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Abstract: This study aims at developing a new set of equations of mean motion in the presence of 

surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and 

outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of 

quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are in-

cluded through source terms. The obtained equations are expressed to the second-order of wave 

amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the 

wave trough, the new equations are valid until the mean water surface even in the presence of finite-

amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to vali-

date the new set of equations of motion. The 2DV model passes the test of steady monochromatic 

waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for 

equations of mean motion with a known analytical solution. In addition to this, experimental data 

for the interaction between random waves and a mean current in both non-breaking and breaking 

waves are employed to validate the 2DV model. As shown by this successful implementation and 

validation, the implementation of these equations in any 3D model code is straightforward and may 

be expected to provide consistent results from deep water to the surf zone, under both weak and 

strong ambient currents. 

Keywords: generalized Lagrangian mean; quasi-Eulerian mean; radiation stresses; wave-current 

coupling; mean currents; three-dimensional mean flow 

 

1. Introduction 

The interaction between waves and currents has been the subject of much research 

in recent decades. There are two representations of wave-averaged effects on the currents 

called “radiation stress” and “vortex force”. The concept of “radiation stress: was first 

introduced by Longuet-Higgins and Stewart [1] to explain the transfer of wave energy to 

a uniform current. This concept was used by Longuet-Higgins and Stewart [2] to study 

the changes in the mean surface level and the currents caused by gravity waves. The ra-

diation stress concept has been successful in explaining phenomena such as wave “set-

up”, “surf beats”, the steepening of the surface waves on adverse currents [3], and the 

generation of long-shore currents by oblique incident waves [4–6]. However, since “radi-

ation stress” introduced by Longuet-Higgins and Stewart [1] is a two-dimensional hori-

zontal tensor it is only practical for two-dimensional, depth-averaged models. In reality, 

the current is depth-dependent, so the vertical structure of the radiation stress should be 

specified. 
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Some scientists attempted to apply the “radiation stress” concept in three-dimen-

sional models. Xie, Wu [7] applied radiation stress as a depth uniform body force in the 

Princeton ocean model, even though the radiation stress is caused by depth-varying wave 

velocity and hydrodynamic pressure. Therefore, their assumption for the vertical struc-

ture of radiation stress is not accurate. Xia, Xia [8] considered the vertical structure of ra-

diation stress; however, the three-dimensional radiation stress formulation was derived 

from two-dimensional radiation stress. 

The second representation of the wave and current interaction is expressed in terms 

of the vortex force. This representation was first developed by Craik and Leibovich [9] in 

the work of constructing a realistic theoretical model of steady Langmuir circulations. 

Their research focused on the near-surface layer to explain the generation of Langmuir 

currents as a result of the interaction between surface waves and wind-driven circulation 

through the action of a vortex force. Leibovich [10] extended this theory to allow vertical 

density stratification and slow time variation. McWilliams and Restrepo [11] developed a 

perturbation theory to obtain wave-averaged equations of motion. Their theory is based 

on the assumption of small wave slope and deep water. McWilliams, Restrepo [12] devel-

oped a system of mean equations of motion based on an asymptotic theory to account for 

the interaction of waves and currents. In this, the effects of waves on the current are ex-

pressed in terms of the vortex force formalism. However, the equations of McWilliams, 

Restrepo [12] are only valid when the ratio of mean current to the wave orbital velocity is 

a small quantity, and are only applicable outside the breaking zone. Newberger and Allen 

[13] developed a three-dimensional, hydrostatic model for surf zone applications, with 

applicability to linear waves interacting with a depth-uniform mean current. They divided 

the effect of waves on the mean currents into surface and body forces. The surface force 

represents the wave dissipation, and the body force represents the gradient of the Ber-

noulli head and vortex-force. The equations of McWilliams, Restrepo [12] were used by 

Uchiyama, McWilliams [14] for surf zone applications. In this, the non-conservative forc-

ing by breaking waves, roller waves, bottom and surface streaming and wave-enhanced 

mixing are added through empirical formulas. Their equations were implemented in the 

COAWST (coupled ocean—atmosphere—wave—sediment transport) modeling system 

by Kumar, Voulgaris [15] with some modifications for empirical formulas of wave-in-

duced forcing. 

The relationship between “radiation stress” and “vortex force” representations was 

studied by Lane, Restrepo [16]. In this, the asymptotic assumption proposed by 

McWilliams, Restrepo [12] was used to look for the similarities and discrepancies of these 

two representations. They proved that these two representations are equivalent (Equa-

tions (38) and (39)). However, their work was only restricted to non-dissipative waves. All 

the theories mentioned above are expressed in an Eulerian-mean framework, though 

when finite-amplitude waves are present, the region between the wave trough and wave 

crest is not always filled by the fluid but by the air during part of the wave period. This 

poses a problem due to a large difference in density between the fluid and the air. 

In the work of Mellor [17] and Mellor [18], a wave-following sigma-coordinate sys-

tem was employed to couple the three-dimensional circulation models with wave models. 

The coupling included depth-dependent wave radiation stress terms. Their equations are 

inconsistent in the simple case of shoaling waves without energy dissipation [19]. Re-

cently, Mellor [20] and Mellor [21] derived prognostic equations for Eulerian mean flow 

on sigma-coordinates. The three-dimensional momentum equations were inferred from 

the vertically integrated momentum equations by adding a term for which vertical inte-

gration is zero. Similar to the work of Xia, Xia [8], the inference of three-dimensional mo-

mentum equations from two-dimensional momentum equations is not straightforward. 

This inconsistency was also pointed out by Ardhuin, Suzuki [22]. Moreover, in the mo-

mentum equation of Mellor [20] and Mellor [21], there is a lack of a term related to the 

divergence of the vertical momentum flux [22]. 
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The generalized Lagrangian mean (GLM) method was introduced by Andrews and 

McIntyre [23], hereafter referred to as AM. The basic idea of this method is to average over 

disturbance positions of the fluid particle. Therefore, the GLM method is valid from the 

bottom to the mean water surface even in conditions of finite-amplitude waves. This 

method provides a powerful foundation for the analysis of the wave–current interaction 

and gives a physical interpretation of the interaction between waves and currents. Based 

on the GLM method, AM developed a set of equations of mean motion in a general con-

dition of the wave–current interaction. Their set of equations is complete and depends on 

thermodynamic properties such as entropy and enthalpy. However, the disturbance-re-

lated quantities, which include both wave-induced and turbulence-induced effects, are 

not explicitly represented through source terms. Their equations were employed by 

Leibovich [24] to derive Langmuir circulation equations under the assumption that the 

waves are dominated by their irrotational part. The GLM equations of AM were simpli-

fied by Dingemans [25] with the assumption of constant density, and removing all ther-

modynamic terms, yet leaving the disturbance quantities as implicit. Groeneweg [26] used 

an alternative method to obtain GLM equations, where the Reynolds-averaged Navier–

Stokes (RANS) equations were rewritten in terms of GLM quantities. The mean quantities 

in RANS equations are obtained by applying the Eulerian mean method; therefore, his set 

of equations is not suitable to the region above the wave trough. His set of equations was 

implemented in the Delft3D-FLOW model by Walstra, Roelvink [27] with simplification 

for the wave-induced driving force. Ardhuin, Rascle [19] developed a practical set of equa-

tions of mean motion based on the work of Dingemans [25]. Their equations are written 

in term of quasi-Eulerian mean velocity îu  defined by: 

ˆ ,L
i i iu u p  (1)

where, L
iu  is the ith- component of GLM velocity, and ip  is the ith-component of pseu-

domomentum defined by: 

  ,
j l

i j j
i

u
x


  


p  (2)

where, ix  is the ith-component of position x,   is the disturbance displacement of the 

fluid particle, l
ju  is the jth-component of Lagrangian disturbance velocity, and   is the 

angular velocity of the Earth. In Equation (2) the summation convention for the indices is 

employed. This convention is also used throughout this paper with the indices from 1 to 

3. 

The equations of mean motion by Ardhuin, Rascle [19] are explicit in terms of the 

wave forcing and applicable outside the breaking zone; their equations provide qualita-

tive results for surf zone applications [19]. This is due to the fact that the Stokes drift only 

approximates to pseudomomentum when the waves are irrotational and the mean flow 

is of second-order of the disturbance amplitude (AM). 

