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Abstract: A new three-dimensional (3D) time-domain panel method is developed to solve the ship
hydrodynamic problem and motions. For an advancing ship with a constant forward speed in
regular waves, the ship’s hull can be discretized and processed into a number of quadrilateral panels.
Based on Green’s theorem, an analytical expression for Froude–Krylov (F–K) forces evaluation
on the quadrilateral panels is derived without accuracy loss. Within the linear potential theory,
the transient free surface Green function (TFSGF) is applied to solve the boundary value problem.
To improve the efficiency and numerical stability of TFSGF evaluation, a precise integration method
with variable parameters setting for extended identity matrix is developed to compute the TFSGF
in the computation domain. Then, radiation and diffraction forces can be evaluated by means of
the impulse response function method. The Wigley I hull form is taken as a study case, and the
computed hydrodynamic coefficients, wave exciting forces, and motions by the present method are
compared with previous literature experimental data and prior published results. It manifests that
the three-dimensional time-domain panel method proposed in this paper has good accuracy.

Keywords: time-domain panel method; hydrodynamic problem; Froude–Krylov forces; transient
free surface Green function; precise integration method

1. Introduction

For the initial stages of ship design, accurate and reliable predictions of ship hydrody-
namic analysis and motions in waves are essential. Various numerical methods are required
to be developed for ship seakeeping analysis. For the wave-ship interaction problem with
large size, the potential flow theory is much more efficient than RANS (Reynolds-averaged
Navier-Stokes) simulation [1], which is widely applied to a practical engineering problem.

In the early researches, ship hydrodynamic analysis is developed based on two-
dimensional strip theories. Ogilvie and Tuck [2], Tasai [3], and Salvesen et al. [4] proposed
a new strip theory, rational strip theory, and STF, method respectively. The STF strip
method is most widely used in ship motion calculation and structure design. Fonseca
and Guedes Soares [5,6] formulated the ship hydrodynamic analysis in the time domain.
Tavakoli et al. [7] investigated unsteady planning motion in waves using towing tank
tests, Computational Fluid Dynamics (CFD), and the 2D+t model. These two-dimensional
methods have been applied in the ship hydrodynamic and motion analysis for a long time.
However, for the strip theories, the flow is assumed to be constrained in two-dimensional
sections. Accurate hydrodynamic analysis can only be carried out for slender ships,
and high frequency and low-speed assumptions are also required.

The shortcomings of strip theory can be overcome by 3D panel methods. Nakos [8]
used the Rankine panel method to study the ship seakeeping problem in the frequency
domain. Kring [9] and Chen [10] applied the Rankine panel method to ship hydrodynamic
analysis in the time domain. The Rankine panel methods employ the Green function
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1/r as a fundamental solution of the Laplace equation; the evaluation of 1/r integration
over the boundaries is easy to be carried out. However, the Rankine Green function 1/r
does not satisfy any boundary conditions, and many more panels are required for mesh
discretization of the free surface, which would greatly reduce computational efficiency.

The problems caused by the Rankine panel method can be avoided by using the 3D
free surface Green function method, which employs the 3D free surface Green function
as the fundamental solution of the Laplace equation. The 3D free surface Green function
method only requires the discretization of the ship wetted hull surface, but the evaluation
of the 3D free surface Green function is quite complex. Wehausen and Laitone [11] deduced
expressions for 3D free surface Green function in arbitrary water depth, which laid the
foundation of solving the hydrodynamic problem by 3D free surface Green function
method. Blandeau and Francois [12] solved the radiation and diffraction problem for
FPSOs by using the HydroSTAR software, in which the original codes were developed by
the frequency domain Green function method. Furthermore, Wu and Eatock Taylor [13]
solved the hydrodynamic problem for practical ships by using the frequency domain
Green function with speed. When the frequency domain Green function method is used
to solve the ship hydrodynamic problems with speed, the numerical calculation of the
frequency domain Green function is much more complex and time-consuming. Although
the numerical results are close to the experimental values, there are still some problems
in the treatment of waterline integral terms, which hinders its wide application. It’s easy
to formulate and solve ship hydrodynamic problems and motion problems in the three-
dimensional time domain. Liapis [14] applied the transient free surface Green function
(TFSGF) to solve the linear radiation problem for a ship with constant forward speed.
King [15] further extended to the linear diffraction problem for ships, and the Froude–
Krylov (F–K) forces were evaluated by Gaussian quadrature. However, the F–K forces near
the mean free surface may not be accurately evaluated due to wave volatility. Rodrigues
and Guedes Soares [16] evaluated the Froude–Krylov forces by analytical exact pressure
integration expressions, allowing for considerably coarse meshes with no loss of accuracy.
However, radiation and diffraction forces are kept linear by the indirect time-domain
method, which is difficult to calculate the hydrodynamic coefficients in the high-frequency
range. Zhang et al. [17] studied the influences of the water line integral terms on the
wave diffraction force of a moving floating body and pointed out that the influences of
the water line integral terms on the first-order force could be ignored. Sun [18] developed
a 3D time-domain program based on the TFSGF method, which can be used to solve the
ship hydrodynamic problems in waves. Singh and Sen [19] studied seakeeping problems
under different nonlinear levels, and computations were carried out for a Wigley hull
and an S175 hull in waves. Datta et al. [20] carried out modifications for three fishing
vessels and presented a variety of calculated motion results for different wave angles.
Lin [21,22] proposed a three-dimensional time-domain approach to study the ship’s large-
amplitude motions in a seaway and developed the software LAMP (Large Amplitude
Motion Program) for ship hydrodynamic analysis and wave loads calculation.

