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Abstract: The vertical tunneling method is an emerging technique to build sewage inlets or outlets in
constructed horizontal tunnels. The jacking force used to drive the standpipes upward is an essential
factor during the construction process. This study aims to predict the jacking forces during the
vertical tunneling construction process through two intelligence systems, namely, artificial neural
networks (ANNs) and hybrid genetic algorithm optimized ANNs (GA-ANNs). In this paper, the
Beihai hydraulic tunnel constructed by the vertical tunneling method in China is introduced, and the
direct shear tests have been conducted. A database composed of 546 datasets with ten inputs and one
output was prepared. The effective parameters are classified into three categories, including tunnel
geometry factors, the geological factor, and jacking operation factors. These factors are considered
as input parameters. The tunnel geometry factors include the jacking distance, the thickness of
overlaying soil, and the height of overlaying water; the geological factor refers to the geological
conditions; and the jacking operation factors consist of the dead weight of standpipes, effective
overburden soil pressure, effective lateral soil pressure, average jacking speed, construction hours,
and soil weakening measure. The output parameter, on the other hand, refers to the jacking force.
Performance indices, including the coefficient of determination (R2), root mean square error (RMSE),
and the absolute value of relative error (RE), are computed to compare the performance of the ANN
models and the GA-ANN models. Comparison results show that the GA-ANN models perform
better than the ANN model, especially on the RMSE values. Finally, parametric sensitivity analysis
between the input parameters and output parameter is conducted, reaching the result that the height
of overlaying water, the average jacking speed, and the geological condition are the most effective
input parameters on the jacking force in this study.

Keywords: jacking force; vertical tunneling method; artificial neural network; genetic algorithm

1. Introduction

The vertical tunneling method (VTM) is an emerging approach to build vertical hy-
draulic tunnels to the inlets or outlets in sewage systems in China. In the VTM construction
process, the standpipes are jacked upward from the horizontal tunnel to the seabed by
applying jacking force through four jacks in the constructed horizontal tunnel. It is crucial
to predict the jacking force during the VTM construction.

There are only a few studies related to the jacking force of the VTM available to
date [1–3]. To calculate the jacking force during the vertical tunneling process in advance,
Wang et al. regarded standpipes as reverse piles and utilized the Meyerhof foundation
theory to compute the maximum jacking force [1,2]. To gain insight into the effective
factors that influence the jacking force, Wang et al. have conducted case research about the
vertical tunneling project, concluding that the jacking force is affected by factors such as
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the average jacking speed, the jacking distance, the geological conditions, and the effective
overburden soil pressure [3].

The VTM is similar to the pipe jacking method and the microtunneling method.
Thus, the influence factors of the jacking force in these methods can give clues to the
research related to the VTM. The jacking force in the microtunneling process must be
higher than the sum of the boring machine penetration force and the soil–pipe friction
force. Specifically, overcut, lubrication, and stoppages have a dominating effect on friction
force [4]. Moreover, factors such as length of drive, misalignment and corrections, jacking
speed, curved alignment, and intermediate jacking station are also associated with the
friction force [5]. According to the direct shear results of the underground trunk sewer
lines constructed by the pipe jacking method in the Tuang formation of Kuching City,
Malaysia, Choo and Ong presented that the jacking force was proved to be not only related
to the surrounding geologies, but also to the lubrication [6]. Based on the previous related
research, factors around the tunnel geometry, geological factor, and jacking operation
factors can be concluded to be three crucial categories on jacking force.

