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Abstract: This paper investigates the role that virtual environments can play in assisting engineers and
divers when performing subsea inspections. We outline the current state of research and technology
that is relevant to the development of effective virtual environments. Three case studies are presented
demonstrating how the inspection process can be enhanced through the use of virtual data. The first
case study looks at how immersive virtual underwater scenes can be created to help divers and
inspectors plan and implement real-world inspections. The second case study shows an example
where deep learning-based computer vision methods are trained on datasets comprised of instances
of virtual damage, specifically instances of barnacle fouling on the surface of a ship hull. The trained
deep models are then applied to detect real-world instances of biofouling with promising results.
The final case study shows how image-based damage detection methods can be calibrated using
virtual images of damage captured under various simulated levels of underwater visibility. The work
emphasizes the value of virtual data in creating a more efficient, safe and informed underwater
inspection campaign for a wide range of built infrastructure, potentially leading to better monitoring,
inspection and lifetime performance of such underwater structures.

Keywords: virtual reality; underwater inspections; infrastructure damage assessment; image-processing;
deep learning

1. Introduction

Assessing the submerged part of marine structures introduces new challenges for inspectors.
Poor underwater visibility conditions [1] make damage assessment particularly difficult. Additionally,
divers must contend with cold, uncomfortable, and often hazardous conditions, and they must often
carry out the inspection within a narrow time window. These factors contribute to the increased
variability and reduced accuracy of the inspection results [2,3]. Given the extensive effort and expense
associated with undertaking such inspections, there is a strong need to develop tools that can improve
the condition of monitoring and, ultimately, enhance the quality of the inspection results. In this
vein, this paper describes an approach for developing carefully controlled underwater virtual scenes
that: (i) validate methodologies of assessment, (ii) facilitate the design of better image-based damage
detection tools, and (iii) enable the performance of image-based non-destructive testing (NDT) methods
to be evaluated prior to real-world implementation. A virtual-based approach can be a substitute
to real-implementation for many situations and also provide both qualitative and quantitative ideas
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around the best implementation methods for underwater inspections. This is particularly relevant
for complex underwater inspection campaigns, or where the time window available or the variability
of environmental parameters potentially can reduce the data obtained, unless an assessment using
virtual simulations is carried out. Several recent projects have focused on virtual reality (VR) or
simulated augmented reality (AR) providing insight into archeological robotics [4,5] underwater
cultural heritage [6], and underwater mining [7]. The application of such approaches attempts to fill
an existing and much needed gap in terms of engineering use-cases relevant to commercial and safety
or serviceability aspects. This paper builds on the abovementioned need of this nascent and rapidly
evolving sector.

Three distinct case studies are used to illustrate applications of virtual data in underwater
inspections in this paper to establish this idea. The first case study looks at how the creation of a virtual
environment to enable virtual reality (VR) can play a role in developing inspection methodologies to
meet the needs of fast-emerging technologies like fish farms, floating wind turbines, wave devices,
ocean-bed cables, risers and long umbilicals. In particular, this case study features a virtual aquaculture
site. The aquaculture sector is rapidly growing, and new fish cage designs are continually being
produced online. VR will be very important at lower technological readiness levels to integrate the
suitability of an offshore design or intervention solution. The capacity to test inspection methodologies
and NDT tools without having to deploy full campaigns or large-scale experiments is of high practical
value for inspectors [8,9].

The second case study shows how virtual imagery can be used to help develop new algorithms
by generating vast amounts of labelled photorealistic imagery which can then be used to train deep
neural networks. Deep learning techniques have experienced a surge in popularity in recent years,
and these techniques have demonstrated strong performances across a range of computer vision
applications [10]. However, these techniques typically require large quantities of training data which
are generally unavailable for underwater inspection applications. Other works have resorted to using
internet-based search approaches as a means of assembling large datasets [11] but these approaches
require manual verification (since, for instance, searching for images using a keyword “crack” returns
many images that do not relate to structural cracks), and there may be copyright issues. Furthermore,
labelled datasets generated from internet-based searches only provide a class label for each image
and they do not indicate the location of the object of interest within in the image. For the most part,
this limits their usefulness to classification problems, and not segmentation and localization problems.
To address this limitation, this case study creates a virtual scene of barnacle-fouled ship hull, and from
this, an extensive dataset of synthetic imagery is generated with accurate ground-truth information
that reveals the exact location of barnacles in the scene. This large dataset is then used to train a
convolutional neural network (CNN) which is then applied to detect barnacles in a video that was
captured as part of a real-world ship hull inspection campaign.