The accurate and efficient evaluation of TFSGF is essential for the ship hydrodynamic
analysis in the time domain. According to the oscillating properties of the wave part
of TFSGF, King [15] and Shan [23] divided the time computation domain into different
regions to evaluate the TFSGF and its derivatives, and series expansions and asymptotic
expansions were applied to the small time computation domain and large time computation
domain, respectively. Clement [24] firstly found that the TFSGF and its derivatives are the
solutions of the ordinary differential equations (ODEs). Shen et al. [25] solved the ODEs
by using the fourth-order Runge–Kutta method (RK44), in which the numerical instability
would occur after a long time simulation even with a very small time step size. Based
on the precise integration method (PIM) proposed by Zhong [26], Li et al. [27] solved the
ODEs, which could greatly improve the numerical stability even with a quite large time
step size. However, it can be very time-consuming due to the quite high order of the
coefficient matrix.
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Within the linear potential theory, the main objective of this paper is to develop a
three-dimensional time-domain panel method to study the ship’s hydrodynamic analy-
sis and motions. Analytical integration expressions for F–K force formulations over the
quadrilateral panels can be derived by using Green’s theorem, which can avoid computa-
tional errors by numerical integration methods. To improve the accuracy and numerical
stability of TFSGF evaluation, a numerical method is developed to solve the TFSGF by
using a precise integration method with varying parameter settings. Based on the impulse
response function method, the ship radiation problem and diffraction problem are solved
by using TFSGF. The Wigley I hull is taken as a study case; convergence studies for ship
hydrodynamic analysis and motions are conducted with respect to time step size and hull
discretization. The computed hydrodynamic coefficients, wave exciting forces, and mo-
tions for the ship are compared to other solutions, such as Magee’s method [28], previous
literature experimental data [29], and so on. Thus, the three-dimensional time-domain
panel method proposed in this paper is validated.

2. Materials
2.1. Coordinate Systems

For the present linear ship hydrodynamic analysis and motion problem, as shown
in Figure 1, a freely floating ship is considered to advance with constant forward speed
U in the presence of a linear incident wave field. The o-xyz is a reference, right-handed,
Cartesian coordinate system with its origin o located amidship and travels along with the
ship at the same speed U, the o-xy plane is coincident with the mean free surface z = 0,
the positive x-axis is pointing upstream, the positive y-axis is pointing portside, and the
positive z-axis is pointing vertically upwards. G-xbybzb is a body-fixed, right-handed,
Cartesian coordinate system, and the origin G is located at the gravity of the ship. At initial
time t = 0, the space fixed coordinate system O-XYZ coincides with the reference coordinate
system o-xyz, and Gzb axis is aligned with ox axis. The fluid domain Ω is enclosed by the
ship hull surface SB, free surface SF, and surface S∞ at infinity. n is the unit normal vector
pointing inward the ship hull surface.
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Figure 1. The coordinate systems and fluid domain.