Artificial intelligence (AI) techniques have been widely applied to solve geotechnical
engineering problems [7–9]. Among the AI techniques, artificial neural networks (ANNs)
can deal with problems with uncertain or limited experience, and no pre-knowledge on
the relationships between the examined components is required. ANNs, comprising input,
hidden, and output layers, can develop black-box models to classify or predict. The main
objective in ANN models is to obtain optimum weights and biases, which can minimize the
error [10]. Among the training algorithms in ANNs, the back propagation (BP) algorithm
is the most widely used training algorithm. Although it can provide relatively precise
prediction results, shortcomings exist, i.e., it may be trapped in local optima [8,11]. Thus,
several optimization algorithms, including the genetic algorithm (GA), particle swarm
algorithm, and imperialist competitive algorithm, are utilized to overcome this problem.
By applying these optimization algorithms, different hybrid models can be developed to
search for global minimum and overcome the shortcomings of the original backpropagation
algorithm, and then the optimum model can be obtained [12].

This paper intends to propose an approach for predicting jacking force during the
vertical tunneling construction process using ANNs and GA-ANNs. To achieve this goal,
the hydraulic tunnel constructed by the VTM in Beihai, China is introduced. The jacking
force, together with its effective factors such as the average jacking speed and the jacking
distance, was collected and comprises one database with 546 datasets. Then, the 546
datasets were divided into five datasets, and several ANN models and GA-ANN models
were established. Finally, the obtained models were evaluated, and the most suitable model
was selected to predict the jacking force.

2. Case Study and Data Source
2.1. Construction Process

To deal with the sewage from the sewage treatment plant in Beihai, China, the VTM
was used to construct vertical standpipes in the sea area, together with the pipe jacking
method [1–3]. The horizontal tunnel was built by the pipe jacking method firstly, and the
diameter was 2000 mm. When the construction of the horizontal tunnel was completed,
the standpipes were constructed by the VTM. In this project, multi-point drainage of the
standpipes was adopted to avoid seawater pollution (Figure 1). The distances between the
vertical standpipes were mostly 13 m. At the end of 400 m in the horizontal pipe jacking
project, 29 vertical standpipes with an outer diameter of 500 mm were set up with a height
of 12.5 m (Figures 1 and 2).
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Figure 1. The multi-point drainage mode of the standpipes in the vertical tunneling method (VTM). 
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Figure 2. Construction process of the VTM: (a) The embedded first standpipe section; (b) Construction diagram on site. 

There were 21 standpipe sections for each standpipe in total; the first standpipe sec-
tion was 50 cm in length, and the remaining sections were 60 cm in length. Figure 3 
shows the construction flow chart of the VTM. Wang et al. depicted a detailed descrip-
tion of the VTM, comprising the construction process [3]. Before the VTM construction 
started, the soil above the excavation line was excavated. Thus, 29 standpipes could be 
jacked upward to the same altitude, and the upper 1 m of all the standpipes were em-
bedded in water. When the standpipe could be easily jacked upward, i.e., when the 
jacking force was too large, the soil weakening measure was conducted. An advanced 
drilling bore at the corresponding standpipe position was constructed, and thixotropic 
mud was injected to weaken the soil. In order to ensure the safety of the standpipes 
during construction, the deviation of the standpipes was measured. The deviation tol-
erances ranged from 3 to 4 mm in different conditions. More details about the construc-
tion process of the VTM can be found in [3]. 
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Figure 2. Construction process of the VTM: (a) The embedded first standpipe section; (b) Construction diagram on site.

There were 21 standpipe sections for each standpipe in total; the first standpipe section
was 50 cm in length, and the remaining sections were 60 cm in length. Figure 3 shows
the construction flow chart of the VTM. Wang et al. depicted a detailed description of the
VTM, comprising the construction process [3]. Before the VTM construction started, the soil
above the excavation line was excavated. Thus, 29 standpipes could be jacked upward to
the same altitude, and the upper 1 m of all the standpipes were embedded in water. When
the standpipe could be easily jacked upward, i.e., when the jacking force was too large, the
soil weakening measure was conducted. An advanced drilling bore at the corresponding
standpipe position was constructed, and thixotropic mud was injected to weaken the soil.
In order to ensure the safety of the standpipes during construction, the deviation of the
standpipes was measured. The deviation tolerances ranged from 3 to 4 mm in different
conditions. More details about the construction process of the VTM can be found in [3].
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2.2. Factors Affecting Jacking Force

The jacking force of the standpipe (J) can be explained as:

J = G + W + R + S (1)

where J is the jacking force, G is the dead weight of the standpipe, W is the external water
pressure above the standpipe, R is the frictional resistance along pipe run, and S is the
penetration resistance [3].
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Based on the previous research about the VTM, the pipe jacking method and the
microtunneling method, factors that affect the jacking force in the VTM construction, can be
classified into three groups, including tunnel geometry, geological conditions, and jacking
operation factors.