In this paper, a set of equations of mean motion using the GLM method is developed. 

The equations are written in terms of quasi-Eulerian velocity defined as GLM velocity 

minus Stokes drift. The new equations are valid from offshore to coastal areas. Outside 

the surf zone and for non-dissipative waves, the new equations are identical to equations 

of Ardhuin, Rascle [19]; for dissipative waves, there are subtle differences. In the case of 

infinitesimal and conservative waves, the new equations reduce to the well-known clas-

sical Eulerian mean equations of motion. The new set of equations is validated with an 

adiabatic test, non-breaking waves propagating on a strong ambient current in a wave 

flume, breaking waves propagating over a barred profile in a wave flume, and obliquely 

incident breaking waves in a large-scale sediment transport facility (LSTF). 

Figure 1 is a flowchart describing the methodology of this research. It helps readers 

understand the structure of this paper easier. 
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Figure 1. A flowchart describing the methodology of the research. 

2. Derivation of the Quasi-Eulerian Mean Equations of Motion 

The GLM method is an exact theory of nonlinear waves on a Lagrangian-mean flow 

proposed by AM. In the following, only some properties of the GLM operator are present. 

Full details of this method are given in the original paper of AM. The basic idea of the 

GLM method is to average over positions displaced by a certain disturbance. That is, if 

( , )t x  is the particle displacement of the fluid particle then the GLM of any quantity 

( , )t x  is defined as: 

 ( , ) ( , ), ,
L

t t t    x x x  (3)
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where, the operator    expresses a time average over a wave period. The term on the 

right-hand side of the above equation is a usual Eulerian mean operator. The following 

notation was employed throughout this study: 

 ( , ) ( , ), ,t t t    x x x  (4)

The Lagrangian disturbance quantity l is defined by (AM): 

( , ) ( , ) ( , ),l Lt t t   x x x  (5)

The quasi-Eulerian mean quantity   and quasi-Eulerian disturbance quantity 

are defined, respectively, by (AM): 

     , , , ,L St t t   x x x  (6)

    (7)

where, S  is the Stokes correction of the quasi-Eulerian mean quantity  . 

Assuming that any quasi-Eulerian disturbance can be decomposed into wave and 

turbulence components, such as: 

,t    (8)

where,   and t  are the wave and turbulent quantities, respectively. Moreover, the tur-

bulent and wave quantities are assumed to be uncorrelated. That is, for any   and  : 

0,t   (9)

2.1. Derivation of Quasi-Eulerian Mean Equations of Motion 

2.1.1. Derivation of Quasi-Eulerian Mean Momentum Equation 

In this work, the fluid is assumed incompressible ( const ) and the dependence of 

hydrodynamic processes on thermodynamic terms is neglected (Assumption 1). Let us 

start with the momentum equation for the total flow written in the Eulerian framework. 

The ith equation is expressed by: 

1
2( ) 0,i i

j i i

j i i

u u p
u X

t x x x

   
      

    
u  (10)

where, i and j represent for the spatial directions (i and j run from 1 to 3), the angular 

velocity of the Earth Ω is assumed constant, ( , )t x  is the potential of the gravitational 

force, p is pressure, and X  is a function of non-wave dissipative forcing. 

Evaluating Equation (10) at the disturbance position of the fluid particle    x  to 

obtain: 

   
1

2( ) 0,i i
j i i

j i i

u u p
u X

t x x x

  

         
                    

u  (11)

Equation (11) is valid from the bottom to the free water surface. Assuming that the 

gravitational acceleration g is constant then: 

3 ,i

i

g
x


 


 (12)

where, 3i  is the Kronecker delta function given by: 

1    if 
,

0   otherwise
ij

i j
  


 (13)
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Taking the time-average of Equation (11) (and after some manipulation) to obtain the 

following momentum equation written in term of GLM quantities (see Appendix A for 

detail): 

  3

3
3

1 1
2

1
( ),

2

L L L L
i i i ji

i j i

j k

i j k

p p
D u g X

x x x

p
O

x x x




   
         

     


   

  

u

 (14)

where,     is a small parameter in the order of disturbance displacement amplitude, 

and 
LD  is the Lagrangian mean material derivative defined as: 

/ . ,L LD t    u  (15)

where, , ,
x y z

   
   

   
 is the gradient operator. 

In the above equation, both wave and current-induced turbulent effects are involved 

in the quasi-Eulerian disturbance and GLM terms. For example, quasi-Eulerian disturb-

ance pressure p  includes wave-induced pressure p  and turbulence-induced pressure
tp . There is no available theory to calculate such quasi-Eulerian disturbance terms. 

Therefore, it is necessary to separate wave and turbulent terms from the quasi-Eulerian 

disturbance. In the following, Equation (14) is used to develop a quasi-Eulerian mean mo-

mentum equation in the GLM framework. The goal of this exercise is that the wave-in-

duced velocity, the turbulence, and the mean velocity are separated. 

Using the definition of quasi-Eulerian mean quantity in Equation (6), Equation (14) 

can be rewritten as: 

   3

3
3

1
2 2

1 1
( ),

2

L L S S S
i i i i ii i

i

j j k

j i i j k

p
D u g X D u X

x

p p
O

x x x x x





         

 

   
      
      

u u

 (16)

After some manipulation, the right-hand side of Equation (16) can be expressed as 

(see Appendix B): 

 

 

3

3

1 1
2

2

' '
( ),

L S S S
i i j j ki

j i i j k

i j S i
k

j k

p p
D u X

x x x x x

u u u
u O

x x


   
                 

 
   

 

u

 (17)

The first term on the right-hand side of Equation (17) can be decomposed into the 

wave and turbulent components, such as: 

     ' '
,

t t
i ji j i j

j j j

u uu u u u

x x x

 
   

  

 
 (18)

where, iu  and t
iu are ith- components of wave and turbulent velocities, respectively. It is 

stressed that an assumption of no correlation between wave and turbulent quantities is 

employed in this step (see Equation (9)). 

Equation (17) expresses the relationship between the Stokes drift, wave-induced 

pressure, and wave-radiation stress. Inserting Equations (17) and (18) into Equation (16) 

to obtain the following momentum equation in terms of quasi-Eulerian mean velocity: 
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3
3

1 1
2 ( ),

i j iji
i ii

i j j

u uDu p
g X O

Dt x x x




 
        

    
u

 
 (19)

where, t t
ij i ju u    is the turbulent stress tensor. 

The momentum Equation (19) includes four variables: three components of quasi-

Eulerian mean velocity u  and pressure p . Effects of waves and turbulence can be mod-

eled as source terms. The momentum equation can be solved in combination with the 

continuity equation. The turbulent effect is expressed in the form of Reynolds turbulent 

stress, which can be calculated by using existing turbulent submodels, and the wave effect 

following an appropriate wave model. 

2.2.2. Mass Conservation Equation 

The mass conservation equation is necessary to close the set of equations of the mean 

motion. The mass conservation is simplified under the assumption of slow modulation of 

the waves (Assumption 2). For an incompressible fluid (Assumption 1), the mass conser-

vation equation is expressed by (AM): 

3 3
1

,
2

L L L
j k j kL

l

j k l j k

u v w
u

x y z t x x x x x

        
    
          

 (20)

In the following, the vertical GLM velocity is assumed a small quantity, i.e., 

( )Lw O  . Using Assumption 2 the right-hand side of Equation (20) is simplified as: 

3 3 2 2
33

2

1 1
( ),

2 2

j k j kL
l

j k l j k

u O
t x x x x x t z


         
    

             

 (21)

Notice that quasi-Eulerian mean quantities are averaged over the wave period. 