2.2. Boundary Value Problem

Based on the linear potential flow theory, the fluid is assumed to be irrotational,
inviscid, and incompressible, and there is no fluid separation or lifting effect [30]. In the
reference coordinate system o-xyz, the total velocity potential Φ(r; t) in the infinite water
can be written as

Φ(r; t) = −Ux + ΦS(r) + Φ0(r; t) +
7

∑
k=1

Φk(r; t) (1)

where r = (x, y, z) is position vector on the ship hull surface, t is the time instant,
−Ux + ΦS(r) is the steady wave velocity potential due to constant forward speed U, Φ0
is the incident wave velocity potential, Φk(k = 1, 2, · · · , 6) is radiation velocity potential,
and Φ7 is the diffraction velocity potential.
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The perturbation potential Φk (k = 1, 2, · · · , 7) satisfies the following governing
equations and initial-boundary value conditions:

∇2Φk(r; t) = 0, wherer ∈ Ω

∂2Φk
∂t2 + ∂Φk

∂z = 0, onz = 0

∂Φk
∂n = mkζk + nk

.
ζk, k = 1, 2, · · · , 6, onSB

∂Φ7
∂n = − ∂Φ0

∂n , onSB

∇Φk → 0, as
√

x2 + y2 → ∞ or z→ −∞

Φk and ∂Φk
∂t → 0, at t = 0, (k = 1, 2, · · · , 6)

Φ7 and ∂Φ7
∂t → 0, at t = −∞.

(2)

where ζk is unsteady motion in the kth mode; n = (n1, n2, n3); r × n = (n4, n5, n6);
(m1, m2, m3) = (0, 0, 0); (m4, m5, m6) = (0, Un3,−Un2); g is the gravity acceleration [31].

The TFSGF is adopted to solve the boundary value problem and written as [14]

G(P, Q; t− τ) = G(P; Q)δ(t− τ) + G̃(P, Q; t− τ)H(t− τ) (3)

where δ(·) is the Dirac function; H(·) is Heaviside unit step function; P(x, y, z) is field point;
Q(ξ, η, ζ) is source point; τ is the retard time. The Rankine part G(P; Q) and memory part
G̃(P, Q; t− τ) of G(P, Q; t− τ) can be given as{

G(P, Q) = 1/r− 1/r′

G̃(P, Q; t− τ) = 2
∫ ∞

0
√

gυeυ(z+ζ) sin
[√

gυ(t− τ)
]
J0(υR)dυ

(4)

where r = |P−Q|; r′ = |P−Q′|; Q′(ξ, η,−ζ) is the image point of Q about the mean free
surface; R is the horizontal distance between the field point P and source point Q; J0 is a
Bessel function of order zero; υ is wave number.

The integrations for G and its derivative over a quadrilateral panel can be computed
by Hess–Smith method [32]. G̃ and its derivatives can be solved numerically in Section 3.2.

The boundary integral equation for the perturbation potential Φk (k = 1, 2, · · · , 7)
can be written as

2πΦk(P; t) +
s

SB
Φk(Q; t) ∂G

∂nQ
dSQ =

s
SB

G ∂Φk(Q;t)
∂nQ

dS

+
∫ t

t0
dτ

s
SB

G̃(P, Q; t− τ)
∂Φk(Q;τ)

∂nQ
dS−

∫ t
t0

dτ
s

SB
Φk(Q, τ)

∂G̃(P,Q;t−τ)
∂nQ

dS

+U2

g
∫ t

t0
dτ
∮

Γ0
G̃(P, Q; t− τ)

∂Φk(Q;τ)
∂ξ dη − U2

g
∫ t

t0
dτ
∮

Γ0
Φk(Q; τ)

∂G̃(P,Q;t−τ)
∂ξ dη

+ 2U
g
∫ t

t0
dτ
∮

Γ0
Φk(Q; τ)

∂G̃(P,Q;t−τ)
∂τ dη

(5)

where Γ0 is the mean waterline; t0 is the initial time; nQ is the unit normal vector of source
point Q pointing inward the hull surface.

To solve the perturbation potential Φk, the trapezoidal rule is adopted for convolution
integration, and the mean wet hull surface SB in Equation (5) can be discretized by using
the constant panel method [31].

2.3. The Hydrodynamic Problem Formulation

Based on the impulse response function method, the radiation potential Φk (k = 1, 2, · · · , 6)
can be written as

Φk(P; t) =
∫ t

0
Φ̂k(P; t− τ)

.
ζk(τ)dτ (6)
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where Φ̂k(P; t) is the impulse response function of radiation potential Φk in the kth mode.
The Φ̂k(P; t) can be decomposed into the following form [14]

Φ̂k(P; t) = ψ1k(P)δ(t) + ψ2k(P)H(t) + χk(P; t) (7)

where ψ1k and ψ2k are the impulsive potentials, and χk is the transient potential.
The expression of radiation forces Fjk can be written as

Fjk(t) = −ajk
..
ζk(t)− bjk

.
ζk(t)− cjkζk(t)−

∫ t

0
dτKjk(t− τ)

.
ζk(τ) (8)

where Fjk is the radiation force in jth mode due to kth mode motion; Kjk(t) =

ρ
s

SB

(
∂χk
∂t nj − χkmj

)
dS; ajk = −ρ

s
SB

ψ1knjdS; cjk = −ρ
s

SB
ψ2kmjdS; bjk =

−ρ
s

SB

(
ψ2knj − ψ1kmj

)
dS.