The third case study demonstrates how virtual scenes can be used to evaluate the performance of
image-processing algorithms. This case study investigates how the performance of corrosion and crack
detection algorithms vary as the turbidity levels are varied. A key point here is that the synthetically
generated turbidity levels can be calibrated against known and physically meaningful turbidity levels
from the publicly accessible Underwater Lighting and Turbidity Image Repository (ULTIR) [1] so
that realistic conditions can be accurately represented in virtual environments. The value of this case
study is that it gives inspectors an insight into the relationship between underwater visibility and the
performance of image-based damage assessment techniques. Furthermore, it enables inspectors to
assess the viability of adopting image processing approaches prior to an inspection and helps them
to identify the limits at which image-based methods begin to produce unacceptably poor results
(i.e., high probability of false alarms and low probability or detection).
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2. Background

Exploiting virtual data is an established practice in many fields, such as investigating
manufacturing production processes in the automotive industry [12] and training pilots in the
aerospace sector where flight simulators are routinely used for replicating a host of scenarios [13].
These simulators are useful for practising and refining common tasks, such take-off and landing and
coordinating with air traffic control, as well as for handling emergency events, where they help pilots
respond to these situations in a safe environment. Additionally, VR (Virtual Reality) is increasingly
gaining a foothold in the consumer market, where VR headsets are becoming more affordable and
immersive, such as the HTC Vive Pro Eye enabled with foveated rendering, hands-free interaction and
precision eye tracking [14].

Adopting VR technology for underwater inspections shares many of the same benefits that flight
simulators bring to the aerospace sector. VR-based inspection simulations can help divers gain a better
understanding of what to expect during inspections in a risk-free setting and can serve as an effective
route-planning tool by giving inspectors a chance to identify parts of a structure that require special
attention (e.g., critical joints) and easily relaying this information to the dive team. Communicating this
information with the help of VR is more visually compelling compared with traditional approaches,
which usually consist of presenting the dive team with a written brief outlining the task at hand.
Depending on the type of structure, divers may be asked to assess:

(1) Corrosion or indicators of corrosion
(2) Consumption of cathodic protection
(3) Presence and appearance of cracks
(4) Exposed rebar, missing bolts and signs of damage to coatings, sealings, joints etc.
(5) Deformation of the structure
(6) Presence of scour and erosion
(7) Upstream and downstream blockages
(8) Presence and extent of marine growth colonisation

These tasks are carried out for traditional built infrastructure, like underwater sheet piles and for
bourgeoning sectors like monopiles for offshore wind turbines, where limited weather windows are
available for inspection. In practice, it is often challenging for the diver to determine what is noteworthy.
Having the ability to virtually “walk-through” an underwater infrastructure scene with the dive team,
and being able to show site-specific visual examples of important structural components and damage
forms that should be documented, is a major asset, especially when language, technical and interpretive
barriers exist between the engineers and the dive team and/or when the divers have limited experience
and are not experts in either structural assessments or marine biology/chemistry [15,16].

Numerous researchers have looked at exploiting virtual environments for underwater
application—mainly for underwater archaeological and gaming applications where VR allows users to
explore underwater sites of cultural significance such as shipwrecks [17–19]. A virtual and augmented
reality system for exploration of underwater archaeological sites was demonstrated in [20]. The system
offers archaeologists and the general public a way to explore a realistic reconstruction of the sites and
glean new insights on underwater archaeological sites. Similarly, in [21], virtual reality technologies
were proposed as tools that could help increase exploration time in an underwater archaeological site.

In [22], a virtual-environment-based testbed was developed to act as an alternative to difficult,
costly, and possibly hazardous real-time testing and evaluation of control algorithms for autonomous
underwater vehicles (AUVs). Other examples of graphical simulators used for AUVs are outlined
in [23]. In another study, [24], the authors explored the process of automatically creating virtual tours
from footage captured using an omnidirectional underwater camera in AUVs that can cover large
marine areas with precise navigation.