Therefore, in the scale of the mean current, the right-hand side of Equation (21), generally, 

differs from zero. According to the definition of Stokes correction in AM, the term in 

brackets on the right-hand side of Equation (21) is the Stokes correction of the mean posi-

tion of the fluid particle 
SZ , i.e.,: 

2 2
33

2

1
( ),

2
SZ O

z


 
 


 (22)

In stationary waves, the temporal derivative of 
SZ is zero, so Equation (20) becomes: 

,
S S Su v w u v w

x y z x y z

      
      

      
 (23)

However, in nonstationary waves, the right-hand side of Equation (21) differs from 

zero and is also of second-order of the disturbance amplitude. In general, the continuity 

Equation (20) is rewritten as: 

,
S S S Su v w Z u v w

x y z t x y z

       
      

       
 (24)

Equation (24) indicates that the divergence of quasi-Eulerian mean velocity is com-

pensated by the divergence of Stokes drift and the time variation of Stokes correction of 

the mean position of the fluid particle. Combined with the momentum Equation (19) we 

had a set of four independent equations in four unknowns as long as the wave and turbu-

lent motions are described by an appropriate wave theory and a relation to the mean flow, 

respectively. In principle, these equations can be solved numerically. 
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3. Validation of Quasi-Eulerian Mean Equations of Motion 

3.1. Model Implementation 

In this part, a two-dimensional numerical model is developed based on the quasi-

Eulerian mean equations of motion, which were developed in the previous part. The 

model is written for the variation of hydrodynamic properties in the x- and z-directions 

(2DV model). All hydrodynamic properties are assumed to be uniform in the y-direction. 

The accelerations of mean vertical velocity and dissipative forcing are neglected in the 

vertical momentum equation of mean motion (hydrostatic assumption for the mean flow). 

The wave properties such as wave amplitude, wave energy, and wave energy dissipation 

are calculated by wave energy balance equation and roller energy equation given by 

Roelvink and Reniers [28]. Besides, the horizontal variation of the mean atmospheric pres-

sure at the water surface and Coriolis’ effect are assumed small and neglected. 

3.1.1. DV Governing Equations 

The quasi-Eulerian mean momentum equations in the 2DV model are given by: 

 2 2

313111
( ),mol

u wu u u uw
u w u g O

t x z x x z x z


 



        
                   

   
 (25)

32321
2

1
( ),mol

v v v uv vw
u w X v O

t x z x z x z


 



      
                   

   
 (26)

where, only molecular viscosity is considered as non-wave dissipative forcing and mol
 

is molecular viscosity. 

The components of turbulence stress tensor are parameterized by: 

11 13, ,T T
h v

u u

x z
   

 
   

 
 (27)

21 23, ,T T
h v

v v

x z
   

 
   

 
 (28)

where, T
h  and T

v  are horizontal and vertical turbulent viscosities, respectively. In this 

study, horizontal turbulent viscosity is assumed a constant 31.0 10T
h

  m2/s, and vertical 

turbulent viscosity is assumed a constant-parabolic distribution, i.e.,: 

 *,

*,

1

( ) ,

1

c

T
v

c

if z h
h

z
z

z otherwise
h


 





  
   

  
 

     

u

u

 (29)

where, 0.041   is the Von Karman constant, *, /c c u  is friction velocity, and c  

is the bed shear stress caused by the mean current. 

In the condition of stationary waves, the quasi-Eulerian mean continuity equation in 

the 2DV model is: 

,
S S Su w Z u w

x z t x z

    
   

    
 (30)

If the bed level is fixed then the depth-integrated continuity equation is simplified as: 

,
L L

S

h h
udz u dx

t x x

 

 

        
       (31)
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3.1.2. Depth-Dependent Wave Radiation Stress in the 2DV Model 

The following formulas are derived with the assumption that all the surface waves 

are uniform in the y-direction. Components of wave radiation stress tensor in horizontal 

momentum equations are defined as: 

 2 2 ,xx xzS u w S uw         (32)

,yx yzS vu S vw        (33)

With the assumption of slow modulation of the waves, the shear components of ra-

diation stress tensor can be estimated by a local linear wave theory. The horizontal com-

ponents of the wave velocity are given by: 

 
 1

1 2

cosh
cos ,

sinh

k z hk a
u k x k y t

k kh





    (34)

 
 2

1 2

cosh
cos ,

sinh

k z hk a
v k x k y t

k kh





    (35)

The vertical component of wave velocity is calculated from the continuity equation 

for the wave motion: 

1
1 2 1 22

sinh ( ) sinh ( )
sin( ) cos( ),

sinh sinh

kk z h a k z h
w a k x k y t k x k y t

kh x khk
   

  
     


  (36)

Then, shear components of the wave radiation stress tensor are: 

2 2 2
2 1

2

cosh ( ) sinh ( )
,

sinh 2 sinh 2
xx

k k z h k z h
S gka

kh khk

  
   

 
 (37)

2
2 1 2 cosh ( )

,
sinh 2

yx

k k k z h
S ga

k kh


   (38)

The vertical distribution of normal components of wave radiation stress in dissipa-

tive waves was analyzed by Deigaard and Fredsøe [29]. Their study is restricted to shal-

low water waves, where the horizontal wave velocity is assumed to be depth-independ-

ent. This results in the linear variation of xzS  and yzS  with depth. Usually, the horizon-

tal wave velocity is a depth-dependent quantity (e.g., wind waves in deep water), in which 

case more general formulation for xzS and yzS are required. In general, the normal com-

ponents of wave radiation stress can be decomposed into conservative and decay parts, 

such as: 

,CS DCuw uw uw        (39)

,CS DCvw vw vw        (40)

where, the subscripts CS and DC represent the conservative and decay parts of the normal 

components of wave radiation stress, respectively. 

(a) Conservative part of the normal component of the wave radiation stress in weak 

ambient current. 

When the ambient current is small in comparison with the near-bed orbital velocity, 

the conservative part of the normal component of the wave radiation stress can be calcu-

lated from Equations (34)–(36) to obtain: 

 2
1

2

sinh 2 ( )
,

2 sinh 2
CS

gk a k z h a
uw

xk kh

 
 


   (41)
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 1 2

2

sinh 2 ( )
,

2 sinh 2
CS

gk k a k z h a
vw

xk kh

 
 


   (42)

The above formulas agree with the results obtained by You [30] and Groeneweg [26] 

when the incident angle of the wave is zero ( 00  ). 

(b) Conservative part of the normal component of the wave radiation stress in a 

strong ambient current. 

As pointed out by Supharatid, Tanaka [31], and Nielsen and You [32], the ambient 

current has a significant impact on the vertical distribution of wave radiation stress. There-

fore, Equations (41) and (42) are no longer suitable in the presence of a strong ambient 

current. The normal component of the wave radiation stress is enhanced by a factor 

 ,1 ,2,WR WR WRC C C  representing the effect of the ambient current. Equations (41) and (42) 

become: 

 2
,1 1

2

sinh 2 ( )
,

2 sinh 2

WR
CS

C gk a k z h a
uw

xk kh

 
 


   (43)

 ,2 1 2

2

sinh 2 ( )
,

2 sinh 2

WR
CS

C gk k a k z h a
vw

xk kh

 
 


   (44)

For regular waves, the empirical factors ,1WRC  and ,2WRC  are calculated based on the 

formula, which was proposed by Nielsen and You [32], i.e.,: 

 *
,1 1 100 ,WR

z hu
C

a D


   (45)

 *
,2 1 100 ,WR

z hv
C

a D


   (46)

where,  * *,u v  is the friction velocity caused by waves and currents, a is the wave ampli-

tude, and D h    the mean of total water depth. 

As indicated by Ockenden and Soulsby [33], for a substantial part of the time, the 

bottom shear stresses caused by random waves exceed those of the corresponding regular 

waves. In this study, Formulas (43) and (44) are modified to apply for random waves as 

follows: 

 *
,1 1 100 2 ,WR

z hu
C

a D


   (47)

 *
,2 1 100 2 ,WR

z hv
C

a D


   (48)

where, 0.5 rmsa H  with rmsH  is the root mean square wave height. The empirical coeffi-

cient approximates unity when the ambient current is small in comparison with the near-

bed orbital velocity. The friction velocity components caused by waves and currents are 

calculated by: 

* ,1 * ,2/ / ,b bu v      (49)

where,  ,1 ,2,b b b    is the total bed-shear stress caused by waves and currents. Simply, 

the instantaneous total bed shear stress can be decomposed as: 

,b w cw     (50)

where, w  is the wave-induced bed shear stress and cw  is the bed-shear stress caused 

by the mean current in the presence of waves. In this work,
 w  is calculated based on the 

formula introduced by Soulsby [34]. 
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For monochromatic waves, shear stress cw is calculated by: 

221 1
,

2 2
cw cw bb b orbf    u u u  (51)

where, cwf  is the friction factor of the mean current in the presence of waves [35], 

 ,b b bu vu  is the near-bed horizontal velocity, and
 orbu  is the near-bed orbital velocity 

amplitude. 