The added mass Ajk(ω) and damping coefficients Bjk(ω) can be obtained via Fourier
transform (j = 1, 2, · · · , 6; k = 1, 2, · · · , 6) [15]: Ajk(ω) = ajk −

cjk
ω2 − 1

ω

∫ ∞
0 Kjk(τ) sin(ωτ)dτ

Bjk(ω) = bjk +
∫ ∞

0 Kjk(τ) cos(ωτ)dτ
(9)

In the infinite water depth, the analytical expression of linear incident wave potential
ΦI(P; t) in the reference coordinate system o-xyz can be given as [31]

ΦI(P; t) =
iη0g

ω
eυ[z−i(x cos α+y sin α)]e

iω
. e

t
(10)

where η0 is the amplitude of incident wave; α is wave propagation angle (α = π is head
waves); ω is the absolute frequency; υ = ω2/g; ωe = ω− υU cos α is the encounter frequency.

The elevation ηI(t) of the incident wave at the origin o is given as

ηI(t) = η0eiωet (11)

Based on the impulse response function method [10], the incident wave velocity
∇ΦI(P; t), diffraction velocity potential Φ7(P; t), and the diffraction force Fj7(t) in the jth
mode (j = 1, 2, · · · , 6), K̂(P; t), Φ̂7(P; t), and Kj7(t) can be expressed in the following as

∇ΦI(P; t) =
∫ ∞
−∞ K̂(P; t− τ)ηI(τ)dτ

Φ7(P; t) =
∫ ∞
−∞ Φ̂7(P; t− τ)ηI(τ)dτ

Fj7(t) =
∫ ∞
−∞ Kj7(t− τ)ηI(τ)dτ

(12)

where K̂(P; t) is the impulse response function of incident wave velocity∇ΦI(P; t), Φ̂7(P; t)
is the impulse response function of Φ7(P; t), and Kj7(t) is the impulse response function
of Fj7(t).

In combination with Equations (2), (5) and (12), the Kj7(t) is given by

Kj7(t) =
x

SB
ρ

[
Φ̂7(P; t)mj − nj

∂Φ̂7(P; t)
∂t

]
dS (13)

2.4. Solving the Ship Motion Equations

Using Newton’s second law, the six degree of freedom motions of the rigid body in
space fixed coordinate system are determined by

Mij

{ ..
ζ j(t)

}
= Fi(t) (14)
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where Fi(t) = FiI(t) + FiH(t) + Fi7(t) +
6
∑

j=1
Fij(t), FiI(t) is F–K forces in the ith mode, FiH(t)

is hydrostatic forces in the ith mode, and Mij is the element of the general mass matrix.
In the body coordinate system G-xbybzb, the six-degrees of motion equation can also

be given as
m

.
u + mΛ× u = Fb; I

.
Λ + Λ× IΛ = Mb (15)

where m is the mass matrix, I is inertial moment matrix, u = (u, v, w) is velocity vector,
Λ =

(
Λxb , Λyb , Λzb

)
is the angular velocity, Fb =

(
Fxb , Fyb , Fzb

)
is force vector, and Mb =(

Mxb , Myb , Mzb

)
is moment vector.

The vectors between the space fixed coordinate system and the body coordinate
system can be transformed by a transformation matrix [33]. For linear problems, the trans-
formation matrix is the identity matrix.

The ship motion equations can be solved by various numerical methods, such as
Runge–Kutta method, predictor-correctors method, and so on. To avoid initial numerical
instability, a ramp function [34] is applied to solve the ship motion equations.

3. Numerical Methods
3.1. Analytical Expression for F–K Forces Evaluation

Consider two coordinate systems illustrated in Figure 2: the reference coordinate
system o-xyz and the local panel coordinate system o′-x′y′z′ defined by the vertices 1 to 4
in the counterclockwise direction, named P1, P2, P3, and P4, respectively. The positive o′z′

axis points to the exterior of the fluid.
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Figure 2. The reference coordinate system o-xyz and local panel coordinate system o′-x′y′z′.

