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Abstract: Vibration damping of jacket platforms is among the significant issues in marine science
and engineering, and the design of active vibration control schemes is very important to ensure the
stability and safety of the jacket platforms against external loadings. This paper provides three fuzzy
output feedback H∞ controllers of the jacket platforms for irregular wave forces. By considering
time-varying masses of jacket platforms, a Takagi-Sugeno (T-S) fuzzy dynamic model of the structure
is established. Then fuzzy output feedback H∞ control schemes are developed via using output
signals of the platform with current and/or are delayed. Several existence conditions of fuzzy output
feedback H∞ controllers are derived. Simulation results demonstrate that the fuzzy output feedback
H∞ control strategies are remarkable to suppress the vibration of structure. Moreover, by choosing
proper delayed output information of the system, the presented delayed fuzzy output feedback H∞

control schemes outperform the conventional fuzzy output feedback H∞ control approach.

Keywords: offshore structure; output feedback control; fuzzy control; time-delay; vibration control

1. Introduction

As basic infrastructures for the development of ocean resources, offshore structures are
unavoidably affected by several external loadings besides waves [1–4]. In general, the unwanted
loadings cause excessive vibration of the platform [5–7]. Notice that reducing oscillation amplitude of
jacket platforms to 15% can prolong the service life significantly, thereby saving the cost of inspection
and maintenance of the platform [8]. Therefore, it is important to find effective control schemes besides
passive, active and semi-active control to attenuate the oscillation level of structures; one can see [9–11],
and the references therein.

Active control has attracted increasing attention of researchers in recent decades, and several
active control approaches have been extensively utilized in the vibration control of a structure [12].
For example, in [13], feedforward and feedback control approaches have been presented for offshore
platforms affected by the wave force. In [14], a robust H2 optimal control approach has been proposed
for an offshore structure to mitigate the wave induced vibration. In [15], a neuro-based active
controller has been utilized to control a fixed jacket platform under an earthquake. As an efficient
control strategy for overcoming system uncertainty and the external disturbance, sliding mode control
methods have been utilized in the jacket platform [16–18]. In [6,19,20], the sampled-data H∞ control,
robust stochastic sampled-data control and fault-tolerant H∞ control of offshore structures have been
discussed, respectively. In [21] and [22], event-triggered controllers have been designed to enhance
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performance of the platform. Most recently, inspired by [23], active control schemes with delayed states
or outputs have been investigated for the structure, see for example, [18,24,25] and references therein.

In the presented active control schemes mentioned above, most of results are based on the state
signals of the jacket platform system, which requires all state signals of the system to be measurable.
Specifically, to measure all state signals such as displacement, velocity and even acceleration of the
system generally results in high control cost. In this case, output feedback control is one of feasible
and economic options. In fact, in [17,24], output feedback controllers have been developed for jacket
platforms with an AMD to resist self-excited hydrodynamic force. However, there are few results
available concerning output feedback control for mitigating vibrations of the platform against irregular
wave force. To design delayed output feedback controllers to depress the vibration of the jacket
platform under the wave loading is our first motivation in this paper. Moreover, the presented
controller designs for jacket structures are based on the basic assumption that the masse of the platform
is time-invariant. However, due to the routine operation besides extraction, storage, loading or
unloading of ocean oil resources, the masses of jacket platforms are time-varying. In this case, it is
significant to establish a model of the jacket platform via taking time-varying masses of the system
into account. Notice that Takagi-Sugeno (T-S) fuzzy models can effectively approximate nonlinear
systems, and the issues regarding T-S fuzzy systems have been aroused much attention [26–28].
Inspired by [26], to establish a fuzzy offshore structure model and develop fuzzy control schemes to
improve performance of the structure is our second motivation.

By considering the time-varying masses of the offshore structure, in this paper, a T-S fuzzy
dynamic model of the offshore structure subject to the external wave loading is presented,
and then fuzzy output feedback H∞ controllers with delayed and/or current output information
are proposed. Some novel sufficient conditions of the system of the platform are obtained via
the Lyapunov-Krasovskii stability theory, and the design approaches of fuzzy output feedback H∞

controllers are presented. Simulation results indicate that under the designed fuzzy output feedback
H∞ controllers, the performance of the jacket platform can be improved remarkably. Moreover,
the delayed fuzzy output feedback H∞ controllers are better than traditional one.