For random waves, the Formula (51) is modified based on the approximate practical 

formula of Feddersen, Guza [36], i.e.,: 

2 21
(1.16 ) ,

2
cw cw bb bf s    u u  (52)

(c) Decay-related parts of the normal component of the wave radiation stress. 

Outside the bottom boundary layer, the decay-related part of wave radiation stress 

gradient is caused by the dissipative forcing, i.e.,: 

,1 ,1( ) ( )
,

DC br mxF z F zuw

z


  

  

 
 (53)

,2 ,2( ) ( )
,

DC br mxF z F zvw

z


  

  

 
 (54)

where,  ,1 ,2,br br brF F F  represents the effect of breaking wave and roller wave, and 

 ,1 ,2,mx mx mxF F F  represents the wave-induced mixing. In this work, the vertical distribu-

tion of the wave-induced forcing terms brF  and mxF  is estimated by empirical formulas 

proposed by Uchiyama, McWilliams [14]. 

At the bottom, the wave energy is dissipated due to bottom friction. According to 

Longuet-Higgins [37]: 

1
( ) ,

f
DC

k D
uw h


  


   (55)

2
( ) ,

f
DC

k D
vw h


  


   (56)

Defining totF  as the total of wave-induced mixing and current-induced turbulent 

forcing, i.e.,: 

,1 1311
,1

1
,tot

mx

F
F

x z

  
       

 (57)

,2 2321
,2

1
,tot

mx

F
F

x z

  
       

 (58)

The total of wave-induced forcing caused by the conservative part of the wave radi-

ation stress and breaking wave and roller wave-induced forcing wF is: 

 2 2

,1 ,1
,

CSw br
u wF Fuw

x z

           
  

   
 (59)

,2 ,2 ,
CSw brF Fuv vw

x z

  
    

    

   
 (60)

Then, the sum  w totF F  represents the total effects of wave and turbulence on the 

mean current. 
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3.1.3. Bottom Boundary Layer Thickness in the Wave–Current Interaction Condition 

In the condition of waves combined with current, Van Rijn [35] proposed the follow-

ing formula: 

 
0.25

0.2 / ,orb orb nA A k


   (61)

where, 030nk z  is the Nikuradse roughness. 

However, Equation (61) does not account for the effect of near-bed mean current on 

the bottom boundary layer thickness. Therefore, it is only suitable if the near-bed mean 

current is small in comparison with the near-bed orbital velocity. When the near-bed cur-

rent is significant and is comparable to the orbital velocity the following formula is pro-

posed: 

   0.25
0.2 / 1 / ,orb orb n b orbA A k


   u u  (62)

It is clear that when b orbu u  the Formula (62) reduces to Formula (61). 

3.2. Numerical Approximation 

The 2DV equations of mean motion are discretized based on the finite difference 

method on a fully staggered grid (C-grid). An implicit numerical scheme has been used 

to discretize the equations. Finally, the tridiagonal matrix algorithm (Thomas algorithm) 

has been used to solve these equations. In the model, the water level is approximated at 

the grid point  ,i k , the horizontal component of velocity at  1/ 2,i k , and the vertical 

component of velocity at  , 1/ 2i k  . The advection terms are approximated following the 

principles described in Stelling and Busnelli [38]. This method ensures the conservation 

of properties near large local gradient areas. The 2DV model developed in this study is a 

time-domain model starting from rest and simulating to equilibrium in all cases. 

3.3. Adiabatic Test 

The adiabatic test, described in Bennis, Ardhuin [39], is a seemingly simple but chal-

lenging test of the derived equations since any imbalance leads to strong spurious circu-

lations. This test was applied firstly by Ardhuin, Rascle [19]. In this, a steady monochro-

matic small-amplitude wave propagates over a slope without dissipation. This test has an 

exact solution by solving Laplace’s equation for the instantaneous velocity potential with 

given bottom, surface, and lateral boundary conditions [19]. In the work of Ardhuin, 

Rascle [19], the adiabatic test was solved by using the NTUA-nl2 model (National Tech-

nical University of Athens numerical model) developed by Belibassakis and 

Athanassoulis [40]. The quasi-Eulerian mean current is depth-uniform. 

3.3.1. Bathymetry 

The bathymetry was symmetrical and varied slowly from 4 to 6 m in the x-direction, 

and was uniform in the y-direction (Figure 2). The maximum bottom slope was 2.6 × 10−2, 

and the reflection coefficient was 91.4 10R   , so the reflected wave in the momentum 

balance could be neglected [19]. 

 

Figure 2. Bathymetry of the computational area. 
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3.3.2. Boundary Conditions 

At the boundary, a regular wave with a height of 1.02 m and a period of 5.26 s was 

imposed. This is also the wave that was used by Ardhuin, Rascle [19], and Bennis, 

Ardhuin [39] to test their models in the adiabatic condition. The mean water level at the 

outflow boundary is given by: 

2

,
sinh 2

ka

kD
  


 (63)

At the inflow boundary, the quasi-Eulerian mean velocity is vertical uniform and 

given by: 

1
( ) ( ) ,

L

S

L h
u z u z dz

h




 

    (64)

At the outflow boundary, the Neumann boundary condition is applied, i.e.,: 

,
Su u

x x

 
 

 
 (65)

3.3.3. Numerical Results 

Figure 3 shows the spatial distribution of Stokes drift in the x-direction. It shows that 

the Stokes drift was constant over the horizontal bed and the magnitude of the Stokes drift 

increased with a decrease in water depth and vice versa. 

 

Figure 3. Spatial distribution of Stokes drift. 

The comparison of the mean water level calculated by the numerical model and cal-

culated by the formula of Longuet-Higgins and Stewart [3] is given in Figure 4. It shows 

a perfect agreement between the two calculation methods. 

 

Figure 4. Distribution of mean water level  . 

In the adiabatic condition, the total forcing ,1totF  was zero. The vertical distribution 

of wave forcing term ,1 /wF   is presented in Figure 5. It shows that wave-induced forcing 

,1 /wF   was zero when the waves propagated over a flat bed. On a sloping bed, this forc-

ing was not nil and was distributed uniformly over depth. Then, the total forcing 

 ,1 ,1w totF F  was depth-uniform in the adiabatic condition. 
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Figure 5. Distribution of ,1 /wF   (
2/m s ). 

When the wave propagated over a slope, the change of the wave height led to the 

change of Stokes drift. Due to the conservation of mass and momentum, the quasi-Eu-

lerian mean velocity also changed. However, the vertical integration of total flow was still 

unchanged, and in this case, it equaled zero: 

0,
L

L

h
u dz




  (66)

Since all dissipative forcing was absent, the quasi-Eulerian mean horizontal velocity 

was uniformly distributed over the vertical. However, the GLM velocity inherited the 

non-uniformity from the Stokes drift (Figure 6a). Figure 6b presents the quasi-Eulerian 

mean velocity calculated with the 2DV model. It proves that quasi-Eulerian mean equa-

tions of motion passed the adiabatic test. 

 
(a) GLM velocity 

 
(b) Quasi-Eulerian mean velocity 

Figure 6. Vertical distribution of the generalized Lagrangian mean (GLM) velocity and quasi-Eulerian mean velocity. 

3.4. Mean Current in the Presence of Non-Breaking Waves 

In the experiment of Klopman [41], the vertical distribution of the mean current was 

measured in three different types of waves: monochromatic waves, bichromatic waves, 

and random waves. The experiments were performed for four conditions of ambient cur-

rents: currents only (CO), waves only (WO), waves following currents (WFC), and waves 

opposing currents (WOC). The wave height was chosen so that no wave breaking took 

place. Therefore, the bottom friction plays an important role in the vertical distribution of 

the mean current. In the following, the experimental data for random waves were em-

ployed to validate the 2DV numerical model. 

3.4.1. Input Parameters 

The experiment was performed in a wave flume that has a horizontal flat bottom. 

The flume was 45 m long, 1 m wide, and 0.5 m deep. The total discharge was kept constant: 

0Q  m3/s for the case of wave-only, and 0.08Q  m3/s for the remaining cases. The prop-

erties of the random waves at the wave paddle are given in Table 1.  
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Table 1. Wave properties at the paddle. 

Wave Type Tp (s) Hrms (m) h (m) 

Random 1.7 0.1 0.5 

The flow velocities were measured at the center of the channel, i.e., 22.5 m from the 

wave paddle. Two laser-Doppler velocimetry flow meters (LDVs) were used to measure 

flow velocity components. The vertical distributions of Eulerian-mean velocities meas-

ured at the center of the flume are presented in Figure 6. 

In the WO condition (Figure 7a), the wave propagated from the right-hand side to 

the left-hand side. It shows that the wave-induced streaming near the bed was in the same 

direction as the propagation of the surface waves. The horizontal mean velocity changes 

sign at a height of approximately 0.13 m from the bed [41]. Outside the bottom streaming 

layer, the mean velocity varied almost linearly. In Figure 7b, the vertical distribution of 

horizontal mean velocity is presented in three conditions: CO, WFC, and WOC. It shows 

that vertical profiles of the mean current changed significantly in the presence of surface 

waves. In the WFC condition, the velocity shear /u z   was negative in the upper part 

of the water column (z/h > 0.4). In the WOC condition, the mean velocity decreased near 

the bed (z/h < 0.4), and increased near the surface (z/h > 0.4) in comparison with the cur-

rent-only condition. 

 
(a) Wave only 

 
(b) Waves combined with current 

Figure 7. Vertical distribution of the Eulerian-mean velocity. 

By linear extrapolation of the velocities in a semilogarithmic scale, Klopman [41] ob-

tained the friction velocity 3
* 7.3 10u   m/s. The vertical distribution of the Reynolds 

shear stress t tu w  is present in Figure 8. The bottom shear stress was estimated by 

Klopman [41] about 5/b
   m2/s2, corresponding to the friction velocity of 

3
* / 6.7 10bu       m/s. Then, the friction velocity calculated from the bed shear stress 

was slightly smaller than obtained from the velocity profile. 
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Figure 8. Vertical distribution of Reynolds shear stress 
t tu w  in the CO condition. 

3.4.2. Boundary Conditions 

In the model, the shear stress is assumed to vanish at the mean water surface, since 

non-breaking waves are considered, i.e.: 

  0,v fr

z

u
K

z




 
   

 (67)

where, T
v v mol    . At the bottom, the bottom boundary condition is given by: 

  ,
f cw

v fr

z h

kDu
K

z




 

 
       

 (68)

At the outflow boundary, the boundary condition for the mean water level and the 

mean current is given by: 

2

,
sinh 2

ka

kh
  


 (69)

,
Su u

x x

 
 

 
 (70)

At the inflow boundary, the quasi-Eulerian mean velocity is given by: 

1
( ) ( ),L S

L
u z Q u z

h
 

 
 (71)

where, LQ  is the mean of total discharge through the pipe. 

3.4.3. The Numerical Results 

The experiment of Klopman [41] is simulated by the 2DV model with spatial steps of 

0.15x m  , 0.0025z m  , and a time step of 0.5t s  . In the experiment, due to small 

technical issues, there was uncertainty in the measured discharge (see Klopman [41] for 

more detail). However, these errors were not corrected in his document. Generally, the 

measured discharge is expressed as a total of the real discharge and error discharge, i.e.,: 

,measured real errQ Q Q   (72)

where, realQ  is the real discharge through the wave flume, measuredQ  is the measured dis-

charge, and errQ  is the error of flow discharge. In CO condition, it found that when errQ

approximates to 0.003 m3s−1 (3.75% of the real discharge) a good agreement between nu-

merical results and experimental data was obtained. In waves combined with current con-

ditions, the error of flow discharge is assumed similar to the current only condition. In the 
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WO condition, flow discharge errQ is zero by definition. In all tests, the bed roughness is 

kept constant 5
0 4.0 10z   m, corresponding to a Nikuradse roughness of 31.2 10nk

 

m. In Table 2, the bottom boundary thickness is presented. In the condition of waves com-

bined with current, bottom boundary thickness   was calculated by two methods: the 

formula of Van Rijn [35] and its modified Formula (62). The results are presented in Table 

2. 

Table 2. Bottom boundary thickness   in different waves and current conditions. 

Conditions 
Formula (62) 

( 310  m) 

Van Rijn [35] 

( 310  m) 

CO 0.1 0.1 

WO 1.3 1.3 

WFC 5.3 3.6 

WOC 4.9 3.6 

Table 3 presents the characteristics of the mean flow near the bed calculated by the 

2DV model. It shows that bottom stress in conditions of waves combined with the current 

was much higher than that in conditions of WO and CO. This is because momentum mix-

ing under wave-current interaction conditions was much higher than in conditions of both 

WO and CO (see for instance the discussion in Chapter 3 of [42]). 

Table 3. Characteristics of the near-bed mean flow. 

Conditions 
bu  

( 210  m/s) 

b  

( 210  kgm2/s2) 

*u  

( 210  m/s) 

CO 8.16 5.4 0.74 

WO 0.9 0.21 0.13 

WFC 8.10 37.67 1.94 

WOC 5.86 24.6 1.56 

The vertical distribution of Reynolds turbulent viscosity is presented in Figure 9.  

 

Figure 9. Vertical distribution of turbulent viscosity (
T
v ). 

It shows that the viscosity in the WFC condition was bigger than in the WOC condi-

tion, and viscosity in waves combined with current conditions was bigger than in the CO 

condition. Moreover, the viscosity in the WO condition was much smaller than for other 

conditions. 
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In Figure 10, the conservative part of uw   in different conditions of waves combined 

with the current was plotted. It clearly shows that the ambient current had a significant 

impact on the normal component of the wave radiation stress. Moreover, the conservative 

part of the normal component of wave radiation stress uw   in the condition of the follow-

ing waves was slightly bigger than that in the condition of the opposing waves. 

 

Figure 10. Vertical distribution of the wave radiation stress component CSuw  . 

In non-breaking waves, the wave-induced forcing term ,1 /wF   only represents the 

effect of the conservative part of the wave radiation stress. Figure 11a–c show the vertical 

distributions of forcing term ,1 /wF   and mixing term ,1 /totF   at the center of the wave 

flume. In all three tests, i.e., WO, WFC, and WOC, the forcing ,1wF  is completely compen-

sated by total mixing ,1totF  at any water depth level. The total of these two forcing terms, 

i.e.,  ,1 ,1w totF F , is depth-uniform in the non-breaking wave condition. 

 
(a) WO 

 
(b) WFC 

 
(c) WOC 

Figure 11. Vertical distribution of wave-induced forcing terms. 

Figure 12 shows the vertical distribution of the Reynolds turbulent stress at the center 

of the wave flume. Near the bed, the turbulent stress calculated by the 2DV numerical 

model was about 6/ 54.4 10b
   m2/s2, and the corresponding friction velocity was 

37.4 10 m/s (Table 4), which was in good agreement with the friction velocity obtained 

from the mean velocity profile by Klopman [41], i.e., 37.3 10 m/s. 

Table 4. Wave properties at the offshore boundary. 

Experiment Hs (m) Tp (s) 

Test 1B 0.206 2.03 

Test 1C 0.103 3.3.3 
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Figure 12. Reynolds turbulent stress 
t tu w in the CO condition. 

The spatial distribution of the quasi-Eulerian mean velocity calculated with the 2DV 

model in the condition of CO is given in Figure 13. The (vertically uniform) inflow bound-

ary was specified at position 0x   m. 

 

Figure 13. Spatial distribution of quasi-Eulerian mean velocity in the CO condition. 

The comparison between numerical results and experimental data in the middle of 

the flume is given in Figure 14. The comparison is given in both the linear scale and semi-

logarithmic scale. It shows that the mean current profile calculated with the 2DV model 

closely followed the experimental data. The agreement was good not only in the upper 

part of the water column but also close to the bed. 

 
(a) Linear scale 

 
(b) Semilogarithmic scale 

Figure 14. Vertical distribution of quasi-Eulerian mean velocity in the CO condition. 

In Figure 15, the spatial distributions of Stokes drift and quasi-Eulerian mean velocity 

in the WO condition are presented. In this, surface waves are imposed at 45x   m and 
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propagated towards the left. The Stokes drift was in the direction of the waves, whereas 

the quasi-Eulerian mean velocity was in the opposite direction. The magnitude of Stokes 

drift and quasi-Eulerian mean velocity decreased in the wave propagation direction due 

to the effect of bottom friction. However, the momentum transport of total flow through 

any vertical section was zero. 

 

(a) Stokes drift 

 

(b) Quasi-Eulerian mean velocity 

Figure 15. Spatial distribution of mean velocity fields in the WO condition. 

The comparison between the quasi-Eulerian mean velocity calculated with the 2DV 

model and experimental data in the WO condition is given in Figure 16. It shows a very 

good agreement between model results and experimental data in the whole vertical sec-

tion even on both linear scale and semilogarithmic scale. The near-bed wave-induced 

streaming is in the wave propagation direction. The mean horizontal velocity varied near-

linearly from above the bottom streaming layer up to the mean surface level. 

 

(a) Linear scale 

 

(b) Semilogarithmic scale 

Figure 16. Vertical distribution of quasi-Eulerian mean velocity in the WO condition. 

The spatial distribution of quasi-Eulerian mean velocity in conditions of WFC and 

WOC are presented in Figure 17a,b. In the case of WFC, the magnitude of the mean veloc-

ity was not the biggest at the water surface but located inside the water column. In the case 

of WOC, the magnitude of velocity increased from the bottom to the water surface. 
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(a) WFC 

 

(b) WOC 

Figure 17. Spatial distribution of quasi-Eulerian mean velocity. 

Figure 18a,b shows the comparisons between experimental data and numerical 

model results under the condition of waves combined with the current in a linear scale. It 

shows that the vertical profile of the mean velocity calculated by the 2DV model fit well 

with experimental data in the whole water column. The agreement holds for both WFC 

and WOC conditions. 

 

(a) WFC 

 

(b) WOC 

Figure 18. Vertical distribution of quasi-Eulerian mean velocity in the linear scale. 

In Figure 19a,b, the semilogarithmic scale is employed to see the agreement between 

the 2DV model results and experimental results. It shows that the agreement between the 

2DV model results and experimental data was very good even in the area very close to 

the bed. Besides, the mean current velocity profiles using the boundary layer thickness 

formulation proposed by Van Rijn [35] (Equation (61)) were also plotted (dashed line). 

The result calculated by the modified formulation (62) was better than the result calcu-

lated by the formulation of Van Rijn [35], especially in the region close to the bed. It is 

noticed that the formula to calculate boundary layer thickness  , i.e., Formula (62), is an 

extension of the formula proposed by Van Rijn [35] (Formula (61)). In Formula (38), the 

effect of near-bed current is accounted for when calculating  . Table 2 presents boundary 

layer thickness   in different conditions of waves combined with the current. In the 

wave-only condition, Formulas (38) and (37) are identical. However, the difference be-

tween them is significant in cases of a strong ambient current. Comparison presents in 

Figure 18 suggest that near-bed current should be accounted for to calculate bottom 

boundary layer thickness, especially in the case of a strong ambient current. 
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(a) WFC 

 

(b) WOC 

Figure 19. Vertical distribution of quasi-Eulerian mean velocity in the semilogarithmic scale. 

3.5. Breaking Waves Propagating in a Wave Flume 

3.5.1. Bathymetry and the Wave Properties at the Boundary 

The experiment of Boers [43] was carried out in a wave flume with dimensions of 40 

m long, 1.05 m high, and 0.8 m wide. The bottom of the flume is filled with sand and 

mortar on the top layer. Two breaker bars are designed at the bottom. The still water level 

was fixed at the level z = 0 m. The bottom profile of the calculation area is depicted in 

Figure 20. 

 

Figure 20. The bottom profile. 

Two wave conditions with the highest and lowest wave height at the boundary in 

the experiment of Boers [43] were employed in this work (tests 1B and 1C). The properties 

of the waves at the offshore boundary are given in Table 4, where sH  was the significant 

wave height of the waves. 

3.5.2. Boundary Conditions 

(a) Surface and bottom boundary conditions: 

At the GLM water surface, the total shear stress is assumed to vanish, i.e.,: 

  0,
L

v fr b

z

u
K K

z




 
    

 (73)

where, 
T

v mol v   
 

At the bed, the momentum dissipated by bottom friction is assumed to be transferred 

to the vertical mixing, i.e.,: 

  1 , ,
f cw x
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z h

k Du
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 (74)

(b) Lateral boundary conditions: 
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The quasi-Eulerian mean water level at the offshore boundary is: 

2

,
sinh 2

ka

kD
  


 (75)

The quasi-Eulerian mean velocity at the offshore boundary is: 

1
( ) ( ) ,

L

S

L h
u z u z dz

h




  

    (76)

At the land boundary, the GLM velocity in the cross-shore direction is zero then: 

( ) ( ),Su z u z   (77)

3.5.3. Model Validation 

In the experiment, the cross-shore distribution of significant wave height was calcu-

lated from the zeroth-order spectral moment of surface elevation [43], that is: 

0
4 ( ) ,

Nf

sH S f df   (78)

where, ( )S f  is the spectral energy density, and Nf  is Nyquist frequency of the meas-

urements ( 10Hz ). 

The significant wave height in the 2DV numerical model is calculated from the wave 

energy balance equation. In Figure 21, the spatial distributions of significant wave height 

in tests 1B and 1C are presented. In this, the dots present the experimental data, and the 

solid line presents the numerical model results. It shows that the numerical model results 

fit well with measured data. In test 1B, the experimental data was slightly lower than the 

model results in the region from x = 5 m to x = 14 m. In test 1C, the recirculation was rather 

small then a better agreement between two kinds of data was obtained. 

 

(a) Test 1B 

 

(b) Test 1C 

Figure 21. Distribution of significant wave height SH . 

Figure 22a,b show the vertical distribution of forcing term ,1 /wF   and total mixing 

term ,1 /totF   at 22.9x m . It shows that the wave-induced forcing ,1 /wF   is completely 

balanced by total mixing ,1 /totF  . Total forcing  ,1 ,1w totF F  is depth—uniform in break-

ing wave conditions. 
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(a) Test 1B 

 

(b) Test 1C 

Figure 22. Distribution of wave-induced forcing terms at 22.9x m . 

The comparison of the mean water level calculated by the 2DV numerical model with 

measured data is given in Figure 23. In both tests, the calculated mean water level fits well 

with measured data even in the breaking wave area. 

 

(a) Test 1B 

 

(b) Test 1C 

Figure 23. Distribution of mean water level  . 

The horizontal distribution of Stokes drifts and quasi-Eulerian mean velocities calcu-

lated by the 2DV model is presented in Figure 24. At the locations near the sandbars, it 

shows that the quasi-Eulerian mean velocity was increased in the shoreward direction. 

This is due to the increase of Stokes drift in the onshore direction. In the breaking wave 

area, it shows a large vertical shear of the quasi-Eulerian mean velocity. 

 

(a) Test 1B 

 

(b) Test 1C 
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(c) Test 1B 

 

(d) Test 1C 

Figure 24. Distribution of Stokes drift (a,b) and quasi-Eulerian mean velocity (c,d). 

The comparison between quasi-Eulerian mean velocities calculated by the 2DV nu-

merical model and measured data along the wave flume is given in Figures 25 and 26. 
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Figure 25. Vertical distribution of horizontal mean velocity in test 1B. 
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Figure 26. Vertical distribution of horizontal mean velocity in test 1C. 

Overall, the 2DV model simulated quite well the vertical distribution of the mean 

velocity. In comparison with test 1B, the model results for the test 1C show a better agree-

ment with experimental data, especially near the sandbars. It suggests that empirical for-

mulas of Uchiyama, McWilliams [14] can be applied well for small-amplitude waves. For 

the waves of high-amplitude, these empirical formulas just give qualitative results in the 

breaking zone and further research on the wave forcing in breaking wave areas is needed. 

3.6. Breaking Waves Propagating in a Large-Scale Facility 

3.6.1. Laboratory Setup and Boundary Conditions 

(a) Laboratory setup: 

In this section, the 2DV model was employed to simulate the cross-shore and the 

longshore currents with the input data obtained from the large-scale sediment transport 

facility (LSTF). The design of the LSTF is presented in detail in the paper of Hamilton and 

Ebersole [44]. The facility has dimensions of approximately 30 m cross-shore by 50 m long-

shore by 1.4 m deep. The concrete beach has a longshore dimension of 31 m and a cross-

shore dimension of 21 m, with a slope of 1:30. Unidirectional long-crested waves were 

generated with four piston-type wave generators. An active pumping and recirculation 

system comprised of 20 independent pumps and pipelines were used to control the cross-

shore distribution of mean longshore current. Pumping rates were adjusted iteratively to 

converge toward the proper setting, based on the measurements along the beach. 

The wave conditions at the offshore boundary are given in Table 5. The TMA spec-

trum (self-similar spectral shape) with the width parameter of 3.3 was employed. It is an 

extension of deep water spectrum JONSWAP for applications in shallow water. 

Table 5. Incident wave properties at the boundary. 

Wave Type Tp (s) Hs (m)  0  h (m) 

Irregular 2.5 0.225 10 0.667 

(b) Surface and bottom boundary conditions: 

At the mean water surface, the total shear stress is assumed to vanish, i.e.,: 
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where, T
v mol v    . 

The bottom boundary condition in the cross-shore direction is given by: 
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According to Longuet-Higgins [4], the bed shear stress in the longshore direction can 

be calculated based on the local rate of energy dissipation. Therefore: 
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       (82)

From Equations (52) and (82) the bottom boundary condition in the longshore direc-

tion is given by: 

 2

22

2 1
,

(1.16 )
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 (83)

(c) Lateral boundary conditions: 

At the offshore, boundary conditions for quasi-Eulerian mean water level and quasi-

Eulerian mean velocity components are: 

2

,
sinh 2
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kD
  


 (84)
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L h
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    (85)

tan ,v u   (86)

At the land boundary, the GLM velocity in the x-direction is zero. Besides, the no-

slip boundary condition is assumed for quasi-Eulerian velocity in the y-direction. Then: 

( ) ( ),Su z u z   (87)

( ) 0,v z   (88)

3.6.2. Numerical Results and Discussion 

Figure 27 shows the comparison of significant wave height between experimental 

data and numerical results calculated by the 2DV model. The comparison shows a very 

good agreement between experimental data and model results. 

 

Figure 27. Distribution of significant wave height SH . 

In Figure 28, a comparison of the mean water level between experimental data and 

the 2DV model result is given. There was a small difference of about a few millimeters 

outside the breaking zone. The difference between these two kinds of data was bigger in 

the area closer to the coastline. It might be due to the recirculation system of the facility or 

because the experimental data was for a closed basin, so the volume of water in the setup 

was taken from offshore. 
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Figure 28. Distribution of the mean water level  . 

(a) Cross-shore direction: 

Figure 29 presents the vertical distribution of wave forcing term ,1 /wF   and total 

mixing ,1 /totF   at the location 10.9x m . It shows that momentum caused by wave forc-

ing was completely compensated by total mixing. The total of these two forcing terms was 

depth-uniform. 

 

Figure 29. Vertical distribution of wave-induced forcing terms. 

Figure 30 shows an overview of the spatial distribution of cross-shore velocity calcu-

lated by the 2DV model. It shows that outside the wave breaking zone, the vertical distri-

bution of the quasi-Eulerian mean velocity was almost uniform. However, inside the wave 

breaking zone, the mean velocity shows a strong vertical shear. 

 

Figure 30. Distribution of cross-shore velocity. 

The LSTF data was also employed by Teles, Pires-Silva [45] to validate the TELEMAC 

3D model. In Figure 31, comparisons of cross-shore mean velocities between experimental 

data, results of the TELEMAC 3D model, and results of the 2DV model were carried out 

at six cross-shore locations. 
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Figure 31. Vertical profiles of cross-shore velocity. 

The results obtained from the 2DV model fit quite well with the experimental data, 

and much better than the results obtained by the TELEMAC 3D model in most of the 

cross-sections. Closer to the surface and the land boundary the difference between exper-

imental data and 2DV model results became bigger. The difference might be due to the 

use of empirical formulas for the wave-induced forcing, and the return flow in the facility. 

Improvement of these formulas making use of the large body of literature on the return 

flow profiles is recommendable but outside the scope of this study. 

(b) Longshore direction: 

Figure 32 shows the vertical distribution of the wave-induced forcing ,2 /wF   and 

total mixing ,2 /totF   in the longshore direction at 10.9x m . It shows that the total mix-

ing ,2totF  is balanced by wave-induced forcing ,2totF . The total forcing  ,2 ,2w totF F  is 

depth-uniform. 

 

Figure 32. Vertical distribution of wave-induced forcing terms. 

The cross-shore distribution of the longshore velocity calculated by the 2DV numer-

ical model is presented in Figure 33. According to the results, the longshore velocity in-
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creases shoreward. The maximum magnitude of the longshore velocity reached approxi-

mately 0.35 m/s at the position 14x   m. After this point, the longshore velocity was de-

creased toward the shoreline. 

 

Figure 33. Distribution of the longshore velocity. 

In Figure 34, a comparison between experimental data and numerical results at one-

third of the water depth above the bottom is given. It shows that the results obtained by 

the 2DV model agreed well with the experimental data and matched the observed cross-

shore distribution better than the results obtained by the TELEMAC 3D model. 

 

Figure 34. Longshore velocity at 2 / 3z h  . 

The comparison of the longshore velocities at different vertical cross-sections is given 

in Figure 35. The results of the TELEMAC 3D model show quite good agreement at four 

locations from x = 9.5 m to x = 13.9 m. However, at the location near the offshore x = 7.1 m 

and the location near the coastline x = 15.3 m the differences between experimental data 

and results from the TELEMAC 3D model were significant. In contrast, the results of the 

2DV model show good agreement with experimental data at all six cross-sections. 

   



J. Mar. Sci. Eng. 2021, 9, 76 33 of 41 
 

 

   

Figure 35. Vertical profiles of the longshore velocity at different locations. 

4. Discussion 

Following Van Rijn [35], the bottom boundary layer thickness   was calculated by 

the Formula (61). In this, the effect of mean current on bottom boundary layer thickness 

was neglected. However, interactions of current with wave boundary layer and waves 

with current boundary layer led to the enhancement of current-induced friction, wave 

energy dissipation, and bed shear stress. Then, both waves and current should be consid-

ered in calculating bottom boundary thickness. In this paper, the formula given by Van 

Rijn [35] was modified to take into account the effect of ambient current. The use of the 

modified formula obtained a better agreement with experimental data than the use of the 

original formula of Van Rijn [35]. 

In the work of Nielsen and You [32], an empirical coefficient WRC  was proposed to 

account for the effect of strong ambient current on the vertical distribution of wave radi-

ation stress components. However, that coefficient is only applied to regular waves. In 

this work, a modified formula was proposed to apply for random waves. With that mod-

ification, the mean current profiles calculated by the 2DV model agreed well with experi-

mental data obtained by Klopman [41]. 

In breaking wave conditions, dissipative wave forcing terms were estimated by using 

empirical formulas introduced by Uchiyama, McWilliams [14]. The cross-shore velocity 

profiles obtained by the 2DV model showed good agreement with experimental data pre-

sented in the works of Boers [43] and Hamilton and Ebersole [44]. However, there are 

differences between model results and observed data near the breaking points. It requires 

further research on the vertical distribution of wave breaking induced forcing. In the long-

shore direction, the effect of breaking wave-induced forcing was small. Then, the long-

shore current data calculated by the 2DV model fitted very well with experimental data.  

The LSTF test was also employed by Teles, Pires-Silva [45] to validate the TELEMAC 

3D model. That model was developed based on the work of Ardhuin, Rascle [19], and 

Bennis, Ardhuin [39]. As indicated by Ardhuin, Rascle [19], their equations are only ex-

pected to give qualitative results for surf zone applications. The comparison presented in 

the previous part also showed that the 2DV model obtained a better agreement with ob-

served data than TELEMAC 3D model. 

5. Conclusions 

In this paper, a new set of equations of motion written in terms of quasi-Eulerian 

mean velocity was developed based on the GLM method. The new equations were valid 

from the bottom to the mean water surface even in the presence of finite-amplitude waves. 

These equations are practical for a wide range of applications from deep water to shallow 

water areas. All terms in the equations are expressed to the second-order of the wave am-

plitude. Both non-wave forcing and wave-induced forcing terms are under consideration. 
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When the wave height is infinitesimal, the quasi-Eulerian mean equations of motion re-

duce to the classical Eulerian mean equations of motion. In cases of density stratification, 

the buoyancy effect should be included as external forcing. 