The transformation matrix between the position vector r in the reference coordinate
system oxyz and the position vector r′ in the local panel coordinate system o′-x′y′z′ is
given as

r = r0 + Tr′ (16)

where ro = (xo, yo, zo) is the position vector in o-xyz, which is the origin of the panel
coordinate o′-x′y′z′ system, T is the unit transformation cosine-director matrix between
system o′-x′y′z′ and system o-xyz and given by

T =


〈

x
′
, x
〉 〈

y
′
, x
〉 〈

z
′
, x
〉〈

x
′
, y
〉 〈

y
′
, y
〉 〈

z
′
, y
〉〈

x
′
, z
〉 〈

y
′
, z
〉 〈

z
′
, z
〉
 (17)

where x, y, and z are unit base vectors in system o-xyz; x
′
, y
′
, and z

′
are unit base vectors in

system o-x′y′z′; 〈, 〉 denotes the internal product between base vectors.
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Within linear dynamic conditions, the elevation ηI(t) (z ≤ 0) is given as{
pI(t) = ρgη0eυz cos[ωet− υ(x cos α + y sin α)]
pH = −ρgz

(18)

The pressure pIH can be given by

pIH = ρgηI(t)eυz − ρgz (19)

The resultant forces of F–K forces and hydrostatic forces acting on the mean wetted
hull surface in the jth mode can be given by

FIHj(t) =
x

SB
pIH(t)njdS (20)

The mean wetted hull surface can be discretized by N quadrilateral panels. For the ith
quadrilateral panel under the mean free surface, the F–K force FIi can be written as

FIi = niρgη0

x

Si
eυz cos[ωet− υ(x cos α + y sin α)]dS (21)

where ni is the unit normal vector pointing outward the fluid, and Si is the area of the
quadrilateral panel.

The Equation (21) can be represented in the ith local panel coordinate system o′-x′y′z′

FIi = niρgη0

x

Si
eB(x′ ,y′) cos A

(
x′, y′

)
dS (22)

where A(x′, y′) = ωet−υ
[(

xo +
〈

x
′
, x
〉

x′+
〈

y
′
, x
〉

y′
)

cos α+
(

yo +
〈

x
′
, y
〉

x′+
〈

y
′
, y
〉

y′
)

sin α
]
,

and B(x′, y′) = υ
(

zo +
〈

x
′
, z
〉

x′+
〈

y
′
, z
〉

y′
)

.
The jth (j = 1, 2, 3, 4) edge for the ith quadrilateral panel can be parametrized by

gij(κ) =
(

x′0,ij, y′0,ij

)
+
(

∆x′ ij, ∆y′ ij
)

κ, κ ∈ [0, 1] (23)

where ∆x′ ij = x′1,ij− x′0,ij, ∆y′ ij = y′1,ij− y′0,ij, x′0,ij = x′ ij(0); x′1,ij = x′ ij(1), y′0,ij = y′ ij(0),
and y′1,ij = y′ ij(1).

A, B, and their derivatives on the jth side of the ith panel can be expressed with respect
to parameter κ as

Aij(κ) = ωet− υ



[

xo +
〈

x
′
, x
〉(

x′0,ij + ∆x′ ijκ
)
+
〈

y
′
, x
〉(

y′0,ij + ∆y′ ijκ
)]

cos α

+
[
yo +

〈
x
′
, y
〉(

x′0,ij + ∆x′ ijκ
)
+
〈

y
′
, x
〉(

y′0,ij + ∆y′ ijκ
)]

sin α


Bij(κ) = υ

[
zo +

〈
x
′
, z
〉(

x′0,ij + ∆x′ ijκ
)
+ 〈y∗, z〉

(
y′0,ij + ∆y′ ijκ

)] (24)

Let Ψκ = A2
κ + B2

κ , and

CE =

{
eB(Bκ cos A+Aκ sin A)

Ψκ
, Ψκ 6= 0

eBκ cos A, Ψκ = 0
(25)

SE =

{
eB(Bκ sin A−Aκ cos A)

Ψκ
, Ψκ 6= 0

eBκ sin A, Ψκ = 0
(26)



J. Mar. Sci. Eng. 2021, 9, 87 8 of 19

With respect to parameter κ, A and B’s derivatives on the ith panel are written as
Ax′ ,i = −υ

(〈
x
′
, x
〉

cos α +
〈

x
′
, y
〉

sin α
)

Ay′ ,i = − υ
(〈

y
′
, x
〉

cos α +
〈

y
′
, y
〉

sin α
)