Notations: The superscript −1 and + represent the inverse and Moore-Penrose inverse of the

matrix, respectively. The symmetric term is defined by ∗, e.g.,

[
U V
∗ W

]
=

[
U V

VT W

]
.

2. Problem Formulation

Consider a damping control problem of offshore structures equipped with active mass damper
(AMD) mechanisms shown in Figure 1 [14]. By taking the first vibration mode of the platform and
the external wave loading acting on the structure into account, the dynamic motion equation can be
described as:{

k2(z2(t)− z1(t)) + c2(ż2(t)− ż1(t))− c1ż1(t)− k1z1(t) + f (t)− u(t) = m1z̈1(t)
−k2(z2(t)− z1(t))− c2(ż2(t)− ż1(t)) + u(t) = m2z̈2(t)

(1)

where z1, m1, c1, and k1 are the displacement, mass, damping coefficient, and stiffness coefficient of
the offshore structure, respectively. z2, m2, c2, and k2 represent the displacement, mass, damping
coefficient, and stiffness coefficient of the AMD, respectively. f is the irregular wave loading, and u
denotes control force.

Notice that on one hand, the extraction, storage, loading and/or unloading of ocean resources are
implemented on the platform. On the other hand, the crew generally work and live on the platform.
Consequently, the mass of the jacket platform may change to some degree over time rather than
maintaining a constant. In this situation, it is necessary to model the mass m1 of the dominant vibration
mode of the jacket platform as a bounded time-varying one, i.e., m1(t). In terms of the AMD, which is
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a main auxiliary equipment of passive control, its dynamic parameters can be determined in advance.
Therefore, it is reasonable to take the mass m2 of AMD as a constant.

Figure 1. The sketch of an offshore structure with AMD mechanisms [14], with persmission from
Elsevier, 2003.

Let
x(t) = [x1(t) x2(t) x3(t) x4(t)]T (2)

where
x1(t) = z1(t), x2(t) = z2(t), x3(t) = ż1(t), x4(t) = ż2(t) (3)

Then, in (1), replacing the mass m1 with the time-varying term m1(t) yields a state space model as:

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t) f (t) (4)

where

A(t) =


0 0 1 0
0 0 0 1

− k1+k2
m1(t)

k2
m1(t)

− c1+c2
m1(t)

c2
m1(t)

k2
m2

− k2
m2

c2
m2

− c2
m2

 , B(t) =


0
0

− 1
m1(t)
1

m2

 , D(t) =


0
0
1

m1(t)
0

 (5)

To simplify the controller design and the time-varying model (4) of the platform, the T-S fuzzy
model is utilized to approximate the offshore structure. For this, define a fuzzy set {mi

1|i = 1, 2, · · · , r}
subject to the mass m1(t) of the dominant vibration mode of the platform. Then, the fuzzy variable
m1(t) is expressed as:

m1(t) =
r

∑
i=1

ψi(m1(t))mi
1 (6)

where ψi(m1(t)) ≥ 0 and satisfies
r

∑
i=1

ψi(m1(t)) = 1

Based on (6) and (4), fuzzy model rules of the system are given as follows:
Fuzzy model rule for the plant i:

IF mi(t) is mi
1 THEN (7)

ẋ(t) = Aix(t) + Biu(t) + Di f (t), i = 1, 2, · · · , r
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where 

Ai =


0 0 1 0
0 0 0 1

− k1+k2
mi

1

k2
mi

1
− c1+c2

mi
1

c2
mi

1
k2
m2

− k2
m2

c2
m2

− c2
m2



Bi =


0
0
− 1

mi
1

1
m2

 , Di =


0
0
1

mi
1

0

 , i = 1, 2, · · · , r

(8)

Remark 1. The Equations (7) and (8) denote a new T-S fuzzy model of the offshore platform. In the presented
model, the time-varying mass of the offshore structure is considered. If the mass of the offshore structure is taken
as a constant, the dynamic model described by (7) and (8) reduces into the one in [5,7,14,21].