Virtual underwater scenes have also been developed to facilitate SCUBA training and to provide
virtual SCUBA diving experiences. In [25], a highly immersive, multi-sensory VR simulation is
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demonstrated whereby users are attached to a motion platform with their outstretched arms and
legs placed in a suspended harness. They receive visual and aural feedback through the Oculus Rift
head-mounted display and a pair of headphones for added realism. Additionally, buoyancy, drag,
and temperature changes are simulated through various sensors.

Virtual reality technology has been employed to aid the inspection process in a number of cases.
Virtual reality systems have been developed for aircraft inspection and maintenance training [26] and
for fire safety inspections [27]. In [28], the authors discuss the use of virtual tours, augmented reality,
and informational modelling for visual inspection and structural health monitoring. A methodology
for integrating existing data about a structure and meta-data into a combination of virtual tour (VT),
augmented reality (AR) and informational modeling (IM) environment was presented. The objective
of their method was to enable on- and off-site presentation of engineering assessment data in an
organized, intuitive, and interactive manner, and additionally foster communication between different
parties involved with a structure. However, to the authors’ knowledge, there have been no works that
consider the use of virtual environments for overcoming problems that are specific to underwater
damage detection as part of structural inspections. This research is especially geared towards exploring
application areas where VR can support inspection coordination and improve the quality of collected
inspection data. Thus, an important contribution of this research is the identification of applications
where VR can contribute to underwater monitoring, and the description of how virtual environments
can be simulated for these applications.

3. Case Studies

This section presents the three case studies which show various benefits of using virtual
environment as a tool for enhancing underwater inspections. The first case study focusses on
how virtual environment can play a role in developing inspection methodologies, the second case
study shows how virtual data can be used to develop performant deep learning computer vision
techniques, while the third case study demonstrates how virtual scenes can be employed to gauge the
performance levels of image-processing based damage assessment algorithms. The overall motivation
behind the choice of the cases is to extend the applicability of VR approaches to a range of traditional
and bourgeoning infrastructure sectors related to the marine environment. Typically, such sectors
have a strong commercial and social relevance and their inspections are limited due to lack of
access and constraints in archiving, analysing and synthesizing the obtained information. To this
effect, three sectors are chosen. This first sector considered is the fisheries sector which is currently
undergoing significant modernization through automation, analyses and monitoring [29]. The second
case study focuses on the growth of barnacles on ship hulls and addresses an often-overlooked area of
fluid-structure interaction due to marine growth. For static or mobile structures, marine growth can
alter the hydrodynamics on the structure and fundamentally, such variation in force is related to the
extent and the surface roughness of the growth, eventually impacting the parameters in Morison’s
equation [30]. A VR approach-driven extensive simulation can thus integrate existing knowledge about
such marine growth and eventually lead to the standardization of design process around this topic,
linked to specific types of growths. The third sector considered in this paper is the degrading-built
infrastructure in the marine environment, where significant information from diving or remotely
operated vehicle (ROV) driven campaigns is often available but there is inadequate guidelines around
the right environment to carry out such inspections mainly due to variations in lighting and turbidity
conditions. The impact of such inspections is directly related to the safety and performance of such
structures. While the choice of the three sectors considered are strongly guided by ideas on safety,
the impact of each is presented in Table 1, mapped to the sustainable development goals outlined by
the United Nations (UN).
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Table 1. Alignment of Case Studies to UN Sustainable Development Goals.

Case Study Alignment to UN Sustainable Development Goals

Fisheries 14. Life Below Water

Marine Growth 9. Industry, Innovation and Infrastructure

Structural Inspections 11. Sustainable Cities and Communities

3.1. Virtual Scene Simulation to Investigate Assessment Methodologies: A Case Study on Fisheries

This case study demonstrates four distinct areas where virtual scenes can assist inspectors
in the rapidly emerging sector of fisheries: (a) exploration, (b) interaction, (c) route planning,
and (d) developing safety procedures. To create such a tool, the virtual underwater environment
needs to be developed first, as presented in Figure 1. This step can be complex and related to
site-specific conditions.
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Figure 1. A schematic approach for creating virtual underwater scenes to advise diving campaigns.