Bx′ ,i = υ
〈

x
′
, z
〉

, By′ ,i = υ
〈

y
′
, z
〉 (27)

Let Ψx′ = A2
x′ + B2

x′ and Ψy′ = A2
y′ + B2

y′ . The Green’s theorem with parameterization
in Equation (23) is applied, and integration by parts is adopted to solve Equation (22).
If Ψx′ 6= 0, Equation (22) is expressed as

FIi =
niρgη0

Ψx′

4

∑
j=1

∆y′ij
∫ 1

0
eBij(κ)

[
Bx′ ,i cos Aij(κ) + Ax′ ,i sin Aij(κ)

]
dκ (28)

∆CEij can be understood as
[
CEij(1)− CEij(0)

]
, and ∆SEij can be understood as[

SEij(1)− SEij(0)
]
. FIi is written as

FIi =
niρgη0

Ψx′

4

∑
j=1

∆y∗ij
(
Bx′ ,i∆CEij + Ax′ ,i∆SEij

)
(29)

If Ψy′ 6= 0, FIi is directly solved by

FIi =
−niρgη0

Ψy′

4

∑
j=1

∆x′ij
(

By′ ,i∆CEij + Ay′ ,i∆SEij

)
(30)

Note that the analytical integration expressions for F–K moments, hydrostatic forces,
and hydrostatic moments can be solved in a similar approach.

With the established formulation for F–K forces evaluation, it is worth comparing the
present method with the method proposed by Rodrigues and Guedes Soares (2017) [16]
(see Table 1).

Table 1. Differences between the present method and Rodrigues’s method.

Present Method Rodrigues’s Method [16]

Equation of motion Froude–Krylov forces calculated and motions
solved in a moving system fixed to the ship.

Froude–Krylov forces calculated in an
inertial frame, and motions solved in a

moving system fixed to the ship.

Ship velocity arbitrary zero

Diffraction force direct time-domain method indirect time-domain method

Radiation force direct time-domain method indirect time-domain method

Expression of incident
wave elevation cosine form sinusoidal form

3.2. Numerical Method for TFSGF Evaluation

The memory part of TFSGF in Equation (4) can be written in the non-dimensional form

G̃(P, Q; t− τ) = 2
√

g/r′3F(µ, β) (31)

where ν = υr′, µ = −(z + ζ)/r′, and β =
√

g/r′(t− τ). F(µ, β) is given by

F(µ, β) =
∫ ∞

0

√
ν sin

(
β
√

ν
)
e−νµJ0

(
ν
√

1− µ2
)

dν (32)
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F(µ, β) is the solution to the following fourth-order ODE

∂4F(µ, β)

∂β4 + µβ
∂3F(µ, β)

∂β3 +

(
β2 + 16µ

)
4

∂2F(µ, β)

∂β2 +
7β

4
∂F(µ, β)

∂β
+

9F(µ, β)

4
= 0 (33)

The fourth-order ODE Equation (33) can be given by

.
X̃(β) = Ã(β)X̃(β) (34)

where X̃(β) =
[
F, ∂F/∂β, ∂2F/∂β2, ∂3F/∂β3]T, and

Ã(β) =


0 1 0 0
0 0 1 0
0 0 0 1

− 9
4 − 7

4 β −
(

4µ + β2

4

)
−µβ

 (35)

Equation (34) can be solved once the initial conditions are given.
For β ∈ [βk, βk+1], let s = β−βk

βk+1−βk
(s ∈ [0, 1]); the relationship between the unit

time-variant system and time-variant system in Equation (34) can be written as{
X̃(βk + s·(βk+1 − βk)) = x̃(s)
Ã(βk + s·(βk+1 − βk)) = A(s)

(36)

where A(s) = ∑2
i=0 Aisi (Ai is the time-invariant coefficient matrix). The transformation

relationship is given by
dx̃/ds = (βk+1 − βk)A(s)x(s) (37)

where the initial condition is x| s=0 = x(0).
The following equations can be obtained by using Equation (37)

x0(s) = x(s)

xi(s) = six0(s)

X(s) =
[

xT
0 xT

1 ... xT
m xT

m+1 xT
m+2

]T (i = 1, 2, ..., m + 2; m > 2) (38)

where m is an integer variable, and X(s) is 4 (m + 3) dimensional column vector.
The constant coefficient matrix M can be obtained by using the unit linear time-varying

coefficient matrix M(s) [18]. The elements of M on the principal diagonal are 1, and nonzero
elements of the principal diagonal of M are high power exponent of s. As m increases,
the power exponent of s can be high enough, and the coefficient matrix M tends to be
the unit constant coefficient matrix. The specific values of ‘m’ can be selected based on
convergence analysis for TFSGF evaluation, it’s fairly long, and it can refer to the paper by
Li [27]. Thus, it can be obtained from Equation (38) as follows

.
X(s) = MX(s) (39)

For the linear time-invariant differential equation (Equation (39)), it can be solved
by the 2N algorithm in reference [26]. Once Equation (39) is solved, the TFSGF and its
derivatives can be easily obtained.

