radius of the analytical circle is R = 1, centred at [x, z] = [0,−1]. The convergence rates
are computed from the numerical error in the L2-norm:

ε =

√√√√∫ L
0 (~r−~rana) · (~r−~rana)ds∫ L

0 ~rana ·~ranads
, (34)

with~rana as the position of the analytical result.

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

Figure 1. Convergence plot in the L2 norm of the beam ring case. Table data of convergence rates α for
P ∈ [1− 5] are embedded. Snap shots of the transient beam motion taken at ti = 100i s are shown to
the lower left.
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Figure 1 shows the convergence rates of the simulations. The rates shown in the top right
corner table are for each polynomial order P evaluated between the errors at three meshes (h0,h1,h2),
where the number of elements were doubled between each mesh (Nh2 = 2Nh1 = 4Nh0). The rate is
then computed from:

ε(hi) ∝ nα , (35)

α(hi+1/hi) =
log
(

ε(hi+1)
)
− log

(
ε(hi)

)
log(2)

, (36)

where n is the number of degrees of freedom in the simulation. The results in Figure 1 show optimal
exponential convergence for P = 1 and for even orders of P with α = P + 1, while sub-optimal
(α = P) convergence is achieved for odd orders of P > 1. The simulations were made using centred
fluxes for computing the cable curvature and the shear force. Centred fluxes are known to produce
sub-optimal convergence rates in LDG methods [42], but are also improving the stability of the
simulation. Sensitivity tests with β = −0.5 and β = 0.5 showed an effect only on the absolute error
of low resolutions, where β = −0.5 gave the smallest error, as expected due to the suitability for this
particular case. The asymptotic converge rates shown in Figure 1 were all unaffected (to three digits) by
the β-parameter, except the P = 2 convergence, which was contained in [3.09,3.13]. From the results of
Figure 1, we conclude that the embedded LDG method for bending stiffness is implemented correctly
and that it is stable and accurate for very large curvatures and displacements.

4.2. Vibrating Cantilever

The nested LDG formulation for bending was also applied to a vibrating cantilever, to serve as a
dynamic verification of the bending stiffness implementation. The analytic result of the free vibration
of a cantilever Euler–Bernoulli beam is well known. The model equation of a uniform cantilever beam
with no rotary inertia reads [43]:

mÿ + EIy′′′′ = 0 , (37)

y(s, 0) = AΦi , ẏ(s, 0) = 0 , (38)

y(0, t) = 0 , y′(0, t) = 0 , (39)

y′′(L, t) = 0 , y′′′(L, t) = 0 , (40)

where m is the beam mass per m, EI is the bending stiffness, L is the beam length, y is the transverse
displacement, s is the axial coordinate and t is time. Spatial derivatives are denoted with ′, and time
derivatives are denoted with an overdot.

The boundary conditions (39) and (40) represent a fixed clamped condition at the left side and a
free cable end on the right; see Table 1. The initial condition AΦi is the ith eigenmode (Φi) multiplied
by a deflection amplitude at the right end (A). The modes of free vibration are written:

Φi(s) = 0.5 (cos Ωis− cosh Ωis + Di [sinh Ωis− sin Ωis]) , (41)

Di =
cos ΩiL + cosh ΩiL
sin ΩiL + sinh ΩL

, (42)

Ω4
i =

mωi.2

EI
. (43)

in which Ωi is the frequency parameter found as the ith solution to the frequency equation:

1 + cos ΩL cosh ΩL = 0 , (44)
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from which the frequency of vibration ωi is derived as:

ωi = (ΩiL)2

√
EI

mL4 . (45)

The dynamic solution to (37) is then for each mode of vibration Φi found as [43]:

y(s, t) = AΦi(s) cos ωit , s ∈ [0, L], t ≥ 0 . (46)

Figure 2 shows envelopes of position, moment and shear force over a vibration cycle for modes Φ0,
Φ2 and Φ4. The following beam properties were used: m = 10 kg/m, EI = 0.1 MNm2, EA = 0.1 MN,
L = 100 m, A = 1 mm. The numerical results obtained with N = 16 and P = 4 are in Figure 2 shown
to be indistinguishable from the analytic values for all modes and quantities studied. The numerical
and analytic results are thus in excellent agreement, which further verifies the implemented LDG
method for the shear force.
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Figure 2. Normalized snap shots of a vibrating cantilever for initial mode shapes Φ0, Φ2 and Φ4 (shown
in each column, respectively). Comparison between numerical and analytical results of: position rz in
(a–c); moment My in (d–f); and shear force Tz in (g–i).

5. A Swinging Cable

The dynamics of a hanging chain or the swinging of a pendulum are frequently used for
the verification and validation of new implementations of dynamic cables; see, e.g., [23,36,37,44].
The expected response is dependent on the bending stiffness of the cable. Raknes et al. [36] studied the
rigid limit where the deformation of the cable is negligible and the response approaches the theoretical
response of a swinging pendulum. On the other extreme, Gobat et al. [23] extensively studied the
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swinging chain where there is no bending stiffness, although a small artificial value was used to
stabilize the finite difference simulations.

Here, we will focus on the experiments of Koh et al. [28] where the swinging motion of a circular
rubber cable (25 mm diameter, solid neoprene of ρc = 1430 kg/m3) with total length Ltot

c = 2046 mm
was investigated. It was suspended with pins a horizontal distance 1805 mm apart at z = 0. The pins
were located δ = 12 mm from each cable end, and there was Lc = 2.022 m cable between the pins.
We will use Lc as the cable length in this study. At t = 0, one pin was suddenly removed, and the cable
pivoted around the remaining pin location. We apply free cable end conditions on the released pin end
and pinned joint conditions at the remaining pin, according to Table 1. Young’s modulus of the rubber
was estimated to be E = 3.14 MPa, and a pull back test on the suspended cable gave a damping factor
of ξ = 0.062 on the standing wave response. The cable properties used in our simulation are shown in
Table 2.

Table 2. Data used in the baseline simulation of Koh’s experiment, computed from ρ = 1430 kg/m3

and E = 3.14 MPa [28]. The simulated length (Lc) is the length between the two pins (the pivot pin
and the release pin), thus neglecting the 12 mm extra cable at each end.

Parameter EA ξ∗ EI ξb
∗ γ0 CDn Lc

Unit (N) (Ns) (Nm2) (Nm2s) (kg/m) (-) (m)

Value 1541 4.079 0.060 0.020 0.702 1 2.022

Simulations were made with N = 10, P = 4, selected after a mesh convergence analysis. The root
mean squared discretisation error in tension between N = 7 and N = 10 elements was less than 1%.
The damping factor of ξ∗ = 0.062 ∗ 2

√
EAγ0 was in [28] used for a linear damping model proportional

to cable velocity, but here, we use it as a material damping in the constitutive model of the rubber
material. Consequently, only axial forces are damped in the simulation, and we require an additional
parameter for realistic damping of the normal deformation modes. For this, we use a visco-elastic
bending moment with damping factor ξb. The value of ξb is calibrated via a parameter sweep to
provide a reasonably correct level of damping in the system.

Figure 3 shows the results of the simulations with different sets of cable properties. We make the
following observations:

• The bending stiffness is important for the cable response. During the first swing in Figure 3a,
mostly the end of the cable is affected, but on the return swing in Figure 3b, the EI = 0 cable
deviates significantly from the simulations with bending stiffness. In particular, we highlight
the “whipping” behaviour of the EI = 0 case, which results in a significant overestimation of the
tension force at t = 2 s compared to the experiments; see Figure 3c. The whipping is effectively
avoided by the addition of bending stiffness for all configurations studied.

• Experimental results are reproduced well in the simulations. The peak frequencies match well in
all cases studied (see Figure 3d), and the two simulations with bending damping provide a very
good approximation to the experimental force reading in Figure 3c. The primary experimental
loss factor is probably the frictional losses at the pivot pin, which were not taken into account in
the numerical model. This can to some extent account for the overestimation of the primary snap
load at t = 2 s.

• The simulations with bending stiffness require a damping mechanism to reduce the transient
bending modes. This is particularly important for the high-frequency response. In Figure 3d,
both EI = 0 and ξb = 0 simulations show significant forces around the return period
of longitudinal waves in the cable Tr, which are not present in the experimental readings.
Please note that the high-frequency oscillation of, e.g., ξb = 0 in Figure 3c is not numerical
noise. It is the long-lived elastic response of the bending modes due to insufficient damping
properties. The results are much improved by the addition of ξb, and less sensitive to its value.
Cable experiments in air are known to be sensitive to the damping properties of the setup and
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behave very differently from experiments in water [45]. We therefore expect the importance of
parameter ξb to be small to negligible in marine application of cables.

(a) (b)

(c) (d)

Figure 3. Results of the cable swing test for different cable material properties. (a,b) Cable position
every 0.05 s during the first swing (a) t ∈ [0, 1.25] s and the second swing (b) t ∈ [1.25, 3] s of the cable.
In (c), we see the force recorded at the strain gauge position, and (d) shows the Fourier decomposition
of the force readings.

6. Snap Loading in a Deep Water ROV System

We consider also the case of a deep water operation with the Remotely Operated Platform
for Oceanographic Science (ROPOS) device, which was studied in a series of publications by
Driscoll et al. [13,16,19]. The ROPOS system consists of a heavy cage suspended from the operational
ship with a tether. The cage is in turn connected to the ROPOS with a 30 m long slack umbilical cable.
As the umbilical from the cage and ROPOS was slack at all times, said cable and the dynamics of the
ROPOS can be neglected in the analysis of the tether-cage system response [19]. In [13], snap load in
the tether was observed in several tests. A one-dimensional (vertical motion only) lumped mass model
was developed and calibrated to analyse the system numerically in [19], showing very good agreement
given the uncertainties of a field-test environment and the scale of the operation (operational depth
L = 1730 m). In this section, we first make a new calibration to achieve similar snap loads for one
of the documented events in [19], after which we will analyse the influence of bending stiffness at
different operational conditions and depths.
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6.1. Calibration and Validation

The cage is a 2.1 by 3.4 by 4.1 m steel structure, with the tether attachment at the top.
Previous models in [16,19] studied the vertical response of the cage, leaving surge and pitch out
of the modelling. Hence, the centre of gravity is not specified, and we assume it to be at the geometric
centre of the cage. The cage was modelled as a submerged cylinder with the same lid area as the cage
base. The numerical values and notation of the parameters are presented in Table 3. Please note that
as the cage was open to the surrounding water, the added mass is higher than common values for
solid bodies.

Table 3. Data used in the simulations of the ROPOS tether and cage. The parameters are adapted
from [13,16,19].

Cage Tether

Parameter Label Value Parameter Label Value

Mass (kg) mcg 4995 Mass (kg/m) γ0 3.01
Density (kg/m3) ρcg 8448 Density (kg/m3) ρ 7153
Diameter (m) Dcg 3.01 Diameter (m) D 0.03
Added mass coeff., surge (-) CMncg 7.1 Normal added mass coeff. (-) CMn 1
Added mass coeff., heave (-) CMtcg 7.1 Tangential added mass coeff. (-) CMt 0
Drag coeff., surge (-) CDncg 1.3 Drag coeff. CDn 1.0
Drag coeff., heave (-) CDtcg 2.7 Tangential drag coeff., CDt 0.02
Height (m) Hcg 4.2 Elasticity (GPa) E 65.9
Pitch moment of inertia (kgm2) I(ı̂)cg 19× 103 Internal damping (kNs/m) ξ 45.5

The calibration procedure used by Driscoll et al. was well described in [19], where both the
empirical/manufacturer’s data and their calibrated values were presented. The calibration was made
for operational depth L = 1730 m. We used the calibrated values for most parameters; however, in our
model, we got a better match with the experiments when the empirical (higher) value of 9200 kg for
the cage added mass was used. The calibrated lumped mass model in [19] did not produce snap loads
as expected when the recorded ship motion was used. Therefore, the amplitude was increased by 10%,
and the slack-snap condition was reproduced with satisfactory results. In our case, the heave motion
of the fairlead was digitized from Fig. 5a in [19], pass band filtered in [0− 0.8] Hz, and assumed to be
at the still water level. We then needed an amplitude increase of 20% to get the appropriate extreme
event behaviour. The final calibration was made with the vertical drag coefficient, which was changed
from the recommended value of 2.3 in [19] to 2.7. The accuracy of the Morison drag approximation
on the cage was also debated in [19] where the addition of a wake model substantially improved the
simulations compared with the experimental data.

The results of the calibration are shown in Figure 4. Figure 4b shows the important difference
between the tension at the cage (bottom line node) and at the ship (at the top node). The tether
self-weight in water is 44 kN (at L=1730 m), which explains the offset between the cage and ship
tension. Consequently, the tether is only slack at the bottom section, and otherwise in tension by
its own mass. The snap load originates from the cage and takes L/c=0.445 s to propagate the tether
length, where c = 3870 m/s is the speed of sound at which snap loads propagate in the cable [2,19].
This explains the time lag between the tensions at the cage and the ship. The snap load is gradually
damped by the internal material damping factor ξ and by tangential drag forces, which become
increasingly important for longer cables. The peak loads of Figure 4 are more long-lived in the
numerical results than in the experiments, which suggests that higher damping factors could have
been used. However, we consider the results to be acceptable given the uncertainties related to
comparing numerical simulations to field-tests.
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Figure 4. Calibrated results compared with field-test measurements of tether tension at the upper node.
(a) is the full simulation, and (b) shows part of the simulation around the extreme event.