2.2.1. Tunnel Geometry Factors

Three tunnel geometry factors, including the jacking distance, the thickness of over-
laying soil, and height of overlaying water, are regarded as effective parameters on the
jacking force (Figure 4). As shown in Figure 4, the jacking distance (D) means the height of
the standpipe that has been jacking upward. The thickness of overlaying soil (L) means
the height between the mudline and the top of the standpipe. Moreover, the height of
overlaying water (H) means the height between the sea surface and the top of the standpipe.
Note that the diameters of the standpipes in this project are the same. Thus, they are not
considered here.
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2.2.2. The Geological Factor

According to the drilling results at the field, there was a quaternary artificial accu-
mulation layer and marine sedimentary layer overlying the site. The drilling area was
mainly composed of clay and sand layers. The soil layers intersected by the standpipes
were mainly poorly graded sand, silty sand, and backfill. According to the direct shear test
results, the distribution of geological properties of the site is shown in Table 1.

Table 1. Soil properties.

Soil Type Water Content
(%)

Unit Weight
(kN·m3)

Cohesive Force
(kPa)

Internal
Friction Angle

(◦)

Compression
Modulus

(MPa)
Classification

Backfill 30.90 19.33 11.1 4.20 4.36 1
Low liquid limit clay 22.48 19.6 47.44 13.23 12.03 2

Silty sand 21.07 18.86 7.6 18.30 6.34 3
Silty clay 39.60 16.96 7.72 4.39 2.89 4

Poorly graded sand 25.12 19.18 5.29 8.74 5.42 5
Water - 9.8 - - - 6
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Because of the excavation before constructing the standpipes, after the jacking distance
was larger than 11.5 m, there was no soil above the standpipe. As a result, there was only
water above it. In general, there are six types of materials in the standpipes, including
backfill, silty sand, silty clay, poorly graded sand, low liquid limit clay, and water. To
consider the effect of the geological conditions, the five soil types were classified as 1 to
5, respectively (Table 1). Moreover, water was classified as 6 in the geological conditions.
The geological condition (C) shown in Figure 4 is illustrated by number 2 standpipe, and it
consisted of backfill, silty clay, and poorly graded sand.

2.2.3. Jacking Operation Factors

Jacking operation factors refer to factors that affect the jacking force during the oper-
ation of the jacking process. The jacking force in the vertical tunneling project should be
larger than the sum of face resistance, friction resistance, the dead weight of standpipes,
and the external water above the standpipe at the corresponding jacking distance [3]. Ac-
cording to this, jacking operation factors, including the dead weight of standpipes, effective
overburden soil pressure, effective lateral soil pressure, average jacking speed, construction
hours, and soil weakening measure, are concluded to be the influencing factors of the
jacking force.

The dead weight of standpipes (G) consists of the dead weight of the ceiling segment
(G1), the first standpipe section (G2), and the standard standpipe section(s) (G3) (Figure 4).
It can be calculated according to the jacking distance [3]:

G = G1 + G2 + nG3 (2)

where G1 = 0.6353 kN, G2 = 1.6747 kN, G3 = 1.6572 kN, which was given by the on-site
engineering report; n is the number of the standard standpipe sections which have been
jacked upward, which ranged from 0 to 20.