In the work of Longuet-Higgins and Stewart [2], the effects of waves on the mean 

current are expressed in terms of the traditional radiation stress concept. It is a depth-

integrated term and is only suitable for the depth-averaged equations of motion. In 3D 

problems, that concept is no longer suitable. In this paper, a depth-dependent wave radi-

ation stress concept was introduced. Then, the effects of surface waves on the mean cur-

rent could be specified at any level of the water column. The vertical distribution of the 

mean current was described in detail with the use of a depth-dependent wave radiation 

stress tensor. With the use of an empirical coefficient WRC , the depth-dependent radiation 

stress could be calculated in the condition of a strong ambient current. It is noticed that 

the vertical integration of the new depth-dependent wave radiation stress coincided with 

the traditional radiation stress. 

A 2DV numerical model was developed to validate the new quasi-Eulerian mean 

equations of motion. The turbulent viscosity and wave-induced mixing were calculated 

by a simple submodel with the assumption of constant-parabolic distribution. The model 

shows a better comparison with experimental data than previous studies. The model 

passed the well-known adiabatic condition suggested by Ardhuin, Rascle [19]. It does not 

produce spurious velocities when the waves propagate on a sloping bottom. As a result, 

vertical uniform distribution of quasi-Eulerian mean horizontal velocity was obtained 

even on the slope. 

Subsequently, the experiment of Klopman [41] for random waves was employed to 

validate the 2DV model in the condition of non-breaking waves combined with a current. 

The comparison between experimental data and numerical results showed very good 

agreement in the whole vertical section even in areas that were very close to the bed. In 

the condition of breaking waves, two experiments presented in the dissertation of Boers 

[43] were used. It was shown that the new equations performed very well for the experi-

ment of smaller wave height (test 1C). In the experiment of bigger wave height (test 1B), 

the vertical distribution of the mean velocity near the breaking point gave qualitatively 

correct results. In the comparison of longshore current in the LSTF test [44], a good agree-

ment was found not only for depth-averaged longshore current but also for depth varying 

longshore current. For cross-shore currents, there was a difference between model results 

and experimental data in the wave breaking zone. The difference between the experi-

mental data and model results in tests 1B and LSTF was likely to be due to the empirical 

formulas for wave breaking that were strong simplifications of the complex breaking pro-

cess. Further tuning of such formulations against a large number of datasets on wave de-

cay and generated longshore and cross-shore currents was recommended. 

Finally, with the use of quasi-Eulerian mean variables, the new set of equations of 

motion can be easily implemented to existing 3D models developed based on the classical 

Eulerian mean method. The implementation is straightforward and does not require 

much effort. It can improve significantly the results of simulating coastal processes such 

as coastal sediment transport, transport of plastic, and other pollutants such as oil slicks. 
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Appendix A. Derivation of the GLM Momentum Equation 

In the following, the momentum equation of the mean motion written in terms of the 

GLM velocity was derived. It is the result of applying the GLM operator to the momentum 

equation of motion of the total flow. The equation obtained in this part is equivalent to 

the GLM momentum equation expressed in AM. The GLM momentum equation was used 

to develop a quasi-Eulerian mean momentum equation. 

Averaging Equation (11) over a wave period to obtain: 

   
1

2( ) 0,i i
j i i

j i i

u u p
u X

t x x x

  

         
                    

u  (A1)

According to AM, the first term on the left-hand side of Equation (A1) can be rewrit-

ten as: 

,
L L

Li i i i
j j

j j

u u u u
u u

t x t x


    

        
 (A2)

Since Ω is constant, the second term on the left-hand side of Equation (A2) becomes: 

 2( ) 2( ) ,L
i i


  u u  (A3)

Since only gravitational potential is considered in the term  , t x , the third term in 

the left-hand side of the Equation (A1) can be expressed as: 

 3 3 ,i i

i

g g
x



 
    

 
 (A4)

When . 0 u then according to AM: 

2. ( ),O    (A5)

Using Taylor expansion the pressure gradient term in the Equation (A1) can be ex-

pressed as: 

3
31 1 1 1
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j j k

i i j i i j k

p p p p
O

x x x x x x x



       

         
             

 (A6)

Inserting Equations (A2)–(A4), (A6) into Equation (A1) to obtain the momentum 

equation in the GLM framework: 

 
3

3
3

1 1 1
2 ( ),

2
L L L L

i i i j j ki
i j i i j k

p p p
D u g X O

x x x x x x




    
             

        
u  (A7)

Appendix B. Derivation of the Radiation Stress Tensor in the GLM Framework 

In this appendix, the relationship between the three-dimensional radiation stress gra-

dient and other terms in the GLM momentum Equation (A7) is presented. From this, the 

GLM momentum Equation (A7) can be written in terms of quasi-Eulerian mean velocity. 

For any quantity  , AM obtained the following relationship between Lagrangian 

disturbance and quasi-Eulerian disturbance: 
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Using (A8) the first term on the right-hand side of Equation (14) can be expressed as: 

2
31 1 1
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l
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j i j i j k i

p p p
O

x x x x x x x


                                         

 (A9)

Subtracting 14 from 11 to obtain the following equation for the evolution of disturb-

ance motion: 

     3
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p
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x

 
       

  
u  (A10)

Since the gravitational acceleration g is assumed constant, the third term on the left-

hand side of the Equation (A10) is neglected. Multiply Equation (A10) with j and then 

take the spatial derivative / jx  to obtain: 

     1
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p
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u  (A11)

The first term in the right-hand side of Equation (A11) is decomposed as: 

      ,L l L l l L
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D u D u u D
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 (A12)

The first term on the right-hand side of A12 can be expressed as: 
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From the definition of Lagrangian disturbance, the second term on the right-hand 

side of A12 becomes: 
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Substitute Equations (A13) and (14) into the Equation (A12): 
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 (A15)

In the following, all terms on the right-hand side of Equation (A15) are rewritten in 

terms of quasi-Eulerian disturbance based on the relationship (A8). Then, the first term in 

the right-hand side of Equation (A15) can be rewritten as: 

2
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 (A16)

Similarly, the second term on the right-hand side of (A15) becomes: 
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The third term on the right-hand side of Equation (A15) is expressed by: 
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Substituting Equations (A16)–(A18) into Equation (A15): 
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Similarly, the second and the third terms in the right-hand side of (A11) can be ex-

pressed in term of quasi-Eulerian disturbance quantities, such as: 
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where, imn  is the Levi-Civita symbol defined by: 

 

 

1 if , ,  is an even permutation of (1,2,3)

1      if , ,  is an odd permutation of (1,2,3) ,
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The third terms on the right-hand side of Equation (A11) is rewritten as: 

  3( ),
l

l i i i
j i j j j k

j j j j k

X X X
X O

x x x x x


     
         

     
 (A22)

From Equations (A19), (A20), and (A22) the left-hand side of Equation (A11) can be 

expressed in term of quasi-Eulerian disturbance quantities as: 
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Replacing Equation (A23) into Equation (A9): 
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The sixth term on the right-hand side of Equation (A24) can be expressed as: 
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Similarly, the seventh term on the right-hand side of Equation (A24) is expressed as: 
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From Equation (A26) the total of the last four terms in the right-hand side of Equation 

(A23) becomes: 
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Since 2( )S O   then from Equation (14), we have: 
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Therefore, in the second-order of the accuracy of small disturbance amplitude Equa-

tion (A27) can be rewritten as: 
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From Equations (A25) and (A29) the sum of the last six terms in Equation (A24) can 

be expressed by: 
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 (A30)

Substituting Equation (A30) into Equation (A24) to obtain the following relationship: 
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Following the definition of Stokes correction (AM) the second term on the right-hand 

side of Equation (A31) can be expressed as: 
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The second term on the right-hand side of Equation (A32) is expressed as: 
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The last three terms on the right-hand side of Equation (A31) become: 
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Replacing Equations from A32 to A36 into Equation (A31): 
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Or equivalently: 
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Equation (A38) shows the relationship between the evolution of Stokes drift and the 

disturbances of a fluid particle. This is the basis to develop quasi-Eulerian mean equations 

of motion. 
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