The simulations were made with N = 20 elements of order P = 4, selected based on a mesh
sensitivity analysis presented in Appendix A. The mesh dependence was tested for the longest
tether, as this constitutes the coarsest case. For shorter lengths of line, the resolution per meter of
tether increases.

6.2. Bending Influence

The numerical and analytical models of Driscoll et al. [16,19] focused on the one-dimensional
system including heave of the cage and the longitudinal dynamics of the tether. We now extend the
investigation to include the transverse motion of the tether and cage system. Sixteen combinations of
cable length (operational depth) and bending stiffness were studied, combining four lengths and four
values of EI according to:

L = [200, 500, 975, 1730]m , (47)

EI = αEI∗ , α = [0, 1, 10, 100] , (48)

where EI∗ = 2.62 kNm2 is the bending stiffness of the field-tested tether computed from the
cable area (0.25πd2) and the axial stiffness EA = 45.5 MN [19] under the assumption of a solid
circular cross-section. The fairlead motion is a circular orbit of radius a = 2 m at frequencies
f = [0.10, 0.20, 0.25] Hz. The amplitude was chosen from the experimentally reported maximum
of 4 m peak-to-peak, and the frequencies were chosen to encompass the typical wave band of the
field-tests [13].

Figure 5 shows the tension at the fairlead for different combinations of line length, bending
stiffness and excitation frequency. We make the following observations:

• We confirm the predictions of the analytical model in [16] that slack-snap occurs at f = 0.2 and
f = 0.25 Hz with this amplitude, while the f = 0.1 Hz case remains in tension.

• There is no noticeable difference in system response due to bending stiffness for the largest
operational depths L975 and L1730. For L500 and L200, a small but increasing difference can be seen
in the snap load generation.

• The small effect of bending stiffness can be observed in Figure 5d,f. The lower the bending
stiffness value becomes, the earlier the generated snap load appears at the ship after each period
of slack. The difference between the simulations increases with decreasing cable length.
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(a) f =0.1 Hz (b) f =0.1 Hz, Zoom

(c) f =0.2 Hz (d) f =0.2 Hz, Zoom

(e) f =0.25 Hz (f) f =0.25 Hz, Zoom

Figure 5. Tension results at the ship for different cable lengths L and bending stiffness factors α.
Each colour represents a different depth, and each line-style represents a different bending stiffness
factor. The line-styles are denoted with grey colour in the legends. Fairlead excitation a = 2 m
amplitude circular motion of frequency: (a,b) f = 0.1 Hz, (c,d) f = 0.2 Hz and (e,f) f = 0.25 Hz.

A more detailed analysis of the slack events is needed to explain the differences in snap load
generation between the simulations of different bending stiffness. Figure 6 shows the tension force
and vertical acceleration at the cage together with the position and tension along the whole cable
around a snap instant of the L200 simulation at f = 0.2 Hz. The α0 case becomes taut slightly earlier
than the stiffer cables (see Figure 6a, where the tension at the cage and at the ship is shown). This is
consistent with the behaviour of the vertical cage acceleration in Figure 6b. In Figure 6b, we also note
that the acceleration of the fairlead is positive and increasing during the first snap instant after the
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slack. The relative velocity between cage and fairlead is therefore increasing. The snap load magnitude
is strongly affected by the relative velocity at the snap instant [12], which explains why the α0 case has
a snap load of smaller amplitude than the stiffer cables. The smaller snap load of α0 in Figure 6a is
almost fully dissipated at the peak of the load cycle, in contrast to the cables with bending stiffness
where a noticeable snap load still propagates the cable. In Figure 6c, the tension distribution along the
tether is shown for three times: t0 (black), right before the first snap takes place; t1 (red),short after the
α0 snap load has occurred; and t2 (blue), when all simulations have become taut at the cage connection.
The differences in snap load size and phase are evident from the results. Finally, the earlier tension
response is explained by how the bending stiffness influences the cable position near the cage. As is
seen in Figure 6d, the differences in position between the different α values consequently matches the
difference in snap load appearance in Figure 6c.

(a) Tensions (b) Acceleration
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(c) Tensions at t = t0, t1, t2
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(d) Tether position at t = t0

Figure 6. System behaviour shortly after snap load generation in L200, f = 0.2 Hz simulations.
(a) Tension force at the two end-points and (b) vertical acceleration of the ship and the cage. In (a) and
(b), the line-styles represent results from different bending stiffness factors α (denoted as grey in the
legends), while the colour indicates results at the ship or cage, respectively. In (c), the snap load
propagation along the cable is shown for t0 = 8.65, t1 = 8.665 and t2 = 8.67 periods, and in (d),
the cable position at t = t0 = 8.65 periods is shown with the region close to the cage highlighted.