A virtual base scene, specific to the site under consideration, can be developed using cross-platform
game engines. This paper uses Unity [31] in this regard. The base scene consists of the landscape,
water plane, outdoor lighting model and the atmosphere involving the sky and sun features. In
this paper, an external module (Aquas) was added to the project to extend the functionality of the
water-related features for the base scene.

The structure within the base scene incorporated by importing their 3D models (including
marine growth shapes, colours and textures if required) based on existing information from drawings
and/or previous inspections. Realistic marine life and bubbles within such scenes can make the
virtual experience richer and it is important for moving objects or structures within water to respect
fundamental physics as much as possible.

To virtually explore the scene created in all directions (including jumping and dashing), camera
controls are added next, operated by the user typically with mouse and arrow keys. Optical effects
underwater due to varied lighting and turbidity are important factors influencing the quality of
information from images obtained and such effects are simulated by adding a low contrast blue fog,
representing scattering and varied absorption of light rays underwater, depending on their wavelength.
The density of the added blue fog effect is representative of turbidity in water. Ambient above-water
and underwater sounds (e.g., breaking waves, marine life, diving splash) are added next to create an
immersive experience for users.
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Virtual information panels are placed throughout the scene at critical points around the
infrastructure to be monitored to guide users and provide site-specific information. Such information
provides a virtual experience of the type of damage or other features of interest that divers should
expect, and the related monitoring tasks that are subsequently required to be carried out. Such panels
can also help engineers to communicate with the dive team more effectively to obtain maximized
information. An immersive experience like this should avoid any visual lag for the end users and
it may be necessary to optimize certain elements of the scene for this purpose. This is particularly
relevant for hand-held devices, when dealing with particularly complex scenes and the design of
scenes should balance realism with computational efficiency based on the device where a virtual-scene
driven training or implementation will be carried out. The deployed virtual diving scenario should
support a wide range of platforms (e.g., Windows, Max OS X and Linux, Android, WebGL) to allow
preliminary virtual dives on-site.

Figure 2a presents a virtual salmon fisher representing an actual site (Figure 2b) in Ireland. It starts
from above the water surface, so that the diver has a good sense of the site overall. To make the
experience more attractive, a realistic terrestrial environment (e.g., coastline of inspection site, buoy)
for the actual site was added.
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Figure 2. (a) View of the virtual inspection site, and (b) a real fish farm site for reference purposes.

The user can look around the above-water scene and the underwater effects are active (Figure 3)
once the user dives below the surface. For realistic effects, continuous discharge of air bubbles, moving
aquatic vegetation on seabed and 3D models of salmon inside the fish cage are animated using artificial
intelligence techniques. An exploration of the scenes can thus engage the user into active specific to
the site in use.
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Interactive information panels are positioned at points of interest around the net structure for the
fish farm, as shown in Figure 4. The panels advise divers on relevant damage types for inspection and
specific tasks associated with inspections. This minimizes human error and has the potential to obtain
data with better specification and control for comparison in future.
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The use of numbered information panels also allows to create a pre-planned route for inspection,
reducing time in water, minimizing diver risks and maximizing information obtained from dives. It can
help test the testing contingency safety procedures, and help relay critical information underwater
in a uniform manner with significantly lower chance of errors from mismatch of interpretation of
visual information.

3.2. Utilizing Virtual Data to Develop Image-Processing Based Damage Detection Techniques: A Case Study on
Marine Growth on Structures

The second case study demonstrates how virtual scenes can be useful for training deep neural
networks. Marine growth on structures has been considered as an example in this regard since it
can creates significant changes in hydrodynamic effects on the structures and such changes are often
critically dependent on the correct description of the extent and surface roughness characteristics of
marine growth.

Deep learning techniques across a wide range of computer vision tasks offer numerous advantages
over conventional techniques by learning rich feature representations, which can be significantly more
robust than traditional hand-crafted features based on the size and variety of the training set. However,
currently, there is a paucity of large annotated training datasets for underwater applications and this
case study attempts to demonstrate how large datasets of synthetic imagery can be generated and used
to train deep neural networks for such applications. A CNN is trained in this regard to automatically
detect barnacles from video footage recorded as a part of a ship hull inspection. Barnacles increase
the surface roughness of the ship hull which causes more drag and thus increased fuel costs/lower
speeds. Knowing the extent of barnacle colonization and being able to track its growth in time is
useful to engineers as this information can be used as inputs to more detailed computational fluid
dynamic (CFD) models. The information is also useful for ship owners/operators to decide when to
carry out expensive cleaning regimes or maintenance activities as well as optimizing the frequency of
cleaning operations.

A virtual scene was created using E-on VUE® software featuring a barnacle-covered surface
(Figure 5). Four prototype 3D models of fundamentally barnacles were created. From these four
master barnacles, thousands of instances of new barnacles were developed by applying non-linear
scaling operations to the original barnacles and applying unique material properties with controlled
and random variations.
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Figure 5. A virtual scene featuring barnacles on the surface of a ship hull.

This allows for training on a large and diverse dataset featuring a broad range of types of barnacles,
varying lighting and visibility conditions and viewing perspectives. The CNN can then perform
successfully when presented with new scenes. Figure 6 shows the ship and the hull surface under
some of the representative lighting and visibility conditions that were considered.
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A total of 16,000 images of barnacles were rendered, some of which are shown in Figure 7.
Also shown are some “background” images (i.e., images without any barnacles), required for the CNN
to learn the characteristic features that enable the distinction between barnacle and non-barnacle classes.
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Two CNN models with the same network architecture (Figure 8) were trained from scratch
for 40 epochs using synthetic data generated from the virtual scene. One model was trained using
4000 images (48 min training time) of barnacles and another using 16,000 images (189 min training
time) to test if and how their relative performance was related to the training set size, when tested with
a 6GB graphics card (model: NVIDIA GeForce GTX 1060). The trained models were applied to detect
barnacles in images extracted from a real-world ship hull inspection video.
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Figure 8. Network Architecture of the two convolutional neural network (CNN) models considered for
training barnacle fouling on ship hull in a virtual environment.

Features in the images, some of which may be barnacles, were first detected using a circular
filter. This was preferred over the slower approach of directly detecting barnacles at each pixel using a
sliding window. Four sample frames for the filtered images are shown in Figure 9. Visually, it appears
that there is a good correlation of feature detection with regions of barnacle fouling. Classification
was performed only at locations where features are detected and this very significantly reduced the
detection runtime without adversely affecting its accuracy. The two CNN models were applied to
10 frames of ship hull inspection video and a representative sample of the detection results is shown in
Figure 9.
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The corresponding average sensitivity, specificity, accuracy and precision metrics for the
method [32], are shown in Figure 10. Sensitivity is defined as the proportion of barnacle pixels in an
image which are identified by the algorithms as representing barnacles. Specificity is defined as the
proportion of background pixels in the image which are identified as representing barnacles. Accuracy
measures the overall effectiveness of the algorithm to differentiate the barnacle and background pixels
correctly rather than its effectiveness on a class-by-class basis while precision is the fraction of pixels
correctly identified as representing barnacles among the total number of pixels classified as representing
barnacles. These metrics can be expressed as:

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

where TP (true positives) is the number of pixels correctly identified as representing a barnacle, FP (false
positives) is the number of pixels incorrectly identified as representing a barnacle, TN (true negative) is
the number of pixels correctly identified as representing the background/uncolonized surface, and
FN (false negative) is the number of pixels incorrectly identified as representing the background.
The ground truth was determined by a human operator who manually identified the barnacle regions
in each image. The visually segmented images act as the control and are assumed to show the true
composition of the scene.
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over 10 sample video frames.

The detection results in Figure 9 and the average sensitivity values shown in Figure 10 indicate
that the CNN model trained on 16,000 images outperforms the model trained on 4,000 images, in terms
of the model’s ability to correctly detect barnacles (sensitivity) whilst having fewer false positives
(specificity). High specificity is generally achieved at the expense of sensitivity, but in the case of the
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model trained with 16,000 images, a better balance is achieved between the two metrics. The accuracy
and precision are comparable for both models.