When µ = 0, the amplification of the oscillatory behavior of TFSGF should be noticed.
The analytical expression for the TFSGF is written as

F(0, β) =
πβ3

16
√

2

[
J 1

4

(
β2

8

)
·J− 1

4

(
β2

8

)
+ J 3

4

(
β2

8

)
·J− 3

4

(
β2

8

)]
(40)
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4. Results and Discussions
4.1. The Numerical Results of TFSGF

In Figure 3, the “analytical method” denotes the solutions obtained by the analytical
expression for TFSGF when µ = 0 (presented in Equation (40)). Figure 3 shows the
solutions obtained by the “PIM method”, with constant m = 50 for 0 ≤ β ≤ 100 [27].
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Figure 3. The F(0, β) computed by “precise integration method (PIM) method” with ∆β = 0.02.

In Figure 4, “present method” denotes solutions of TFSGF solved by PIM method,
with variable m for 0 ≤ β ≤ 100; in the present study, m = 30 for 0 ≤ β ≤ 60, m = 40 for
60 < β ≤ 80, and m = 50 for 80 < β ≤ 100, respectively.
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Figure 5 shows absolute errors computed by “PIM method” and “present method”,
with variable m for 0 ≤ β ≤ 100; in the present study, m = 30 for 0 ≤ β ≤ 60, m = 40 for
60 < β ≤ 80, and m = 50 for 80 < β ≤ 100, respectively.
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In the present study, all computations are carried out on the platform Intel(R) Core
(TM) i7700HQ CPU 2.80 GHz. From Figures 3–5, the “PIM method” takes about 236.38 s
to generate TFSGF at 1× 5000 sets of (µ, β) for 0 ≤ β ≤ 100 at µ = 0, while the “present
method” only takes about 85.8 s. The absolute errors of both “present method” and “PIM
method” are within 10−9. Thus, the “present method” shows better evaluation efficiency
than the “PIM method”.

4.2. The Study Case and Parameter Setting

The hull form of Wigley I hull can be defined as in the reference [29]

y
B/2

=

[
1−

(
2x
L

)2
][

1−
( z

D

)2
][

1 + 0.2
(

2x
L

)2
]
+
( z

D

)2
[

1−
( z

D

)4
][

1−
(

2x
L

)2
]4

(41)

where L is the length of the ship; B is the width of the ship; D is the draft of the ship.
The main particulars of the Wigley I hull are given in Table 2; kyy denotes the pitch

inertia radius of the ship, and ∇ denotes the displacement volume of the ship.

Table 2. Main particulars of the Wigley I hull.

Ship L/m B/m D/m kyy ∇ /m3

Wigley I hull 3.0 0.3 0.1875 0.25 L 0.0946

The meshes of the ship’s hull are illustrated in Figure 6.
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Non-dimensional forms of hydrodynamic coefficient, memory function, wave exciting
forces, and motion response are given below.

The non-dimensional added mass coefficients are defined as A′33 = A33/(ρ∇) and
A′55 = A55/

(
ρ∇L2), respectively.

The non-dimensional damping coefficients are defined as B′33 =
√

L/gB33/(ρ∇) and
B′55 =

√
L/gB55/

(
ρ∇L2), respectively.

The heave memory function K′33 and pitch memory function K′55 are defined as K′33 =
(K33L)/(ρg∇) and K′55 = K55/(ρg∇), respectively.

The non-dimensional wave exciting forces are defined as F′3w = F3wL/(ρgη0∇) and
F′5w = F5w/(ρgη0∇), respectively.

The non-dimensional heave and pitch motion are defined as ζ ′3 = ζ3/η0 and ζ ′5 =
(ζ5L)/(2πη0), respectively.

The non-dimensional frequency ω′ is defined as ω′ = ω
√

L/g, the non-dimensional
wave number υ′ is defined as υ′ = υL, and the non-dimensional frequency t′ is defined as
t′ = t/Te (Te is encounter period).