The dominant factor that affects the face resistance of the standpipes is the effective
overburden soil pressure (F). F means the effective vertical pressure produced by the
gravity of the overlying soil above the standpipe (Figure 4). The expression of F is:

F =
m

∑
i=1

li × γ′i (3)

where li is the length of the standpipe buried in the ith soil layer during construction; γ’i is
the effective unit weight of the ith soil layer; and m is the number of soil layers that the
standpipe is buried in.

The primary control influencing factor of the friction resistance is the effective lateral
soil pressure (N). N means the effective pressure that soil exerts in the horizontal direction
when underwater. It can be calculated by the following equation:

N =
m

∑
i=1

li × γ′i × Ki (4)

where Ki is the static earth pressure coefficient of the ith soil layer (K1 = 0.9268, K2 = 0.7711,
K3 = 0.6860, K4 = 0.9235, K5 = 0.8481). Note that Ki is calculated by Ki = 1−sinϕ, where ϕ is
the internal friction angle of the corresponding soil layer (Table 1).

During construction, the construction hours (T) of each standpipe were measured
and collected. T refers to the time it has taken to jack the standpipe. Thus, the average
jacking speed of standpipes (V) can be computed by divide the construction hours (T) by
the jacking distance (D).

When the jacking force was too large, high-pressure rotary jet pile equipment was
used to inject thixotropic mud to advance the standpipe by weakening the soil. In this
project, a soil weakening measure (M) was only conducted on standpipe number 9 [3].
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In conclusion, ten factors affect the jacking force during the vertical tunneling process.
Statistical information, including maximum, minimum, average, and standard deviation
of the used parameters in this study to estimate jacking force, is shown in Table 2. The
exact values of ten influencing factors, together with the jacking force, can be found in the
Supplementary Materials.

Table 2. Maximum, minimum, average, and standard deviation of the used parameters to estimate jacking force.

Classification Parameter Unit Category Min. Max. Ave. Standard
Deviation NP

Tunnel geometry
factors

Jacking distance (D) m Input 0.5 12.5 6.5 3.63 -
The thickness of overlaying

soil (L) m Input 0 11 5.07 3.53 Yes

The height of overlaying
water (H) m Input 13.41 25.41 19.41 3.63 Yes

Geological factor Geological conditions (C) - Input 1 6 4.75 1.02 Yes

Jacking
operation factors

The dead weight of
standpipes (G) kN Input 2.31 35.45 18.88 10.03 Yes

The effective overburden
soil pressure (F) kN/m2 Input 0 100.97 46.09 32.26 Yes

The effective lateral soil
pressure (N) kN/m2 Input 0 87.57 47.09 26.35 Yes

Construction hours (T) h Input 34.34 63.97 43.64 5.70 -
Average jacking speed (V) mm/min Input 3.33 16.67 9.30 2.88 -

Soil weakening measure (M) - Input 1 2 1.03 0.19 -

Prediction object Jacking force (J) kN Output 380 2160 1122 439.47 -

Note: Max., maximum; Min., minimum, Ave., average; NP, normally proportional relationship between the corresponding influencing
factor and the jacking force.

Before applying these data to establish the neuron-genetic model, the effects of these
factors on the jacking force should be discussed briefly first. The relationships of six
factors with the jacking force (J) are shown in Table 2. Six factors include the thickness of
overlaying soil (L), the height of overlaying water (H), geological conditions (C), the dead
weight of standpipes (G), the effective overburden soil pressure (F), and the effective lateral
soil pressure (N). The relationships between other four factors and the jacking force were
discussed in the following text.

As shown in Table 2, six influencing factors, including L, F, H, N, G, C, are all normally
proportional to the jacking force. The thickness of overlaying soil (L) and the effective
overburden soil pressure (F) are normally proportional to the penetration resistance (S).
Thus, J will increase if there is a higher L and a higher F according to Equation (1). The
height of overlaying water (H) is normally proportional to the external water pressure
above the standpipe (W), so J will increase if there is a higher H. Similarly, the effective
lateral soil pressure (N) is normally proportional to the frictional resistance (R); hence there
will be a higher jacking force when N is higher. The dead weight of standpipes (G) is one
part of the jacking force according to Equation (1), so it also has a normal proportional
relationship with the jacking force. Moreover, when the standpipe is jacked from a soft
soil layer to a hard soil layer, the jacking force will increase, explaining the normally
proportional relationship between the geological condition (C) and the jacking force.

However, concerning the otherfour factors, including D, T, V, and M, the changing
trend of the jacking force with regard to the jacking distance (D) includes two trends: the
jacking force reaches a peak force at 25.7% of the jacking distance and then decreases to
the lowest force [3]. When applying the soil weakening measure (M), the hard soil above
the standpipe is replaced with soft soil; therefore, the jacking force will decrease when
applying it. The exact effects of the construction hours (T) and the average jacking speed
(V) cannot be decided yet. Nevertheless, the conclusion has been made that stoppage time
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will result in the fluctuation of jacking forces [6], and the jacking speed will be faster in the
gravel layer than in the sand layer [5].

3. Intelligent Methods for Predicting Jacking Force

Due to limited on-site data, no more data of other factors can be gathered to help build
the intelligent models. Thus, the intelligent method was applied when assuming that only
the ten influencing factors in Section 2.2 are related to the jacking force. In the future, the
bigger the dataset and the more related factors gathered, the more accurate the results can
be obtained.

3.1. Artificial Neural Network

A typical ANN consists of three layers, including input, hidden, and output layers. In
these layers, several neurons are logically arranged and connected by weights, determining
the strength of influence between these neurons. The typical training process of an ANN
is divided into three steps. The first step is to import the database into the input layer.
The second step is to transfer the data multiplied by corresponding weights to the hidden
layer(s) and calculate transfer functions. The last step is to obtain the output parameters in
the output layer.

Rezaei et al. stated that three fundamental aspects, including network topology, acti-
vation functions, and training algorithms, are essential when building a specific ANN [13].

To develop the ANN model for predicting the jacking force, 546 datasets were analyzed
in this study. Here, all 546 datasets were chosen randomly and classified as five different
sets, namely dataset 1 to 5 (see Supplementary Materials). Wang et al. suggested that the
ratio of the training dataset to the testing dataset should be 3:1 [14]. Thus, 75% of the total
dataset is utilized as the training set, and 25% is utilized as the test set.

The architecture, i.e., network topology, of the ANN, is an essential factor that affects
the performance of the ANN model significantly. It includes the features of the input
layer, hidden layer(s), and output layer. According to Section 2.2 and Table 2, the input
neurons (Ni) and the output neurons (No) are set to be 10 and 1, respectively. According to
a systematic review of the application of ANN in the tunnel engineering field, Wang et al.
summarized that single hidden layer networks could be applied in most problems, and the
Equations for determination of the hidden neurons are provided [14] (Table 3). Hence, one
hidden layer is selected in this paper, and the number of the hidden neurons (Nh) ranged
from 1 and 30, according to Table 3. To choose a proper number of the hidden neurons, the
trial-and-error method was conducted. Thus, 150 ANN models with Nh ranging from 1 to
30 for dataset 1 to 5 were constructed. To obtain an optimum number of hidden neurons,
these models were evaluated by the average values of the coefficient of determination (R2)
and root mean square error (RMSE) for the five datasets. The definitions of R2 and RMSE
are explained in the following text.

Table 3. Equations for Determination of the Hidden Neurons.

Heuristic Application in This Paper References

Nh ≤ 2× Ni + 1 Nh ≤ 21 [15]
Nh= 3Ni Nh = 30 [16]

Nh = (Ni + No)/2 Nh= 5.5 [17]
Nh =

[
2 + No × Ni + 0.5No ×

(
N2

o + Ni
)
− 3
]
/(Ni + No) Nh= 1.93 [18]

Nh = 2Ni/3 Nh= 6.6 [19]
Nh =

√
Ni × No Nh= 3.16 [20]

Nh= 2Ni Nh= 20 [21,22]
Nh = 3Ni/2 Nh= 15 [23]

To evaluate the performance of petrography-based models, Zorlu et al. have proposed
a model selection procedure based on rate [24]. This method, named the total rate method,
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is widely used to evaluate model performance [8]. Thus, this method was applied here to
choose the best hidden neuron number.

As shown in Table 4, the highest total rate of 102 was achieved when Nh = 7 (with the
average R2 of 0.827 and 0.622, average RMSE of 26.0867 and 50.3891, for the training set
and test set, respectively). Thus, Nh = 7 was found to be the best hidden neuron number
among all the ANN models. Thus, 10 × 7 × 1 was chosen to be the optimum architecture
to build neural network models (Figure 5). It can be found that Nh = 2Ni/3 was proven
to be the well-matched equation of hidden neurons in this study, which can provide a
reference to related researches. The activation functions are the hyperbolic tangent function
(Tansig) in the hidden layer and the pure linear function (Purelin) in the output layer,
respectively. Moreover, the Levenberg–Marquardt backpropagation algorithm was utilized
in the ANN models. The best ANN model among the five ANN models for five datasets
was selected later.
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Table 4. Artificial neural network (ANN) models with the top eight rates.

Number of
Hidden Neurons

Training Set Test Set Rate for Training Set Rate for Test Set
Total Rate

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

7 0.8270 26.0867 0.6222 50.3891 27 21 29 25 102
6 0.8136 18.6259 0.4891 46.1933 24 26 17 27 94
12 0.8427 31.1240 0.5721 68.2328 29 17 25 17 88
28 0.7865 43.9984 0.6263 48.8771 23 9 30 26 88
14 0.7710 25.7299 0.5343 61.0777 19 23 21 20 83
2 0.6600 13.5642 0.4851 28.1256 5 29 15 30 79
11 0.7682 23.1934 0.5739 97.8736 18 24 26 9 77
17 0.8517 19.2946 0.3817 72.0997 30 25 6 15 76

3.2. Genetic Algorithm

Firstly developed by Holland (1975), GA is one of the optimization techniques used to
solve highly nonlinear or non-differentiable optimization problems [25]. Concepts from
evolutionary biology are used to find the global minimum. It starts with an initial gen-
eration of candidate solutions that are tested against the objective function. Subsequent
generations evolve from the first generation through reproduction, crossover, and mu-
tation [7]. First of all, initial chromosomes are evaluated, and the fitness function value
for each one of them is determined. After that, the best chromosomes are selected for
reproduction and transferred to the next generations as “parents”. Thus, by absorbing the
advantages of parents, new generations are evaluated, and the abovementioned process is
continuing until stop criteria are met. Finally, the mutation process is conducted to change
the chromosomes randomly to avoid being trapped in a local minimum [26].

Although the BP algorithm is widely used in ANN models, it may be trapped in local
minima. Hence, optimization is necessary. GA can be applied to optimize the original
ANN to obtain better prediction results. The implementation process of GA-ANN in this
paper is shown in Figure 6.

During the optimization process of GA, determining the parameters of this algorithm,
such as population size and genetic operator rates, and creating the proper function,
are the most challenging problems. These parameters will considerably influence the
convergence and results of the algorithm, which should be noticed during the optimization
process [27,28]. Koopialipoor et al. selected 0.25 and 0.09 as the mutation probability value
and percentage of recombination, respectively. The population range of 25–600 was utilized
to conduct the parametric study, and 300 was chosen to be the optimum number of the
population [7].

In this paper, a series of hybrid GA-ANN models were created to determine the best
population size and the number of generations. The ranges of the population size and the
number of generations were 50–500 and 10–500, respectively. In total, 140 hybrid models
were generated to obtain the best GA parameters. In order to select the best GA parameters,
the total rate method was applied as well [24]. Among the 140 hybrid models, eight models
with the top rates are shown in Table 5. As shown in Table 5, the total rate for the hybrid
model with 400 generations and 150 populations is the highest.
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Table 5. GA-ANN models with the top eight rates among the 140 GA-ANN models.

Number of
Generation

Population
Size

Training Set Test Set Rate for Training Set Rate for Test Set
Total Rate

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

400 150 0.8808 2.5368 0.8519 1.4076 138 111 131 137 517
500 500 0.868 1.2022 0.8461 7.9039 124 129 121 122 496
350 300 0.8684 0.9074 0.8412 9.5502 125 134 108 121 488
250 150 0.8757 3.061 0.8543 13.0499 134 102 134 110 480
300 400 0.8679 0.9775 0.8446 18.1216 123 133 118 91 465
20 500 0.8717 1.8646 0.8534 20.395 130 118 133 81 462

350 100 0.8705 3.5565 0.8476 14.3326 128 96 125 104 453
30 200 0.8655 0.171 0.8383 15.8342 114 138 95 96 443

Thus, 400 generations and 150 populations were chosen to be the optimum GA
parameters in this paper. Table 6 shows the GA parameters used in this study. Note that
the architecture of the GA-ANN was 10 × 7 × 1, which is the same as that of the ANN.
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Table 6. GA parameters used for the determination of jacking force.

GA Parameter Values

Genetic operators (possibility) Crossover (0.9), mutation (0.1)
Selection method Roulette wheel selection

Number in population 150
Number of generations 400

According to Table 6, five GA-ANN models were established. The performance of
these models will be discussed later.

4. Results and Discussion
4.1. Evaluation of the Results

Performance indices (PIs), including coefficient of determination (R2), root mean
square error (RMSE), and the absolute value of relative error (RE), are utilized to evaluate
the performance of the five ANN models and five GA-ANN models. Equations of these
PIs are presented as follows:

R2 = 1−

N
∑

k=1
(tk − yk)

2

N
∑

k=1

(
tk − tk

)2
(5)

RMSE =

√√√√ 1
N

N

∑
k=1

(tk − yk)
2 (6)

RE =

∣∣∣∣ tk − yk
tk

∣∣∣∣ (7)

where tk is the measured output value, yk is the predicted output value, tk is the average
value of actual tk values, and N is the number of datasets.

Table 7 illustrates the values of PIs for training and test sets of five datasets. Similarly,
the total rate method is applied here to select the optimum model from five ANN models
and five GA-ANN models [24].

Table 7. Values of the performance indices (PIs) for ANN and GA-ANN models.

Method Model RMSE R2 RE
Rate

Total Rate
RMSE R2 RE

ANN

Tr 1 6.713 0.873 0.129 4 3 1 8
Tr 2 85.924 0.613 0.099 1 2 2 5
Tr 3 22.071 0.896 0.034 2 4 3 9
Tr 4 2.759 0.904 0.022 5 5 5 15
Tr 5 12.966 0.904 0.027 3 5 4 12
Ts 1 66.928 0.794 0.014 2 5 3 10
Ts 2 34.284 0.632 0.008 4 2 4 10
Ts 3 93.595 0.278 0.034 1 1 2 4
Ts 4 37.350 0.766 0.004 3 4 5 12
Ts 5 19.788 0.641 0.037 5 3 1 9

GA-ANN

Tr 1 1.511 0.868 0.012 5 4 5 14
Tr 2 53.862 0.570 0.060 1 2 1 4
Tr 3 23.972 0.808 0.043 3 3 2 8
Tr 4 20.341 0.894 0.027 4 5 4 13
Tr 5 47.804 0.426 0.035 2 1 3 6
Ts 1 7.834 0.731 0.005 5 4 5 14
Ts 2 25.691 0.506 0.063 3 2 1 6
Ts 3 8.038 0.718 0.029 4 3 4 11
Ts 4 66.201 0.463 0.052 1 1 2 4
Ts 5 54.433 0.746 0.039 2 5 3 10

Note: Tr means training, Ts means test.
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Afterwards, the ratings of PIs for both training and test set for each AI model was
calculated (Table 8). As shown in Table 8, number 4 and number 1 models exhibited the
highest total rate for the ANN and GA-ANN methods.

Table 8. Total rates for ANN and GA-ANN models.

Method Model Total Rate

ANN

1 18
2 15
3 13
4 27
5 21

GA-ANN

1 28
2 10
3 19
4 17
5 16

Values of the three PIs (R2, RE, RMSE) and the total rates show that the GA-ANN
model is superior to the ANN model for the jacking force during the VTM construction,
especially on the values of RMSE.

The performance prediction results for the best models for ANN and GA-ANN are
displayed in Figures 7 and 8, respectively. It can be seen from Figures 7 and 8 that the
hybrid GA-ANN model performs better than the ANN model, especially the performance
of the test set.

4.2. Parametric Sensitivity Analysis

The ANN models are known as black-box models, which cannot provide a detailed
relationship between the output parameter and the input parameters. To overcome this
shortcoming, a sensitivity analysis was conducted to ascertain the importance of each in-
fluencing factor, i.e., each input parameter. The cosine amplitude method is widely applied
when conducting parametric sensitivity analyses [29–31]. All data pairs are expressed in
common X-space. The data pairs can be expressed as:

X =
{

X1, X2, X3, · · ·, Xq
}

(8)

Each of the elements Xi in array X itself is a vector of length q, and can be expressed as:

Xi =
{

xi1, xi2, xi3, · · ·, xiq
}

(9)

The strength of the relationship (rij) between datasets Xi and Xj can be expressed
as follows:

rij =
∑

q
k=1 xikxjk√

∑
q
k=1 x2

ik∑
q
k=1 x2

ik

(10)

According to Equation (10), the relationship between the input data and the output
data is shown in Figure 9. As shown in Figure 9, the height of overlaying water, the average
jacking speed, and the geological condition are the most effective input parameters on the
jacking force, whereas the jacking distance and the dead weight of standpipes are the least
effective parameters.
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5. Conclusions

To predict the jacking force during the VTM construction, a case study from Beihai,
China was introduced, and 546 datasets were utilized to build ANN and GA-ANN models.
The ten influencing factors which affect the values of the jacking force can be divided into
three categories, i.e., geological condition factor, tunnel geometry factor, and jack operation
factor. Assuming that only the ten influencing factors in Section 2.2 are related to the
jacking force and using these ten factors as the input parameters, the jacking force as the
output parameters, the basic ANN model was established. After a parametric study, the
structure of 10 × 7 × 1 was chosen to be the best architecture. Based on this structure,
many ANN models and hybrid GA-ANN models were built. Finally, three PIs, including
R2, RMSE, and RE, were used to choose the best neural network of all the models. The
number 4 and number 1 models exhibited the best total rates for ANN and GA-ANN
models, respectively. The results show that the GA-ANN models were better than the ANN
models. Finally, the sensitivity analysis showed that the height of overlaying water, the
average jacking speed, and the geological condition are the most effective input parameters
on the jacking force. In contrast, the jacking distance and the dead weight of standpipes
are the least effective parameters.

Note that the limitation of the intelligent models in this paper is that the dataset
number is not enough. Driven by big data, the accumulation of more data is believed
to provide more accurate neural-genetic models to predict jacking force. By using this
methodology, researchers and engineers will be able to predict the jacking force before the
VTM construction, which can, in turn, guide the related projects. Moreover, the models in
this paper may perform better if methods like “dropout”, activation functions such as “the
rectified Linear Unit” (ReLU) can be used in the study [32,33]. This kind of method can
optimize the neural network model and broaden its application field.

Supplementary Materials: The exact values of ten influencing factors, together with the jacking
force, are available online at https://www.mdpi.com/2077-1312/9/1/71/s1.
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