In summation, the inclusion of bending stiffness in the analysis does not change the overall tether
response significantly for these load scenarios. However, it affects the slack regime dynamics of the
tether to the point of changing the resulting snap load event. The point in time when the snap occurs
changes with the exact position of the slack tether, which in turn affects the resulting snap magnitude.
Our results show that the slack regime forces near the cage constitute the key parameter that governs
the snap load. Driscoll et al. [13] described how the lowest section of the tether needed to be replaced
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after some time in operation. It had experienced bending fatigue, and the connection to the cage
was lost. A bending stiffener at the connection to the cage was later introduced, which alleviated
the issue. This failure is another indication that the end section of the tether is important. The effect
of a transverse current (with only vertical fairlead displacement) was investigated numerically by
Zhu et al. [46], where they found that a small current increases the severity of the slack-snap behaviour.
However, as the current velocity was further increased, the fluid drag force began to dominate the
slack tether behaviour so that slack periods became less frequent and the snap load size decreased.
All results thus point to snap load generation depending on the intricate force balance between tensile
stress, bending effects and fluid forces in the low-tension and slack region of the tether. We leave it for
future work to more elaborately study the multitude of potential configurations and load scenarios
that may or may not affect the low tension dynamics of cables, and consequently govern the ensuing
snap load.

7. Conclusions

This paper presented a new implementation of the equations for cable dynamics.
The Discontinuous Galerkin (DG) formulation of [20] was extended by the addition of a nested
LDG method to include bending stiffness in the modelling. Verification studies on the method showed
that the implementation works and is stable for both small and large deformation in dynamic and
transient cases. The deformation of a beam into a ring showed exponential convergence of order P for
even orders of the expansion base and P + 1 for odd orders. Comparison with a swinging rubber cable
showed a good match between experimental and numerical results. By comparing results with and
without bending stiffness included, significant changes in cable response were noted. The whipping of
the flexible cable is reduced by the addition of bending stiffness, resulting in significant improvement
of the match to the experimental data, as well as a reduction of the peak snap load. Because the
experiments were made in air, there is little drag damping, and the results become more sensitive to
the material damping properties of the simulation [45].

We also validated the code against field-test data of a vertical tether with a heavy cage in deep
water. The dynamic behaviour of the tether tension during a snap load event in the experiments
was well captured by the model; however, there are uncertainties in the amplitudes of motion used
in the calibrated model. When forced to a circular motion at the fairlead, the tether behaviour with
a varying amount of bending stiffness was investigated numerically. We found that the overall
response is essentially unchanged over the range of depths tested L ∈ [200, 1730] m; however, the snap
load generation was significantly affected by the difference in bending stiffness. The snap load of
the perfectly flexible tether occurred earlier and with a smaller amplitude than in the cases with
bending stiffness included. This is explained by how the bending stiffness changes the position of
the tether section closest to the cage where the cable is in slack or low tension during a period of
time. The bending forces and tensile forces there are of similar magnitude [27]. Our results indicate
that the exact configuration of the tether prior to the snap affects the snap load generation process.
Further work is needed to investigate in more detail during which conditions this difference is of
significance to the fidelity of marine cable design calculations. Therefore, we strongly recommend that
the sensitivity to bending stiffness influence be accounted for in design calculations where part of a
tether or cable is in the slack or low-tension regime and snap loads may occur.
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Abbreviations

The following abbreviations are used in this manuscript:

DG Discontinuous Galerkin
LDG Local Discontinuous Galerkin
RK Runge–Kutta
RKDG Runge–Kutta Discontinuous Galerkin
ROV Remotely Operated Vehicle
ROPOS Remotely Operated Platform for Oceanographic Science

Appendix A. Deep Water ROV Simulation: Mesh Resolution

This section describes the mesh resolution tests made for the ROPOS system tests described in
Section 6. We selected an expansion base of order P = 4 for the mesh sensitivity tests and used a
forced circular motion of a = 2 m, f = 0.2 Hz on the fairlead to test the system sensitivity to mesh
resolution. The mesh dependence tests were done on the longest tether (L = 1730 m). Four resolutions
were tested, with the number of elements N = [5, 10, 20, 40]. The resulting tensions at the ship (surface)
end point of the cable are shown in Figure A1. From the results, we concluded that the N = 20 mesh
constitutes a high-resolution simulation. Little new information was gathered from the N = 40 mesh,
and we therefore chose to stay with N = 20 to save computational time.
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Figure A1. Tension at the upper tether node for different mesh resolutions. The fairlead motion was a
prescribed circular orbit of a = 2 m radius at 0.2 Hz.
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