4.3. The Convergence Study on Panel Number N and Time Step ∆t

The panel number N and the time step ∆t have influences on the numerical results of
ship hydrodynamic analysis and ship motion. The convergence of the two parameters is
verified by taking the Wigley I hull as a study case. The error of 0.1% is adopted to test
convergence. Wigley I hull is studied at Fn = 0.2 (Fn denotes Froude number, Fn = U/

√
gL)

in head seas (α = π, η0 = 0.036 m).
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The 2 × 2 Gaussian quadrature [15] can be used to compute the F–K forces and
hydrodynamic forces acting on the panel. As shown in Figure 7, the square panel can be
progressively subdivided until the prescribed precision is reached.
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Figure 7. The panel subdivision diagram.

The four different panel numbers of the Wigley I hull surface discretization with
constant time step ∆t = Te/40 are carried out (Table 3).

Table 3. Panel numbers for the convergence analysis of Wigley I hull discretization.

Case 1 2 3 4

Wigley I N = 20× 4 N = 40× 4 N = 60× 4 N = 80× 4

Figure 8 illustrates the time history of the heave memory function and pitch mem-
ory function.
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Figure 8. Non-dimensional memory function of Wigley I hull: (a) heave; (b) pitch.

Figure 9 shows the time history of the non-dimensional F–K forces. The Wigley I hull
advances in head regular waves at Fn = 0.2, and the wavelength to ship length is λ/L = 1.
F–K forces can be obtained by the Gaussian quadrature method.
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As shown in Figures 8 and 9, the numerical results tend to be convergent when
N ≥ 240, and the relative error between N = 240 and N = 320 is within 0.1%. Thus,
panel number N = 320 is selected for ship hydrodynamic analysis and ship motion in the
present study.

In the system o-xyz, a square panel is adopted as a study case advancing in head regu-
lar waves, whose four vertices are P1(−0.5, 0,−1), P2(0.5, 0,−1), P3(0.5, 0, 0),
and P4(−0.5, 0, 0), respectively. The square panel advances in head regular waves at
Fn = 0.2, and the wavelength to ship length is 1.5, and the wave steepness is 0.024.

At t = 0, the F–K force acting on the square panel by the analytical integration method
is 179.6193 N (the calculation accuracy can be set to 0.0001 N).

From Table 4, as the subdivision time is 4, the square panel can be subdivided into
256 smaller subpanels, as shown in Figure 7. However, the computational results of the
Gauss integration method and the analytical integration method are the same. For simple
geometry of the ship’s hull, the magnitude of panel number for hull mesh generation
can be as low as O(10), such as barge vessel [16]. The analytical integration method can
improve the F–K forces evaluation accuracy with no loss of accuracy.

Table 4. Values of F–K forces acting on the panel at t = 0.

Subdivision Time 0 1 2 3 4

F–K forces (unit: N) 179.3024 179.5996 179.6181 179.6192 179.6193
Non-dimensional F–K forces 15.7080 15.7340 15.7357 15.7358 15.7358

Figure 10 shows the time history of the non-dimensional F–K forces in head regular
waves at Fn = 0.2 obtained by “numerical method” and “present method”, respectively.
The Wigley I hull surface is discretized and processed into N = 320 quadrilateral panels.
“numerical method” denotes the numerical results of F–K forces obtained by 2× 2 Gaussian
quadrature, and “present method” denotes the results of F–K forces obtained by the
analytical method.
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Figure 10. Time history of non-dimensional F–K forces of Wigley I hull obtained by “present method” and “numerical
method” (λ/L = 1: (a) heave; (b) pitch.

From Figure 10, the F–K forces obtained by “numerical method” and “present method”
are almost the same, and the relative error between the “numerical method” and “present
method” is 0.1%. The CPU time consumption for the “numerical method” is about 35.4 s,
while the CPU time consumption for the “present method” is about 27.8 s. The “present
method” is more efficient than the “numerical method”. The efficiency and accuracy of the
“present method” can be validated.

Figure 11 illustrates the time history of heave motion and pitch motion of Wigley I
hull with four different time steps, which are Te/10, Te/20, Te/30, and Te/40, respectively.
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Figure 11. Time history of motions of Wigley I hull (λ/L = 2, N = 320): (a) heave; (b) pitch.

In Figure 11, as time step ∆t decreases, a convergent trend can be obtained, and the rel-
ative error between ∆t = Te/30 and ∆t = Te/40 is within 0.1%. The time step ