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Abstract: In this paper, an improved potential flow model is proposed for the hydrodynamic analysis
of ships advancing in waves. A desingularized Rankine panel method, which has been improved with
the added effect of nonlinear steady wave-making (NSWM) flow in frequency domain, is employed for
3D diffraction and radiation problems. Non-uniform rational B-splines (NURBS) are used to describe
the body and free surfaces. The NSWM potential is computed by linear superposition of the first-order
and second-order steady wave-making potentials which are determined by solving the corresponding
boundary value problems (BVPs). The so-called mj terms in the body boundary condition of the
radiation problem are evaluated with nonlinear steady flow. The free surface boundary conditions
in the diffraction and radiation problems are also derived by considering nonlinear steady flow.
To verify the improved model and the numerical method adopted in the present study, the nonlinear
wave-making problem of a submerged moving sphere is first studied, and the computed results are
compared with the analytical results of linear steady flow. Subsequently, the diffraction and radiation
problems of a submerged moving sphere and a modified Wigley hull are solved. The numerical
results of the wave exciting forces, added masses, and damping coefficients are compared with those
obtained by using Neumann–Kelvin (NK) flow and double-body (DB) flow. A comparison of the
results indicates that the improved model using the NSWM flow can generally give results in better
agreement with the test data and other published results than those by using NK and DB flows,
especially for the hydrodynamic coefficients in relatively low frequency ranges.

Keywords: nonlinear steady flow; desingularized Rankine panel method; forward speed; radiation
and diffraction

1. Introduction

Over the last decades, the rapid development of computing power and the emergence of
more sophisticated numerical methods have promoted the applications of numerical methods in
ship hydrodynamics problems. Nevertheless, these problems still need to be simplified due to the
complexity behind the physical models. It becomes even more complicated when different models
need to be coupled, which is for example the case when ship maneuvering in waves is considered.

In the early stage, two-dimensional strip theory was developed as a practical way to evaluate
ship hydrodynamic performances [1,2]. However, relying on the assumption that the ship is a slender
body, strip theory is only suitable for low speed and high encounter wave frequency cases. In order to
consider more realistic three-dimensional (3D) effects, it is not appropriate to assume that the ship
is slender.

J. Mar. Sci. Eng. 2020, 8, 106; doi:10.3390/jmse8020106 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0002-2598-7513
http://dx.doi.org/10.3390/jmse8020106
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/8/2/106?type=check_update&version=2


J. Mar. Sci. Eng. 2020, 8, 106 2 of 18

In the study of ship hydrodynamics problems, 3D potential flow theory has focused mainly on
linear analysis [3]. The theory assumes that the disturbance due to the presence of a ship in waves is
relatively small. When using Rankine panel methods, two linearization methods can be distinguished:
the Neumann–Kelvin (NK) linearization and the double-body (DB) linearization. The former considers
uniform flow as basic flow to linearize the free surface boundary conditions. The latter is essentially
based on a slow-ship assumption which obtains the double-body velocity potential by treating the free
surface as a rigid horizontal plane and takes the DB flow as basic flow to linearize the free surface
boundary conditions. Numerous studies have been published using these two methods. For instance,
Kim and Kim [3] presented a study on ship hydrodynamics comparing the NK and DB linearization
methods. Similar researches discussing the advantages and disadvantages of these two methods can
be found in Zhang et al. [4], Zhang and Beck [5], Zhang and Zou [6]. Attempts have also been made to
include ship maneuvering in waves in the analysis, e.g., Seo and Kim [7], Zhang et al. [8]. In their
studies, the mean second-order wave force was evaluated by Rankine panel method using NK or DB
linearization, which was then treated as the input force in the equations for predicting maneuvering
behavior. However, these two linearization methods, as described in [4], can be justified in the case of
a slender ship, but they are not suitable for blunt bodies or ships moving at high speeds [9]. In light of
the limitations of the NK and DB linearizations, works addressing ship hydrodynamics by using steady
wave-making flow as basic flow for linearization were carried out; e.g., Gao and Zou [10] computed
the linear steady wave-making flow beforehand and then applied the results to solve the diffraction
and radiation problems. Recently, researchers have considered nonlinear steady flow to study the
interactions between the linear periodic wave-induced flow and the nonlinear steady flow caused
by the ship’s forward speed in calm water, such as the studies by Bunnik [11], Söding et al. [12] and
Chillcce and el Moctar [13] in frequency domain. As for the time domain method, studies can be found
in Riesner et al. [14], Riesner and el Moctar [15] and Chen et al. [9]. Though the transient effect of flow
can be investigated in time domain, the boundary integral equation should be solved at each time step,
which is more computationally expensive than that with frequency domain method.

In this study, a new model is proposed to compute the ship hydrodynamic forces in the frequency
domain. In contrast to other methods, nonlinear steady flow is considered and the interaction between
nonlinear steady flow and unsteady flow is considered not only in the body boundary condition,
but also in the free surface boundary conditions in the corresponding diffraction and radiation
problems. The main objective of this method is to capture the coupling factors as accurately as possible.
The boundary value problems (BVPs) for the first-order and second-order steady wave-making
potentials are first derived and solved, and the nonlinear steady wave-making (NSWM) potential is
then approximated by linear superposition of the first-order and second-order steady wave-making
potentials. Subsequently, the wave exciting forces and the radiation forces are evaluated based on the
obtained NSWM flow.

A desingularized Rankine panel method with distributed sources at a small distance inside the
body and above the free surface [16,17] is applied to numerically solve the problems. This method has
the advantage over conventional boundary integral methods in that it separates the integration surface
and the collocation surface, which in turn results in a boundary integral equation with non-singular
kernels. In addition, the second-order or even higher-order derivatives of the velocity potential
can be directly evaluated without complicated numerical treatments to eliminate the singularities
in the integral equation; thus, the method is faster and easier to implement. In recent years, this
method has been extended and applied in the analysis of 2D wave-body interaction problems, such as
Feng et al. [18–20].

To verify the proposed model, non-uniform rational B-splines (NURBS) are used to generate the
mesh both on the body surface and the free surface. The desingularized Rankine panel method is then
employed to discretize and solve the boundary integral equation. The mj terms in the body boundary
condition are evaluated with nonlinear steady flow, and the free surface boundary conditions in the
diffraction and radiation problems are also derived by taking the nonlinear steady flow into account.
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In order to identify the effects of steady flow on the unsteady flow, the present method is compared
with those based on NK and DB linearizations. The computations are carried out for a submerged
moving sphere and a modified Wigley hull advancing in head waves. The numerical results including
the wave exciting forces, added masses and damping coefficients with the effects of different steady
flows are presented.

2. Mathematical Formulations

Figure 1 shows the two coordinate systems that are used: an earth-fixed coordinate system
o0 − x0y0z0 and a coordinate system o− xyz moving along with the ship at a constant speed U with ox
positive to the bow, oy positive to the port side and oz directing upwards.
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In o0 − x0y0z0, based on the assumptions of ideal fluid and irrotational flow, the total velocity
potential Ψ(

⇀
x 0, t) should satisfy the following equations:

Laplace’s equation in fluid domain:
∇

2Ψ = 0 (1)

The kinematic and dynamic boundary conditions on the free surface SF:(
∂
∂t

+∇Ψ · ∇
)
[z0 − η(x0, y0, t)] = 0 (2)

gη+ Ψt +
1
2
∇Ψ · ∇Ψ = 0 (3)

where η is the free surface elevation, g is the gravitational acceleration. The subscripts (i.e., t, x0, y0)
denote the derivatives with respect to the corresponding variables.

By combining Equation (2) and Equation (3), the following boundary condition on SF is derived:

Ψtt +∇Ψ · ∇Ψt + Ψx0 Ψx0t + Ψy0 Ψy0t + Ψx0∇Ψ · ∇Ψx0 + Ψy0∇Ψ · ∇Ψy0 + gΨz0 = 0 (4)

The boundary condition on the body surface SB:

∇Ψ ·
⇀
n =

⇀
VB ·

⇀
n (5)

where
⇀
n is the unit normal vector directed inward of the body surface with (n1, n2, n3) =

⇀
n ,(n4, n5, n6) =

⇀
x ×

⇀
n ;

⇀
VB is instantaneous velocity of the body surface SB

Moreover, a radiation condition should be satisfied. The details for implementing the numerical
radiation condition will be introduced in Section 3.

By using the Galilean transformation, the relation from o0 − x0y0z0 to o− xyz can be transformed as:

d
dt

=
∂
∂t
−U

∂
∂x

(6)
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where d
dt is the time derivative in coordinate system o0 − x0y0z0 and ∂

∂t is the time derivative in the
moving coordinate system o− xyz.

In o− xyz, assuming that the velocity potential Ψ(
⇀
x , t) can be written as:

Ψ(
⇀
x , t) = −Ux + ΦS(

⇀
x ) + Re

[
AϕI(

⇀
x )eiωt + AϕD(

⇀
x )eiωt

]
+ Re


6∑

j=1

[
ξ jϕ

R
j (
⇀
x )eiωt

] (7)

where
[
−Ux + ΦS(

⇀
x )

]
is the steady velocity potential; ϕI(

⇀
x ), ϕD(

⇀
x ) and ϕR

j (
⇀
x ) ( j = 1, 2, · · · , 6) are

the spatial parts of the incident, diffraction and radiation velocity potentials, respectively; A is the
incoming wave amplitude, ξ j ( j = 1, 2, · · · , 6) is the amplitude of j-th mode of oscillating motion, and
ω is the encounter frequency.

2.1. Nonlinear Steady Wave-Making (NSWM) Problem

Substituting Equation (7) into Equations (1)–(5), using Ψ(x0, y0, z0, t) = Ψ(x + Ut, y, z, t) and
Equation (6), and extracting the terms unrelated to time t, the BVP of the steady wave-making velocity
potential ΦS(

⇀
x ) can be expressed in the moving coordinate system o− xyz as:

Laplace’s equation in fluid domain:
∇

2ΦS = 0 (8)

The boundary condition on the free surface SF:

U2ΦS
xx −U∇ΦS

· ∇ΦS
x −UΦS

x ·Φ
S
xx −UΦS

yΦS
xy + ΦS

x∇ΦS
· ∇ΦS

x + ΦS
y∇ΦS

· ∇ΦS
y + gΦS

z = 0 (9)

The boundary condition on the body surface SB:

−Un1 +
⇀
n · ∇ΦS = 0 (10)

By using Equation (6), the steady hydrodynamic pressure can be obtained from Bernoulli’s
equation:

pS = −ρ
(1

2
∇ΦS

· ∇ΦS
−UΦS

x

)
(11)

The steady force FS
i (i = 1, 2, · · · , 6) can then be calculated by integrating the pressure over the

wetted body surface:
FS

i =
x

SB

pSnids, i = 1, 2, · · · , 6 (12)

By using Equation (6), the steady free surface elevation can be obtained from Equation (3):

ηS =
U
g

ΦS
x −

1
2g
∇ΦS

· ∇ΦS (13)

The boundary condition Equation (9) is nonlinear. To solve the resulting nonlinear BVP, the velocity
potential ΦS and the free surface elevation ηS are expressed by perturbation expansion until second
order as:

ΦS
≈ ΦS(1) + ΦS(2)

ηS
≈ ηS(1) + ηS(2) (14)

Substituting Equation (14) into Equations (8)–(10), the BVPs for the first- and second-order steady
velocity potentials can be obtained by Taylor expansion on z = 0 and about the mean wetted body
surface Sb. The BVP for the first-order steady velocity potential is given as:

∇
2ΦS(1) = 0, in fluid domain (15)
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U2

g
ΦS(1)

xx + ΦS(1)
z = 0, on z = 0 (16)

⇀
n · ∇ΦS(1) = Un1, on the mean wetted body surface Sb (17)

The BVP for the second-order steady velocity potential is given as:

∇
2ΦS(2) = 0, in fluid domain (18)

U2

g ΦS(2)
xx + ΦS(2)

z = − ∂
∂z

(
U2

g ΦS(1)
xx + ΦS(1)

z

)
ηS(1) + U

g ∇ΦS(1)
x · ∇ΦS(1)

+U
g

(
ΦS(1)

x ΦS(1)
xx + ΦS(1)

y ΦS(1)
xy

)
,

on z = 0 (19)

⇀
n · ∇ΦS(2) = 0, on the mean wetted body surface Sb (20)

2.2. Diffraction Problem

For the diffraction problem, the ship moves with a constant speed U in waves without oscillations.
In deep water, the incident wave velocity potential is given as:

ϕI(x, y, z) =
ig
ω0

ekz
· e−ik(x cos β+y sin β) (21)

where ω0 is the incident wave frequency, k = ω2
0/g is the wave number, β is the wave angle and β = π

represents head sea condition. The encounter frequency ω is defined as:

ω = ω0 − kU cos β (22)

Substituting Equation (7) into Equations (1)–(5), using Ψ(x0, y0, z0, t) = Ψ(x + Ut, y, z, t) and
Equation (6), and extracting the terms related to time t and ϕD(x, y, z), the BVP of the diffraction
potential ϕD(x, y, z) can be derived as:

Laplace’s equation in fluid domain:
∇

2ϕD = 0 (23)

The free surface boundary condition on z = 0:

−ω2ϕD
− 2iωUϕD

x + U2ϕD
xx + gϕD

z + iω∇ΦS
· ∇ϕD + iωΦS

xϕ
D
x + iωΦS

yϕ
D
y −U∇ΦS

· ∇ϕD
x

−U∇ϕD
· ∇ΦS

x −UΦS
xϕ

D
xx + ΦS

x∇ΦS
· ∇ϕD

x + ΦS
x∇ϕ

D
· ∇ΦS

x −UϕD
x ΦS

xx + ϕD
x ∇ΦS

· ∇ΦS
x

−UΦS
yϕ

D
xy −UϕD

y ΦS
xy + ΦS

y∇ΦS
· ∇ϕD

y + ΦS
y∇ϕ

D
· ∇ΦS

y + ϕD
y ∇ΦS

· ∇ΦS
y = RHS

(24)

where RHS =ω2ϕI + 2iωUϕI
x −U2ϕI

xx − gϕI
z − iω∇ΦS

· ∇ϕI
− iωΦS

xϕ
I
x−iωΦS

yϕ
I
y + U∇ΦS

· ∇ϕI
x +U∇ϕI

·

∇ΦS
x +UΦS

xϕ
I
xx −ΦS

x∇ΦS
· ∇ϕI

x−ΦS
x∇ϕ

I
· ∇ΦS

x +UϕI
xΦS

xx −ϕ
I
x∇ΦS

· ∇ΦS
x+UΦS

yϕ
I
xy+UϕI

yΦS
xy −ΦS

y∇ΦS
·

∇ϕI
y −ΦS

y∇ϕ
I
· ∇ΦS

y −ϕ
I
y∇ΦS

· ∇ΦS
y

The boundary condition on the mean wetted body surface Sb:

⇀
n · ∇ϕD = −

⇀
n · ∇ϕI (25)

It is worth noting that in Equation (24), the nonlinear steady potential ΦS is also considered in the
free surface boundary condition.

Once the diffraction potential ϕD is obtained, the wave exciting forces on the hull can be computed
as:

F j = Re
(
A f jeiωt

)
, j = 1, 2, · · · , 6 (26)

f j = −ρ
x

Sb

[
iω(ϕI + ϕD) −U(ϕI

x + ϕD
x ) + ∇ΦS

· ∇(ϕI + ϕD)
]

n jds (27)
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2.3. Radiation Problem

For the radiation problem, it is assumed that the ship undergoes a harmonic oscillation. Similar
to the BVP of diffraction potential, the radiation potential ϕR

j should satisfy the control equation and
boundary conditions below:

Laplace’s equation in fluid domain:

∇
2ϕR

j = 0, j = 1, 2, · · · , 6 (28)

The free surface boundary condition on z = 0:

−ω2ϕR
j − 2iωUϕR

jx + U2ϕR
jxx + gϕR

jz + iω∇ΦS
· ∇ϕR

j + iωΦS
xϕ

R
jx + iωΦS

yϕ
R
jy

−U∇ΦS
· ∇ϕR

jx −U∇ϕR
j · ∇ΦS

x −UΦS
xϕ

R
jxx + ΦS

x∇ΦS
· ∇ϕR

jx + ΦS
x∇ϕ

R
j · ∇ΦS

x

−UϕR
jxΦS

xx + ϕR
jx∇ΦS

· ∇ΦS
x −UΦS

yϕ
R
jxy −UϕR

jyΦS
xy + ΦS

y∇ΦS
· ∇ϕR

jy
+ΦS

y∇ϕ
R
j · ∇ΦS

y + ϕR
jy∇ΦS

· ∇ΦS
y = 0

(29)

The boundary condition on the mean wetted body surface Sb:

⇀
n · ∇ϕR

j = −iωn j + m j (30)

where the m j terms representing the coupling effect between the steady and unsteady flows are given as:

(m1, m2, m3) =
(⇀
n · ∇

)(⇀
U −∇ΦS

)
(m4, m5, m6) =

(⇀
n · ∇

)[⇀
x ×

(⇀
U −∇ΦS

)] (31)

where
⇀
U = (U, 0, 0) .

It is worth noting that the effect of the nonlinear steady potential ΦS occurs not only in the
so-called m j terms in Equation (30), but also in the free surface boundary condition Equation (29).

Once the radiation potential ϕR
j is determined, the added mass akj and damping coefficient

bkj (k, j = 1, 2, · · · , 6) can be obtained as:

akj =
−ρ
ω2 Re

s

Sb

(iωϕR
j −UϕR

jx +∇ΦS
· ∇ϕR

j )nkds

bkj =
−ρ
ω Im

s

Sb

(iωϕR
j −UϕR

jx +∇ΦS
· ∇ϕR

j )nkds
(32)

3. Desingularized Rankine Panel Method

In this paper, a desingularized Rankine panel method is applied, where the Rankine sources
are distributed inside the body and above the free surface at a distance Ld according to the formula
Ld = ld(Dm)

υ proposed by Cao et al. [17], ld and υ are equal to 1.0 and 0.5 respectively and Dm is the
local mesh size (the square root of the local mesh area), as demonstrated in Figure 2.J. Mar. Sci. Eng. 2020, 8, 106 7 of 19 
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1

,0

1

, , 1 1, 1

1 1

1,
( )

0, otherwise

( ) ( ) ( )

i i

i

i i k

i k i k i k

i k i i k i

u u u
N u

u u u u
N u N u N u

u u u u



 

  

   

  
 

 


   
  

  (34) 
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1 1
( ) ( ) ( )s

PQ c sS S

P Q dS x dS
r x x

   
    (35) 

where P  is the field point, Q  is the source point on the integration surface S , PQr  represents the 

distance between the field point and the source point; ( )Q  is the source strength distribution over 

x

yz

Free surface

Body surface

source point

source point

collocation point

Ld

Dm

o

Figure 2. Desingularized Rankine panel model.
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A suitable radiation condition should be implemented to ensure a unique solution for the specific
BVP when using the Rankine source method. Typically, the numerical techniques can be classified as
follows:

• The upstream radiation condition [21]: imposing a boundary condition by difference method at
the upstream boundary of the truncated free surface to ensure that no scattered waves propagate
ahead of the vessel.

• The staggered method [22]: shifting the source points above the free surface a certain
distance downstream.

• The fluid domain decomposition method [23]: the flow field is divided into an inner domain and
an outer domain by vertical control surfaces, where the Rankine source is adopted in the inner
area, while the Kelvin source is adopted in the outer domain, and the solutions are matched on
the control surfaces.

• The modified Sommerfeld radiation condition [24,25]: the modified Sommerfeld radiation
condition is adopted by taking account the Doppler shift of the scattered waves at the control
surface that truncates the infinite fluid domain.

In this study, the radiation condition is satisfied by using the staggered method for its simple
implementation and good stability. The raised source points are moved a distance ∆x toward
downstream. The recommended parameter in this study is ∆x = δ, where δ denotes the average
longitudinal value between two adjacent collocation points on the free surface. However, it should be
noted that this numerical treatment is only valid for steady wave-making problem and the radiation
problem with the Brard number τ = Uω/g > 0.25.

By using NURBS, the points (x, y, z) on the body and free surfaces can be described with parameter
coordinate (u, v) as:

[x(u, v), y(u, v), z(u, v)] =

 m∑
i=0

n∑
j=0

ωi jDi jNi,k(u)N j,l(v)


/ m∑

i=0

n∑
j=0

ωi jNi,k(u)N j,l(v)

 (33)

where Di j are the control points on the body and free surfaces; ωi j is the weight; Ni,k(u) and N j,l(v)
are the B-spline basis functions of k(l)-th order for a given knot sequence u = (u0, u1, · · · , un+k+1),
defined as:  Ni,0(u) =

{
1, ui ≤ u < ui+1

0, otherwise
Ni,k(u) =

u−ui
ui+k−ui

Ni,k−1(u) +
ui+k+1−u

ui+k+1−ui+1
Ni+1,k−1(u)

(34)

According to Green’s theorem, the velocity potential ϕ(P) in the flow field can be expressed as:

ϕ(P) =
x

S

σ(Q)
1

rPQ
dS =

x

S

σ(
⇀
x s)

1∣∣∣∣⇀x c −
⇀
x s

∣∣∣∣dS (35)

where P is the field point, Q is the source point on the integration surface S, rPQ represents the distance
between the field point and the source point; σ(Q) is the source strength distribution over the surface
S.
⇀
x c and

⇀
x s represent the coordinates of collocation point and source point, respectively.

Applying the corresponding boundary conditions on the free surface Γ f and body surface Γb,
the integral equations for the unknown source strengths can be established and solved. The velocity
potential on Γ f and the normal derivative of the velocity potential on Γb are calculated by:

x

S f

σ(
⇀
x

f
s )

1∣∣∣∣∣⇀x f
c −

⇀
x

f
s

∣∣∣∣∣ds +
x

Sb

σ(
⇀
x

b
s)

1∣∣∣∣∣⇀x f
c −

⇀
x

b
s

∣∣∣∣∣ds = ϕ0(
⇀
x

f
c ),

⇀
x

f
c ∈ Γ f (36)
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x

S f

σ(
⇀
x

f
s )
∂
∂n

 1∣∣∣∣∣⇀x b
c −

⇀
x

f
s

∣∣∣∣∣
ds +

x

Sb

σ(
⇀
x

b
s)
∂
∂n

 1∣∣∣∣∣⇀x b
c −

⇀
x

b
s

∣∣∣∣∣
dSb =

∂
∂n
ϕ0(

⇀
x

b
c),

⇀
x

b
c ∈ Γb (37)

where
⇀
x

f
c and

⇀
x

b
c denote the collocation points on the free surface Γ f and the body surface Γb;

⇀
x

f
s

and
⇀
x

b
s denote the source points on the integration surface.S f is the integration surface above the free

surface Γ f , and Sb is the integration surface inside the body surface Γb. ϕ0(
⇀
x

f
c ) is the given velocity

potential at
⇀
x

f
c and ∂

∂nϕ0(
⇀
x

b
c) is the given normal derivative of the velocity potential at

⇀
x

b
c .

Discretizing the body surface and the free surface into Nb and N f quadrilateral panels respectively,
a set of discrete equations can be obtained from the integral equations. From Equations (36) and (37) it
follows:

N f∑
j=1

σ
f
j (
⇀
x

f
s )

1∣∣∣∣∣⇀x f
ci −

⇀
x

f
s j

∣∣∣∣∣ +
Nb∑
j=1

σb
j (
⇀
x

b
s)

1∣∣∣∣∣⇀x f
ci −

⇀
x

b
sj

∣∣∣∣∣ = ϕ0(
⇀
x

f
ci) , i = 1, 2, · · · , N f (38)

N f∑
j=1

σ
f
j (
⇀
x

f
s )

∂
∂ni

 1∣∣∣∣∣⇀x b
ci −

⇀
x

f
s j

∣∣∣∣∣
+

Nb∑
j=1

σb
j (
⇀
x

b
s)
∂
∂ni

 1∣∣∣∣∣⇀x b
ci −

⇀
x

b
sj

∣∣∣∣∣
 = ∂

∂ni
ϕ0(

⇀
x

b
ci) , i = 1, 2, · · · , Nb (39)

As can be seen from the discrete equations of Equations (38) and (39), the total number of equations
is equal to the number of unknowns, i.e., N = Nb + N f . Therefore, by satisfying the corresponding
boundary conditions on the body surface and free surface at the collocation points, a set of linear
equations for the unknown source strengths can be obtained. By solving these equations, the source
strengths can be determined.

4. Numerical Results and Discussion

Two cases are studied: a sphere given by Equation (40), and a Wigley I ship [26] given by
Equation (41):

x2 + y2 + (z− h)2 = r2 (40)

y =
B
2


[
1−

( z
T

)2
][

1−
(2x

L

)2][
1 + 0.2

(2x
L

)2]
+

( z
T

)2
[
1−

( z
T

)8
][

1−
(2x

L

)2]4
 (41)

where r is the radius of the sphere and h is the submerged depth; L, B and T are the length, the beam
and the draft of the hull respectively. The Wigley I ship has the length to beam ratio L/B = 10 and the
beam to draft ratio B/T = 1.6.

Figure 3 shows the typical panel arrangements of the submerged sphere and the Wigley I ship.
In addition, the panel arrangements on the raised plane (cyan) above the free surface are shown.
In Figure 3a, the free surface of the computational domain extends to 5.0r upstream, 5.0r sideways and
10.0r downstream. The discretized panels of the sphere and the half width free surface are 21 × 21
and 50 × 16, respectively. In Figure 3b, the free surface of the computational domain extends to 1.0L
upstream, 0.75L sideways and 1.5L downstream. The discretized panels of the half Wigley I ship and
half width free surface are 30 × 10 and 76 × 19, respectively.
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4.1. Results of the NSWM Problem

In order to compute the NSWM flow, a submerged moving sphere of r = 1.0 m at three different
submerged depths (h = 1.5r, 2.0r, 3.0r) is chosen as the study case, the Froude number is defined as
Fr = U/

√
gh, so the results at the same Froude number will correspond to different forward speeds

when the submerged depth is varied. The numerical results are compared with the analytical results of
Wu and Taylor [27]. Figure 4 shows the dimensionless nonlinear wave-making resistance coefficient
Cw and lift force coefficient CL of the sphere, where the “linear” results are obtained by solving the
BVP of the first-order steady velocity potential, the “nonlinear” results are obtained from the BVPs of
the superposition of the first-order and second-order steady velocity potentials; Cw = −FS

1/(ρgπ r3)

and CL = FS
3/(ρgπ r3).
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Figure 4. Coefficients of wave-making resistance (a) and lift force (b) at different Fr.

As can be seen from Figure 4, the present results are in good agreement with the analytical results
in Wu and Taylor [27] for the linear solution. As can be seen in Figure 4a, the nonlinear results are
larger than the linear results when the Froude number is less than a certain threshold value, whereas
the situation reverses when it exceeds the threshold. However, a converse trend can be seen for the lift
force in Figure 4b. A similar result can also be found in Kim [28]. This may be attributed to the “bow
and stern wave-making effect”, i.e., when a nonlinear free surface boundary condition is considered,
the pressures at the bow and the stern will be different from those when a linear free surface boundary
condition is considered. In addition, the differences between the linear and nonlinear results decrease
when the submerged depth increases, which demonstrates that the effect of the nonlinear boundary
condition on the free surface can be ignored when the submerged depth exceeds a certain value, which
is also the case in reality.
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4.2. mj-Terms

The difficulty in solving a radiation problem lies in the accurate calculation of mj terms, which
contain the second-order derivatives of the steady velocity potential in the body boundary condition [29].
In order to calculate the mj-terms to verify the calculation accuracy of the derivatives of the velocity
potential on the body surface, the desingularized method is applied to a sphere (r = 1.0 m) moving at
a speed U = 1.0 m/s in unbounded fluid.

The results of the first-order and second-order derivatives of the velocity potential are shown
in Figure 5a–c, and the results of m1, m2 are shown in Figure 5d. It shows that the numerical results
virtually coincide with the analytical solutions, which demonstrates that the present method is suitable
for calculating the first- and second-order derivatives of the velocity potential on the body surface.
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4.3. Results of the Diffraction Problem

Tables 1 and 2 present the non-dimensional real and imaginary parts of the surge and heave wave
exciting forces on the submerged sphere (h = 2.0r) moving at Fr = U/

√
gr = 0.4 in head waves as

function of the non-dimensional wave number obtained by the present method in comparison with the
analytical results in [27], where ke = ω2/g. As can be seen in Tables 1 and 2, in general the present
results based on the NSWM flow are in better agreement with those in [27] than the results based
on the NK flow. Some deviations are observed at low frequencies, especially for the results based
on the NK flow. There are two explanations for this larger deviation at low frequencies: firstly, NK
flow cannot deal accurately with the relatively high forward speed because the wave disturbance
induced by the forward speed of the body is neglected. Secondly, there exists a critical frequency kcr at
the Brard number τ = Uω/g = 0.25, which is associated with the radiation condition [10]. Since the
critical frequency is kcr= 0.2608 for this case, poor accuracy is resulted when the frequency is near the
critical frequency.
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Table 1. Surge wave exciting forces on the sphere (Fr = 0.4, h = 2.0r, kcr = 0.26808).

kr

f1/(ρgπAr3ke) (Real Part) f1/(ρgπAr3ke) (Imaginary Part)

Analytical
Results [27]

Present
(Nonlinear Steady

Wave-Making,
NSWM)

Present
(Neumann–Kelvin,

NK)

Analytical
Results [27]

Present
(NSWM)

Present
(NK)

0.4 −0.0081 −0.00898 −0.00973 −0.5827 −0.58452 −0.61944
0.5 −0.0102 −0.01025 −0.01121 −0.4524 −0.45413 −0.47710
0.6 −0.0098 −0.00975 −0.00997 −0.3525 −0.35387 −0.35335
0.7 −0.0082 −0.00826 −0.00860 −0.2758 −0.27684 −0.27274
0.8 −0.0065 −0.00644 −0.00668 −0.2166 −0.21749 −0.21142
0.9 −0.0049 −0.00487 −0.00513 −0.1707 −0.17146 −0.16897
1.0 −0.0036 −0.00356 −0.00333 −0.135 −0.13561 −0.13653
1.2 −0.0018 −0.00182 −0.00199 −0.0851 −0.08553 −0.08533
1.4 −0.0009 −0.00089 −0.00100 −0.0541 −0.05436 −0.05635
1.6 −0.0004 −0.00042 −0.00035 −0.0346 −0.03476 −0.03859
1.8 −0.0002 −0.00020 −0.00020 −0.0222 −0.02233 −0.02638
2.0 −0.0001 −0.00012 −0.00012 −0.0143 −0.01443 −0.01533

Table 2. Heave wave exciting forces on the sphere (Fr = 0.4, h = 2.0r, kcr = 0.26808).

kr

f3/(ρgπAr3ke) (Real Part) f3/(ρgπAr3ke) (Imaginary Part)

Analytical
Results [27]

Present
(NSWM)

Present
(NK)

Analytical
Results [27]

Present
(NSWM)

Present
(NK)

0.4 −0.5691 −0.56878 −0.70940 0.0310 0.02993 0.03530
0.5 −0.4380 −0.43853 −0.41167 0.0248 0.02518 0.02611
0.6 −0.3398 −0.33971 −0.34704 0.0187 0.01872 0.01980
0.7 −0.2653 −0.26541 −0.27041 0.0136 0.01344 0.01479
0.8 −0.2082 −0.20856 −0.21633 0.0097 0.00977 0.01051
0.9 −0.1642 −0.16431 −0.17955 0.0069 0.00698 0.00727
1.0 −0.1299 −0.12995 −0.15140 0.0048 0.00483 0.00506
1.2 −0.0820 −0.08205 −0.09850 0.0023 0.00224 0.00239
1.4 −0.0522 −0.05224 −0.05490 0.0011 0.00107 0.00158
1.6 −0.0334 −0.03340 −0.03710 0.0005 0.00050 0.00052
1.8 −0.0214 −0.02146 −0.02938 0.0002 0.00021 0.00021
2.0 −0.0138 −0.01383 −0.01844 0.0001 0.00010 0.00017

Figure 6 shows the non−dimensional amplitudes and corresponding phase angles of heave and
pitch wave exciting force/moment for the Wigley I ship advancing at Fr = U/

√
gL = 0.4 in head

waves, where ∇ is the displacement volume. In order to investigate the influence of different steady
flow models on wave exciting forces at various wave frequencies, the results based on the NK, DB
and NSWM flows are compared in Figure 6. From Figure 6 one can observe that the present results
obtained based on the three different steady flow models are in favourable agreement with the results
obtained by Kara and Vassalos [30] using a 3D time domain method based on a transient free surface
Green function, as well as with the experimental results by Journée [26]. In addition, one can also
find that the results based on the NSWM flow and other two methods based on the NK and DB flows
do not show evident differences, the reasons can be explained as follows: on one hand, though the
effect of nonlinear steady flow is considered in the free surface boundary condition Equation (24),
the interaction has no relation with the diffraction potential in the body surface boundary condition
Equation (25); on the other hand, the small differences can be attributed to the predominant proportion
of the Froude–Krylov force in the wave exciting force. Therefore, it can be concluded that the effect of
the NSWM potential contributes unremarkably to the wave exciting force.
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Figure 7 shows the real part of the diffraction wave contour for the submerged sphere (Fr = 0.4,
kr = 0.5) and the Wigley I ship (Fr = 0.4, kL = 2π) based on the NSWM flow.
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4.4. Results of the Radiation Problem 

Tables 3–5 present the added masses and damping coefficients of the submerged sphere (h = 
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c  at the Brard number 

0.25  . As it can be seen from these tables, the numerical results based on the NSWM flow agree 

well with the analytical results in [27] and the numerical results in [10]. It should be noted that the 
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Table 6 presents the coupling added masses and coefficients. It can be seen that the present 

results almost show the reverse relations, i.e., 
13 13 31 31( , ) ( , )A B A B   , which is consistent with the 

results in [27]. 

Table 3. Added masses and damping coefficients of the sphere in surge motion (Fr = 0.4, h = 2.0r, kecr 

= 0.3906). 

ek r  

A11 B11 

Analytical 

Results [27] 

Numerical 

Results [10] 

Present 

(NSWM) 

Analytical 

Results [27] 

Numerical 

Results [10] 

Present 

(NSWM) 

0.6 1.2378 1.2358 1.25532 0.0362 0.0365 0.03447 

0.7 1.1615 1.1614 1.16928 0.0247 0.0250 0.02586 

0.8 1.1021 1.1021 1.10996 0.0195 0.0197 0.01972 

0.9 1.0545 1.0544 1.06164 0.0169 0.0170 0.01724 

1.0 1.0154 1.0153 1.02189 0.0154 0.0155 0.01572 

1.5 0.8934 0.8933 0.89818 0.0113 0.0113 0.01144 

2.0 0.8310 0.8310 0.83495 0.0079 0.0079 0.00794 

2.5 0.7941 0.7940 0.79751 0.0052 0.0052 0.00519 
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Figure 7. Real part of diffraction wave contour of (a) submerged sphere and (b) Wigley I ship.

4.4. Results of the Radiation Problem

Tables 3–5 present the added masses and damping coefficients of the submerged sphere (h = 2.0r)
moving at Fr = U/

√
gr = 0.4 in surge, sway and heave motions respectively, where the added masses

and damping coefficients are non-dimensionalized as Ai j = ai j/(πρr3), Bi j = bi j/(πρωr3), i, j = 1, 2, 3.
The kecr corresponds to the critical frequency ωc at the Brard number τ = 0.25. As it can be seen from
these tables, the numerical results based on the NSWM flow agree well with the analytical results in [27]
and the numerical results in [10]. It should be noted that the linear steady wave-making potential ΦS
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was used to evaluate m j terms in [10], without considering ΦS in the free surface boundary condition.
From these results, it can be concluded that the effects of the free surface nonlinearities are very weak
due to the submerged depth.

Table 3. Added masses and damping coefficients of the sphere in surge motion (Fr = 0.4, h = 2.0r, kecr =

0.3906).

ker

A11 B11

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

0.6 1.2378 1.2358 1.25532 0.0362 0.0365 0.03447
0.7 1.1615 1.1614 1.16928 0.0247 0.0250 0.02586
0.8 1.1021 1.1021 1.10996 0.0195 0.0197 0.01972
0.9 1.0545 1.0544 1.06164 0.0169 0.0170 0.01724
1.0 1.0154 1.0153 1.02189 0.0154 0.0155 0.01572
1.5 0.8934 0.8933 0.89818 0.0113 0.0113 0.01144
2.0 0.8310 0.8310 0.83495 0.0079 0.0079 0.00794
2.5 0.7941 0.7940 0.79751 0.0052 0.0052 0.00519
3.0 0.7699 0.7699 0.77304 0.0033 0.0033 0.00327
3.5 0.7529 0.7529 0.75584 0.0021 0.0021 0.00207
4.0 0.7403 0.7403 0.74306 0.0013 0.0013 0.00131
4.5 0.7306 0.7305 0.73318 0.0008 0.0008 0.00081
5.0 0.7228 0.7228 0.72529 0.0005 0.0005 0.00050

Table 4. Added masses and damping coefficients of the sphere in sway motion (Fr = 0.4, h = 2.0r, kecr =

0.3906).

kr

A22 B22

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

0.6 1.1330 1.1357 1.13521 0.0771 0.0769 0.09103
0.7 1.0517 1.0528 1.05084 0.0650 0.0655 0.06482
0.8 0.9933 0.9946 0.99414 0.0544 0.0551 0.05481
0.9 0.9406 0.9506 0.95030 0.0454 0.0459 0.04605
1.0 0.9159 0.9167 0.91640 0.0380 0.0385 0.03851
1.5 0.8215 0.8219 0.82204 0.0164 0.0166 0.01656
2.0 0.7783 0.7787 0.77908 0.0076 0.0076 0.00765
2.5 0.7535 0.7538 0.75435 0.0037 0.0037 0.00368
3.0 0.7371 0.7374 0.73805 0.0019 0.0019 0.00184
3.5 0.7254 0.7256 0.72638 0.0010 0.0010 0.00095
4.0 0.7165 0.7168 0.71757 0.0005 0.0005 0.00051
4.5 0.7095 0.7098 0.71066 0.0003 0.0003 0.00027
5.0 0.7040 0.7042 0.70507 0.0002 0.0002 0.00015
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Table 5. Added masses and damping coefficients of the sphere in heave motion (Fr = 0.4, h = 2.0r, kecr
= 0.3906).

kr

A33 B33

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

Analytical
Results [27]

Numerical
Results [10]

Present
(NSWM)

0.6 1.0569 1.0526 1.05860 0.1090 0.1119 0.09671
0.7 0.9928 0.9925 0.98991 0.0862 0.0874 0.08827
0.8 0.9449 0.9447 0.94204 0.0709 0.0712 0.07146
0.9 0.9076 0.9076 0.90508 0.0597 0.0606 0.06026
1.0 0.8780 0.8775 0.87549 0.0511 0.0606 0.05162
1.5 0.7912 0.7911 0.78990 0.0264 0.0261 0.02659
2.0 0.7504 0.7503 0.74954 0.0145 0.0146 0.01473
2.5 0.7272 0.7271 0.72632 0.0083 0.0083 0.00828
3.0 0.7123 0.7123 0.71135 0.0048 0.0048 0.00478
3.5 0.7020 0.7021 0.70125 0.0028 0.0029 0.00276
4.0 0.6942 0.6942 0.69367 0.0017 0.0017 0.00169
4.5 0.6882 0.6882 0.68768 0.0010 0.0010 0.00100
5.0 0.6833 0.6833 0.68286 0.0006 0.0006 0.00064

Table 6 presents the coupling added masses and coefficients. It can be seen that the present results
almost show the reverse relations, i.e., (A13, B13) = (−A31, −B31), which is consistent with the results
in [27].

Table 6. Coupling added masses and damping coefficients of the sphere (Fr = 0.4, h = 2.0r, kecr = 0.3906).

kr

A13 A31 B13 B31

Analy.
[27]

Present
(NSWM)

Analy.
[27]

Present
(NSWM)

Analy.
[27]

Present
(NSWM)

Analy.
[27]

Present
(NSWM)

0.6 −0.0269 −0.02001 0.0269 0.01927 −0.0985 −0.09120 0.0985 0.08952
0.7 −0.0075 −0.00918 0.0075 0.00840 −0.0791 −0.07988 0.0791 0.07865
0.8 0.0030 0.00331 −0.0030 −0.00356 −0.0642 −0.06466 0.0642 0.06351
0.9 0.0089 0.00930 −0.0089 −0.00935 −0.0527 −0.05271 0.0527 0.05193
1.0 0.0122 0.01235 −0.0122 −0.01253 −0.0437 −0.04345 0.0437 0.04291
1.5 0.0135 0.01329 −0.0135 −0.01360 −0.0187 −0.01880 0.0187 0.01818
2.0 0.0095 0.00958 −0.0095 −0.00960 −0.0093 −0.00954 0.0093 0.00885
2.5 0.0061 0.00624 −0.0061 −0.00602 −0.0056 −0.00567 0.0056 0.00533
3.0 0.0038 0.00377 −0.0038 −0.00377 −0.0042 −0.00412 0.0042 0.00385
3.5 0.0023 0.00226 −0.0023 −0.00229 −0.0036 −0.00365 0.0036 0.00341
4.0 0.0014 0.00141 −0.0014 −0.00145 −0.0034 −0.00349 0.0034 0.00321
4.5 0.0009 0.00089 −0.0009 −0.00085 −0.0034 −0.00341 0.0034 0.00315
5.0 0.0006 0.00055 −0.0006 −0.00054 −0.0033 −0.00334 0.0033 0.00315

Figure 8 shows the heave and pitch hydrodynamic coefficients of the Wigley I ship at
Fr = U/

√
gL = 0.4, where the coupling hydrodynamic coefficients are non-dimensionalized

as A35(53) = a35(53)/(ρ∇L), B35(53) = b35(53)/(ρ∇L
√

g/L). As it can be seen in Figure 8, good
agreement is achieved among the present numerical results and the results in [30] using NK flow and a
transient free surface Green function method, and the experimental results by Journée [26]. The results
based on the NSWM flow show in general better agreement with the experimental results than those
obtained using DB and NK flows, especially in the low frequency ranges. However, a remarkable
deviation can be observed for the heave damping coefficient in Figure 8b. This is because the uniform
flow is taken as the basic flow in the method using NK flow, correspondingly the second-order
derivatives of the steady potential ΦS are neglected in the m j terms. As a result, this treatment cannot
accurately reflect the interaction between the steady flow and the unsteady flow in the body surface
boundary condition. On the other hand, as explained in [9], the larger contribution of the steady
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velocity potential in both the body surface and free surface boundary conditions at low frequencies
also leads to relatively larger deviations, but these effects are not fully considered in the method using
DB flow. Therefore, the coupling effects between the nonlinear steady flow and the unsteady flow,
which are reflected in both the free surface boundary condition and the m j terms in the body surface
boundary condition, are quite important for the prediction of hydrodynamic coefficients, especially at
low frequencies.
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5. Conclusions

In this paper, a desingularized Rankine panel method based on the NSWM flow is applied for
analysis of the hydrodynamic problems of a ship advancing in waves. NURBS are used to describe
the body surface and the free surface. The wave exciting forces and the hydrodynamic coefficients
are computed by solving the diffraction problem and radiation problem, respectively. A numerical
study is carried out for a submerged sphere and a modified Wigley hull advancing in head waves.
The numerical results are compared with the analytical solutions as well as other numerical results and
experimental results available in literature. The following conclusions can be drawn.

(1) The numerical results of the wave exciting forces, added masses and damping coefficients
computed using the present numerical method show good agreement with the published numerical
and experimental results, which verifies the reliability of the present method. A comparison among
the results indicates that the method based on the NSWM flow can generally give better agreement
with the experimental and other published results than those based on NK and DB flows, especially
for the hydrodynamic coefficients in relatively low frequency ranges.

(2) The NSWM potential has an influence on the prediction of the wave exciting forces. However,
differences among different steady flow models are not very remarkable due to the dominant proportion
of the Froude–Krylov force for the considered cases. The coupling effects between the nonlinear steady
flow and the linear unsteady flow are important for the prediction of hydrodynamic coefficients,
particularly at low frequencies.

(3) Compared with the time domain method, considering the NSWM flow as basic flow can be
used as a more practical and faster numerical tool for evaluating the hydrodynamic performances of a
ship in the early design stage.

In the present study, the method based on the NSWM flow is only applied for a submerged sphere
and a modified Wigley hull. For reliable verification and application of this numerical method, further
study on various ship forms needs to be carried out. Besides, in the numerical study, the squat of
the hull (i.e., the trim and sinkage) is neglected. For the cases at larger forward speed, the numerical
accuracy could be further improved by taking the effects of trim and sinkage into account. In addition,
the desingularized Rankine panel method is only applied for the cases of Brard number τ larger than
0.25, where the radiation condition is satisfied by the staggered method. For τ < 0.25, more robust
methods for satisfying the radiation condition, such as the modified Sommerfeld radiation condition
in [24,25], should be adopted. These will be the focuses of the future studies.
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