Using the center average defuzzifier method yields a whole dynamic fuzzy model as:

ẋ(t) =
r

∑
i=1

ψi(m1(t))(Aix(t) + Biu(t) + Di f (t)) (9)

The controlled output is given as:

z(t) = C1x(t) + H1 f (t) (10)

The measurable output is expressed as:

y(t) = Cx(t) (11)

where C, C1 and H1 are given constant matrices.
In this paper, we tend to design delayed fuzzy output feedback H∞ controllers and a delay-free

fuzzy output feedback H∞ controller such that under the designed fuzzy controllers, the system (9)
with f (t) = 0 is asymptotically stable; and for wave loading f (t) ∈ L2[0, ∞], the following H∞

performance index holds:

‖z(t)‖ ≤ γ ‖ f (t)‖ (12)

where γ > 0.

3. Fuzzy Output Feedback H∞ Control Design

In this section, a delayed fuzzy output feedback H∞ control approach, a pure delayed fuzzy
output feedback H∞ control approach, and a traditional fuzzy output feedback H∞ control approach
are developed respectively. Under the control laws, several sufficient conditions of asymptotic stability
of the closed-loop offshore structure are investigated.

3.1. Mixed Delayed Fuzzy Output Feedback H∞ Control Design

The fuzzy rules of a mixed delayed fuzzy output feedback H∞ control law are designed as:
Control rule j:

IF mj(t) is mj
1 THEN (13)

uj(t) = Kjy(t) + Sjy(t− d), j = 1, 2, · · · , r
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where Kj and Sj(j = 1, 2, · · · , r) are gain matrices, and d > 0 is a time-delay to be determined.
Further, the overall fuzzy control law is given as

u(t) =
r

∑
j=1

ψj(m1(t))(Kjy(t) + Sjy(t− d)) (14)

Then, from (9), (11) and (14), we obtain the closed-loop system as:

ẋ(t) =
r

∑
i=1

r

∑
j=1

νij(m1(t))((Ai + BiKjC)x(t) + BiSjCx(t− d) + Di f (t)) (15)

where νij(m1(t)) = ψi(m1(t))ψj(m1(t)), i, j = 1, 2, · · · , r.
The follow proposition provides an existence condition of the matrices Kj and Sj(j = 1, · · · , r).

Proposition 1. For given scalars γ > 0 and d > 0, the closed-loop offshore structure system (15) with
f (t) = 0 is asymptotically stable, and the H∞ performance index (12) holds, if there exist matrices of appropriate
dimensions Kj and Sj(j = 1, 2, · · · , r) and 4× 4 matrices P2 > 0, P3 > 0, P > 0, R > 0, Q > 0 such that

∆ij R + P2BiSjC ∆̃ij P2Di CT
1

∗ −R−Q CTST
j BT

i P3 0 0
∗ ∗ −2P3 + d2R P3Di 0
∗ ∗ ∗ −γ2 I HT

1
∗ ∗ ∗ ∗ −I

 < 0, i, j = 1, 2, · · · , r (16)

where {
∆ij = P2(Ai + BiKjC) + (Ai + BiKjC)T P2 + Q− R
∆̃ij = P− P2 + (Ai + BiKjC)T P3, i, j = 1, 2, · · · , r

(17)

Proof. A Lyapunov–Krasovskii functional candidate is selected as

V(t, xt) = xT(t)Px(t) +
∫ t

t−d
xT(h)Qx(h)dh + d

∫ 0

−d

∫ t

t+h
ẋT(θ)Rẋ(θ)dθdh (18)

where Q > 0, P > 0, and R > 0.
Calculating the derivative of V(t, xt) and combing with (15) gets

V̇(t, xt) =2xT(t)Pẋ(t) + xT(t)Qx(t)− xT(t− d)Qx(t− d)

+ d2 ẋT(t)Rẋ(t)− d
∫ t

t−d
ẋT(h)Rẋ(h)dh (19)

By Jensen’s inequality, one yields

−d
∫ t

t−d
ẋT(h)Rẋ(h)dh ≤ −xT(t)Rx(t) + 2xT(t)Rx(t− d)− xT(t− d)Rx(t− d) (20)

Notice from (15) that

2[xT(t)P2 + ẋT(t)P3][−ẋ(t)

+
r

∑
i=1

r

∑
j=1

νij(m1(t))((Ai + BiKjC)x(t) + BiSjCx(t− d) + Di f (t))] = 0 (21)

where P2 > 0 and P3 > 0.
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Set

ηT(t) =
[

xT(t) xT(t− d) ẋT(t) f T(t)
]

(22)

Then by (19)–(21), one has

V̇(t, xt) ≤
r

∑
i=1

r

∑
j=1

νij(m1(t))ηT(t)Ωη(t) (23)

where

Ω =


∆ij R + P2BiSjC ∆̃ij P2Di
∗ −R−Q CTST

j BT
i P3 0

∗ ∗ −2P3 + d2R P3Di
∗ ∗ ∗ 0

 < 0 (24)

To prove the asymptotic stability of offshore structure system (15), set f (t) ≡ 0 in (15), and denote
θT(t) = [xT(t) xT(t− d) ẋT(t)]. Then from (23), we have

V̇(t, xt) ≤
r

∑
i=1

r

∑
j=1

νij(m1(t))θT(t)Ω̃θ(t) (25)

where

Ω̃ =

 ∆ij R + P2BiSjC ∆̃ij
∗ −R−Q CTST

j BT
i P3

∗ ∗ −2P3 + d2R

 (26)

Note that if inequalities (16) hold, then we have Ω̃ < 0, which indicates that the closed-loop
offshore structure system (15) with f (t) = 0 is asymptotically stable.

Now, we prove that the H∞ index (12) can be guaranteed by the inequalities (16). In this case,
notice from (23), (12), and (10) that

V̇(t, xt) + zT(t)z(t)− γ2 f T(t) f (t) ≤
r

∑
i=1

r

∑
j=1

νij(m1(t))ηT(t)(Ω̄ + ΘTΘ)η(t) (27)

where 
Ω̄ =


∆ij R + P2BiSjC ∆̃ij P2Di
∗ −R−Q CTST

j BT
i P3 0

∗ ∗ −2P3 + d2R P3Di
∗ ∗ ∗ −γ2 I


Θ =

[
C1 0 0 D1

] (28)

By the Schur Complement, inequalities (16) hold if and only if

Ω̄ + ΘTΘ < 0 (29)

Then, from (27), one has:

V̇(t, xt) + zT(t)z(t)− γ2 f T(t) f (t) < 0 (30)

Integrating both sides of (30) from 0 to ∞, one gets



J. Mar. Sci. Eng. 2020, 8, 434 7 of 16

∫ ∞

0
[zT(t)z(t)− γ2 f T(t) f (t)]dt < 0

which shows that ‖z(t)‖ ≤ γ ‖ f (t)‖ for nonzero f (t) ∈ L2[0, ∞].

Remark 2. Proposition 1 presents a bounded real lemma for the closed-loop offshore structure system (15) by
employing the Jensen integral inequality and the simple Lyapunov–Krasovskii functional (18). If we apply
recent developments on stability of time-delay systems, see, e.g., [29–32], some less conservative bounded real
lemmas can be obtained. However, the following analysis shows that Proposition 1 is convenient and effective in
designing suitable controller gains.

Note that in Proposition 1, the inequalities (16) are nonlinear. To obtain the gain matrices Kj
and Sj in (14), set P3 = εP2 in (16), and then pre- and post-multiply the right-hand side the (16) by
diag{P−1

2 , P−1
2 , P−1

2 , I, I} and its transpose, respectively, and denote K̄j = KjCP−1
2 , S̄j = SjCP−1

2 ,
P̄2 = P−1

2 , R̄ = P−1
2 RP−1

2 , Q̄ = P−1
2 QP−1

2 , and P̄ = P−1
2 PP−1

2 , we gain the following result.

Proposition 2. For given scalars ε > 0, d > 0 and γ > 0, the closed-loop offshore structure system (15)
with f (t) = 0 is asymptotically stable, and the H∞ performance (12) is guaranteed, if there exist matrices of
appropriate dimensions K̄j, S̄j(j = 1, 2, · · · , r) and 4× 4 matrices P̄2 > 0, Q̄ > 0, P̄ > 0, R̄ > 0 such that

Ξij BiS̄j + R̄ Ξ̃ij Di P̄2CT
1

∗ −R̄− Q̄ εS̄T
j BT

i 0 0
∗ ∗ −2εP̄2 + d2R̄ εDi 0
∗ ∗ ∗ −γ2 I HT

1
∗ ∗ ∗ ∗ −I

 < 0, i, j = 1, 2, · · · , r (31)

where {
Ξij = Ai P̄2 + P̄2 AT

i + BiK̄j + K̄T
j BT

i − R̄ + Q̄
Ξ̃ij = P̄− P̄2 + εP̄2 AT

i + εK̄T
j BT

i , i, j = 1, 2, · · · , r
(32)

Moreover, the controller gain matrices Kj and Sj are given by Kj = K̄j P̄−1
2 C+ and Sj = ¯Sj P̄−1

2 C+, j =
1, 2, · · · , r.

3.2. Pure Delayed Fuzzy Output Feedback H∞ Control Design

In (13) and (14), setting Kj = 0 leads to the following control rule as:
Control rule j:

IF mj(t) is mj
1 THEN (33)

uj(t) = Sjy(t− d), j = 1, 2, · · · , r

and the overall pure delayed fuzzy output feedback H∞ controller is in the form as

u(t) =
r

∑
j=1

ψj(m1(t))Sjy(t− d) (34)

In this case, the corresponding closed-loop offshore structure system is given as:

ẋ(t) =
r

∑
i=1

r

∑
j=1

νij(m1(t))(Aix(t) + BiSjCx(t− d) + Di f (t)) (35)

To obtain the gain matrices Sj, j = 1, 2, · · · , r, by using Proposition 2, a Corollary is stated as follows.
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Corollary 1. For given scalars ε > 0, d > 0 and γ > 0, if there exist matrices of appropriate dimensions
S̄j (j = 1, 2, · · · , r) and 4× 4 matrices Q̄ > 0, P̄ > 0, P̄2 > 0, R̄ > 0 such that

Υi BiS̄j + R̄ P̄− P̄2 + εP̄2 AT
i Di P̄2CT

1
∗ −R̄− Q̄ εS̄T

j BT
i 0 0

∗ ∗ −2εP̄2 + d2R̄ εDi 0
∗ ∗ ∗ −γ2 I HT

1
∗ ∗ ∗ ∗ −I

 < 0, i, j = 1, 2, · · · , r (36)

where

Υi = Ai P̄2 + P̄2 AT
i − R̄ + Q̄, i = 1, 2, · · · , r (37)

Then the closed-loop system (35) with f (t) = 0 is asymptotically stable, and the prescribed H∞ performance
index (12) can be ensured, and the controller gain matrices Sj(j = 1, 2, · · · , r) are determined by Sj = S̄j P̄−1

2 C+.

3.3. Fuzzy Output Feedback H∞ Control Design

In (13) and (14), setting Sj = 0 yields following control rules of a traditional fuzzy output feedback
H∞ control law as:

Control rule j:

IF mj(t) is mj
1 THEN (38)

uj(t) = Kjy(t), j = 1, 2, · · · , r

The overall fuzzy output feedback H∞ control law is given as

u(t) =
r

∑
j=1

ψj(m1(t))Kjy(t) (39)

Then, the closed-loop system is given as

ẋ(t) =
r

∑
i=1

r

∑
j=1

νij(m1(t))((Ai + BiKjC)x(t) + Di f (t)) (40)

From Proposition 2, we get following result:

Corollary 2. For given scalars γ > 0 and ε > 0, if there exist 1× 4 matrices K̄j (j = 1, 2, · · · , r) and 4× 4
matrices P̄ > 0, P̄2 > 0 such that

Γij Γ̃ij Di P̄2CT
1

∗ −2εP̄2 εDi 0
∗ ∗ −γ2 I HT

1
∗ ∗ ∗ −I

 < 0, i, j = 1, 2, · · · , r (41)

where {
Γij = Ai P̄2 + P̄2 AT

i + BiK̄j + K̄T
j BT

i
Γ̃ij = P̄− P̄2 + εP̄2 AT

i + εK̄T
j BT

i , i, j = 1, 2, · · · , r
(42)

Then the closed-loop offshore structure system (40) with f (t) = 0 is asymptotically stable, the H∞

performance index (12) is ensured, and the controller gain matrices Kj = K̄j P̄−1
2 C+, j = 1, 2, · · · , r.
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Remark 3. Corollaries 1 and 2 provide a simple and practical method to design fuzzy output feedback H∞

controllers in case that several linear matrix inequalities are feasible. If we employ some recent developments on
time-delay systems as stated in Remark 2, the controller design will be very complicated, see, for example [33].
As our future research, we will focus on seeking some novel criteria to design fuzzy output feedback controllers
for the offshore platform using the developed skills on time-delay systems. Another future task is to extend the
proposed method to repetitive control systems [34–36].

Remark 4. For the proposed T-S fuzzy model (7) of the offshore platform, three output feedback fuzzy control
laws (14), (34) and (39) are developed, respectively. It should be pointed out that in (14), both present and
delayed output of the structure are utilized to design fuzzy controller, while in (34) and (39), only the delayed
output signals and the present output signals are used, respectively. In fact, the control laws (34) and (39) are
special cases of the one (14). If the time-delay d is chosen properly, the delayed fuzzy output feedback H∞ control
schemes may have advantages of reducing vibration levels of the structure and the control cost, which will be
demonstrated in the next Section.

4. Simulation Results

The designed fuzzy output feedback control schemes are used to the jacket platform for mitigating
the wave excited vibration. Some comparison results of several active control schemes will be provided.

4.1. Parameters of an Offshore Structure

As [13], the parameters of an offshore structure subject to irregular wave force are used.
The damping ratio of the structure is 0.02, the frequency of the structure is 2.0466 rads. The damping
ratio of AMD is 2.00074, and the frequency of AMD is 0.2 rads. The mass m2 of AMD is 78,253 kg,
and the fuzzy set of mass of the offshore platform is given as {7,825,307, 8,126,682, 8,428,057, 8,729,432,
9,030,807} kg. Based on the above settings, the parameter matrices of the platform system (8) are
obtained as: 

A1 =


0 0 1 0
0 0 0 1

−4.2289 0.0403 −0.0899 0.0080
4.0297 −4.0297 0.8030 −0.8030



B1 = 10−7 ×


0
0

−1.2779
−127.79

 , D1 = 10−7 ×


0
0

1.2779
0


(43)



A2 =


0 0 1 0
0 0 0 1

−4.2274 0.0388 −0.0896 0.0077
4.0297 −4.0297 0.8030 −0.8030



B2 = 10−7 ×


0
0

−1.2305
−127.79

 , D2 = 10−7 ×


0
0

1.2305
0


(44)
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A3 =


0 0 1 0
0 0 0 1

−4.2260 0.0374 −0.0893 0.0075
4.0297 −4.0297 0.8030 −0.8030



B3 = 10−7 ×


0
0

−1.1865
−127.79

 , D3 = 10−7 ×


0
0

1.1865
0


(45)



A4 =


0 0 1 0
0 0 0 1

−4.2247 0.0361 −0.0891 0.0072
4.0297 −4.0297 0.8030 −0.8030



B4 = 10−7 ×


0
0

−1.1455
−127.79

 , D4 = 10−7 ×


0
0

1.1455
0


(46)



A5 =


0 0 1 0
0 0 0 1

−4.2235 0.0349 −0.0888 0.0070
4.0297 −4.0297 0.8030 −0.8030



B5 = 10−7 ×


0
0

−1.1073
−127.79

 , D5 = 10−7 ×


0
0

1.1073
0


(47)

Set the displacement and velocity of the dominant vibration mode as the controlled and
measurable output variables. In this case, the matrices C1, H1 and C in (10) and (11) can be chosen as:

C1 =

[
1 0 0 0
0 0 1 0

]
, H1 =

[
0.1
0.1

]
, C = C1 (48)

To calculate the irregular wave force f (t), the parameters concerning the wave are taken from [14],
where the water depth is 218 m, the peak frequency of wave is 0.77 rad/s, the significant wave height
is 7 m, the drag coefficient is 1.0, inertia coefficient is 1.5, and the peakedness coefficient is 3.3. Then the
wave force can be simulated and the wave curve is shown in Figure 2.

For the offshore structure without control, the displacement and velocity response curves of
the structure are shown in Figures 3 and 4, respectively. In this case, the jacket platform is in the
dangerous state. In what follows, three fuzzy output feedback H∞ controllers are designed to improve
the performance of the system.
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4.2. Responses of the Offshore Structure with Different Fuzzy Output Feedback H∞ Control Schemes

We first design a fuzzy output feedback H∞ controller (FOFC) for the platform. For this, set γ = 9.8
and ε = 0.01. Then by Corollary 2, solving the LMIs (41) using linear matrix inequality (LMI) toolbox
of Matlab yields the gain matrices of an FOFC as:

Kj = 107 × [−0.1468 2.0354] , j = 1, 2, 3, 4, 5 (49)
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As the designed FOFC is used to control the offshore structure, the response peak and root mean
square (RMS) values of displacement and velocity of the structure and the control force are listed in
Table 1. Clearly, the FOFC can weaken vibration level of the structure effectively.

Table 1. Response peak and RMS values of the structure and control force under FOFC and no control.

Controllers
Peak Values RMS Values

Dis. (m) Vel. (m/s) u (106 N) Dis. (m) Vel. (m/s) u (106 N)

No Control 0.7320 1.1648 – 0.2831 0.4785 –
FOFC 0.2120 0.1940 3.9925 0.1012 0.0841 1.7169

Then, by introducing proper time-delays, we design pure delayed fuzzy output feedback H∞

controllers (PD-FOFCs). In fact, based on Corollary 1, for different given values of time-delay d,
one can design different PD-FOFCs. For example, if d = 0.03, the gain matrices of the PD-FOFC can be
obtained as

Sj = 107 × [1.5238 3.6675] , j = 1, 2, 3, 4, 5 (50)

For d = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.10, 0.15 and 0.60 s, the corresponding PD-FOFCs
can be designed respectively. Under these fuzzy controllers, the response peak and RMS values of
the displacement and velocity of the offshore structure and the control force are provided by Table 2.
From this Table, one can find that if d ≤ 0.15 s, the designed PD-FOFCs can attenuate the vibration
amplitudes of the system to different degrees. Specifically, if d ≤ 0.03 s, the PD-FOFCs can attenuate
the vibration of the structure significantly, while if the time-delay d is close to 0.60 s, the vibration
amplitudes of the structure become large and tend to the ones without control.

Now, we design mixed delayed fuzzy output feedback H∞ controllers (MD-FOFCs), where both
delayed and current output information of the structure are used. Setting d = 0.03 and using
Proposition 2 yields the matrices Ki and Si as:

Kj = 107 × [3.5235 4.5598] , j = 1, 2, 3
K4 = 107 × [3.4803 4.5242]
K5 = 107 × [0.7613 1.0029]
Sj = 106 × [−4.4597 − 3.1073] , j = 1, 2, 3
S4 = 106 × [−4.4830 − 3.163]
S5 = 106 × [3.7173 5.5574]

(51)

Under the above MD-FOFC, the peak and RMS values of the structure response and the control
force are provided by Table 3, where the response values of the system and control force with different
MD-FOFCs are also listed. Table 3 shows that in the cases of d ≤ 5.50 s, the MD-FOFCs can suppress
the vibration of the structure. However, if d tends to 5.50 s, the peak value of the control force become
very large.

Remark 5. Note that for PD-FOFCs, the maximum time-delay d ≤ 0.60 s, and for MD-FOFCs, the maximum
time-delay d = 5.50 s. It indicates that from the point of view of controller application, MD-FOFCs can provide
more options to choose time-delays than PD-FOFCs.
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Table 2. Response peak and RMS values of the structure and control force with PD-FOFCs.

d (s)
Peak Values RMS Values

Dis. (m) Vel. (m/s) u (106 N) Dis. (m) Vel. (m/s) u (106 N)

0.01 0.0393 0.0376 4.0354 0.0187 0.0162 1.9460
0.02 0.0518 0.0490 3.9232 0.0246 0.0211 1.8962
0.03 0.1064 0.0981 3.7403 0.0507 0.0425 1.7432
0.04 0.1927 0.1739 4.0412 0.0920 0.0760 1.7574
0.05 0.2679 0.2375 4.7104 0.1282 0.1050 2.0294
0.06 0.2956 0.2633 4.8960 0.1416 0.1159 2.1104
0.07 0.3597 0.3277 5.2523 0.1728 0.1421 2.2810
0.10 0.5282 0.5238 4.0183 0.2379 0.2171 1.8024
0.15 0.5321 0.5597 2.0533 0.2241 0.2422 0.8497
0.60 0.6887 1.0773 0.0847 0.2644 0.4325 0.3192

Table 3. Response peak and RMS values of structure and control force with MD-FOFCs.

d (s)
Peak Values RMS Values

Dis. (m) Vel. (m/s) u (106 N) Dis. (m) Vel. (m/s) u (106 N)

0.01 0.1506 0.1393 3.6803 0.0717 0.0602 1.6498
0.02 0.1806 0.1668 3.7523 0.0861 0.0720 1.6416
0.03 0.0787 0.0743 3.7035 0.0374 0.0319 1.7856
0.04 0.1462 0.1346 3.7199 0.0697 0.0583 1.6720
0.05 0.2081 0.1923 3.8471 0.0992 0.0830 1.6552
0.06 0.1690 0.1552 3.7840 0.0806 0.0672 1.6688
0.07 0.1118 0.1029 3.7337 0.0532 0.0446 1.7317
0.10 0.2640 0.2391 4.4164 0.1262 0.1042 1.8866
0.15 0.2547 0.2282 4.4678 0.1218 0.1002 1.9172
4.00 0.3074 0.6380 9.9099 0.0351 0.0627 3.2455
5.50 0.4896 0.8379 52.554 0.0696 0.1078 2.5903

4.3. Comparisons of FOFC, PD-FOFC, and MD-FOFC

It is found from Tables 2 and 3 that when different PD-FOFCs and MD-FOFCs are applied to the
offshore structure, the damping effects of the system and the control cost may different. Especially,
if the time-delay d is chosen properly, the delayed fuzzy output feedback controllers may be better
than the delay-free FOFC.

When the designed controllers FOFC, PD-FOFC (d = 0.03), and MD-FOFC (d = 0.03) are utilized
to the offshore structure, the curves of displacement and velocity response of the structure are depicted
in Figures 5 and 6, respectively. The curves of control force required by FOFC, PD-FOFC, and MD-FOFC
are presented by Figure 7. The peak values and RMS values of the structure response, and the control
forces by FOFC, PD-FOFC, and MD-FOFC are listed in Table 4.

Table 4. Response peak and RMS values of the structure and control force with different controllers.

Controllers
Peak Values RMS Values

Dis. (m) Vel. (m/s) u (106 N) Dis. (m) Vel. (m/s) u (106 N)

FOFC 0.2120 0.1940 3.9925 0.1012 0.0841 1.7169
PD-FOFC (d = 0.03) 0.1064 0.0981 3.7403 0.0507 0.0425 1.7432
MD-FOFC (d = 0.03) 0.0787 0.0743 3.7035 0.0374 0.0319 1.7856
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Figure 5. Displacement of the structure with FOFC, PD-FOFC, and MD-FOFC.

0 10 20 30 40 50 60 70 80

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
e

lo
c
it
y
 (

m
/s

)

FOFC

PD-FOFC

MD-FOFC

Figure 6. Velocity of the structure with FOFC, PD-FOFC, and MD-FOFC.

0 10 20 30 40 50 60 70

Time (s)

-5

-3.75

-2.5

-1.25

0

1.25

2.5

3.75

5

C
o

n
tr

o
l 
fo

rc
e

 (
N

)

106

FOFC

PD-FOFC

MD-FOFC

Figure 7. Control force by FOFC, PD-FOFC, and MD-FOFC.

Figures 5 and 6, and Table 4 show that the delay-free and delayed fuzzy output feedback
controllers can mitigate vibration levels of the offshore structure significantly. Moreover, by choosing
proper time-delay, the designed delayed fuzzy output feedback controllers, i.e., PD-FOFCs and
MD-FOFCs, can further reduce the vibrations of the structure.
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5. Conclusions

A T–S fuzzy dynamic model of an offshore structure with AMD mechanisms has been established,
and then delay-free and delayed fuzzy output feedback H∞ control schemes have been developed to
weaken the vibration of the structure. Several conditions of existence of the delay-free and delayed
fuzzy output feedback controllers have been obtained. The designed fuzzy output feedback H∞

controllers are capable of improving performance and safety of the structure. Specifically, the delayed
fuzzy output feedback H∞ controllers have remarkable advantages of depressing the vibration levels
of the platform, which has been demonstrated by simulation results.
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