3.3. Performance Evaluation of Image-Processing based Damage Assessment algorithms: A Case Study on
Detecting Cracks and Corrosion in an Underwater Structure

The third case study investigates how virtual scenes can be used to gauge the performance levels
of image-processing based damage assessment algorithms. Chloride-induced corrosion and cracks in
concrete structures are typical in corrosive marine environment. Visual inspections and vision-based
systems can often detect their presence conveniently, but the efficacy of vision-based systems in
practice is heavily reliant on the optical qualities of the underwater environment. Reduced visibility
conditions diminish the ability of a camera, and related image-processing algorithms to effectively
identify instances of damage. An understanding of the relationship between visibility conditions
and the performance of image-processing techniques can thus be important to rationalise the use of
image-processing as part of an underwater inspection campaign [33,34]. The performance metrics
typically include of Probability of Detection (PoD), Probability of False Alarms (PFA), and Receiver
Operating Characteristic (ROC) Curves or planes [35,36]. Virtual underwater scenes can be helpful
in extracting meaningful information about the ROC curves related to the on-site performance of
image-based damage detection techniques under a range of visibility conditions, providing an early
estimate on the reliability of damage detection information obtained from such image-based methods.
This case study implements this approach in identifying corrosion and cracks on marine structures.
A virtual wharf was created (Figure 11), and crack and corrosion damage (derived from real-world
photographs) were introduced to the virtual scene.
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Image quality is mainly affected by luminosity, sharpness (focus accuracy), contrast and noise [37]
due to variations in on-site operating conditions. Turbidity, defined as the cloudiness in water caused
by the presence of suspended organic (e.g., decomposed plant and animal matter) or inorganic (e.g., silt,
clay) solids scattering and absorbing light and reducing visibility, is one of the most influential factors
in this regard [38]. Three levels of turbidity are considered here: clear water, medium turbidity, and
high turbidity. Damaged surfaces under these turbidity levels are shown in Figures 12 and 13 for
cracks and corrosion respectively, at a distance of 1m from the virtual camera. The damages are clearly
visible in clear water, and the visibility falls with increased turbidity, until they are barely visible in
high turbidity conditions.
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Figure 13. Image of a corroded surface on a wharf captured under clear, medium turbidity, and high
turbidity conditions.

Crack detection is a well-studied topic and several image-based detection algorithms exist. Here,
a percolation-based method [37] was applied to the virtual images under varying turbidity levels,
(see in Figure 12). The detected cracks are shown in Figure 14 and the performance of this method
under each turbidity condition is depicted via the ROC curve in Figure 15. The closer the curve can
be to the best performance point with coordinates (0,1) and representing 100% sensitivity (no false
negatives) and 100% specificity (no false positives), the better is the detection performance. The best
performance point is the closest point on the curve to the best performance point [20].
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Figure 15 shows that the performance of crack detection gradually declines with increasing
turbidity, but the adopted image-processing method is still capable of producing reasonable results
even in high turbidity conditions. Findings of this nature can be useful for inspectors as it allows
them to choose a technique appropriate to their needs and one that is sufficiently robust to the onsite
operating conditions. Virtual scenes can aid this selection process.
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Figure 15. Receiver operating characteristic (ROC) curves for the crack detection technique applied
under three turbidity conditions.

For corrosion damage, a good method should identify and accurately define all corroded regions
whilst minimizing the inclusion of extraneous regions in an image. In reality, perfect damage detection
is impossible to achieve given the inherent chromatic and luminous complexities encountered in
natural scenes. Some corrosion surfaces are more distinguishable by comparing texture attributes
while some are distinguishable by color. Color intensity and texture analysis-based methods are
typically applied for corrosion detection and naturally, techniques in each group are suited to different
applications. As an example, the performance of an established texture analysis technique [39] is
applied corrosion stain photographs captured under three turbidity levels (Figure 13). The detected
corroded regions are shown in Figure 16 and the performance of this method under each turbidity
condition is depicted by the ROC curve in Figure 17.
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Figure 16. Detected corroded regions (unfaded pixels) of a corrosion stain under each turbidity level
for a texture analysis-based image processing technique.

For corrosion detection, the overall performance of the texture analysis-based technique was
moderate in clear water conditions while the technique did not produce compelling results in high
turbidity conditions. Under such circumstances, the choice of such a technique for implementation
in field conditions can be questioned or scrutinized. Predicting the success of image-processing
based methods when applied in field conditions is a challenging prospect and virtual scenes can
help inspectors get a sense of the expected performance under realistic operating conditions prior
to carrying out an actual inspection. This not only is economical but can avoid exposing divers to
unnecessary risk. When compared with recent works [40] it is observed that the obtained performance
estimates from virtual scenes are of a similar level to field investigations.
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4. Discussion and Conclusions

The use of virtual technology has developed considerably over the past few years. This paper
examines various aspects of virtual environments and virtual data that can help improve the condition
of underwater inspections. Immersive virtual underwater scenes can assist divers and inspectors when
planning and conducting real-world inspections. Divers can experience a virtual and unrestricted
tour of real underwater inspection sites prior to carrying out, from which they can develop a rich
understanding of the scene and are better positioned to develop effective inspection strategies.
These learning benefits of virtual environment are illustrated in the first case study, which features a
fish farm site.

The second study highlights the value that virtual scenes can have for training deep learning
techniques. Deep learning techniques have already attracted significant interest in other fields owing
to the high performances that they can achieve; however, their impact in the domain of underwater
imaging is restricted, largely due to the lack of appropriate training data. Curating a dataset takes time
and domain-specific knowledge of where and how to gather relevant information, and it often involves
a human operator having to manually identify and delineate objects of interest from real-world images.
This is a tedious and time-consuming task considering that datasets of up to thousands—or even tens
of thousands—of training images are typically required to build a robust and effective deep network.
The high cost of assembling datasets puts state-of-the-art deep learning techniques beyond the reach of
many practitioners. This case study presents a framework for generating large datasets of synthetic
images, from which deep neural networks can be trained and applied to tackle real-world problems.
A virtual scene of an underwater ship hull surface is created, and from this, a large dataset of synthetic
imagery is generated with accurate ground-truth information that reveals the exact composition of the
scene. This large dataset is used to train a convolutional neural network which is then applied to a real
video of an underwater ship hull inspection where the model can successfully detect barnacles on the
surface of the ship.

The third study demonstrates how virtual scenes can be useful for the purpose of evaluating
the performance of image-processing based algorithms. The quality of subsea inspections largely
depends on the ability of inspectors to detect and objectively record details of defects. The type of
damage present and the on-site operating conditions are crucial factors that dictate the effectiveness of
image processing algorithms for detecting damage. The reduced visibility conditions that are often
associated with underwater scenes diminish the ability of the camera, and subsequent image-processing
algorithms, to successively identify instances of damage. It is therefore important that inspectors can



J. Mar. Sci. Eng. 2020, 8, 328 16 of 18

develop an understanding of the relationship between visibility conditions and the performance of
image-processing techniques so that they can rationalize the use of image-processing methods as part
of an underwater inspection campaign. The presented case study shows how virtual scenes can be
useful in this regard.

While the use of virtual data in the inspection process has numerous advantages, there are also
some limitations. In terms of practical limitations, the production of a simulated environment and
the rendering of synthetic data can be a time-consuming and highly involved process, especially for
complex structures where 3D models are not already available and are difficult to model from scratch.
Additionally, rendering underwater scenes is often a computationally intensive process because of the
highly reflective and refractive materials in the scene.

Inspectors/machine-learning practitioners may also question how much they can ‘trust’ the
validity of the virtual data since there will be a gap between real world imagery and synthetic data.
For this reason, inspectors should view virtual data as ancillary tools that can aid in the inspection
planning process and they should not rely too heavily on it. Similarly, machine learning practitioners
should be mindful that some details may not be captured when creating the simulated environment
and, as a consequence, damage-assessment algorithms trained with synthetic data may not generalize
well when applied to some real-world examples. Therefore, it is prudent to collect some degree of
“real” data in order to validate the machine learning model.

In terms of future research directions, the concept of “digital twin” is attracting growing interest
and looks like it will be a promising research direction for marine structures also. Having a close
pairing between the virtual model and physical structure allows analysis of data (such as fluid-structure
simulations can be performed on updated virtual models to get a sense of the actual forces on the
real-world structure) and monitoring of systems in order to guard against problems before they arise,
thereby preventing downtime, and allowing researchers to explore ‘what-if’ scenarios and plans for
future actions by using simulations.
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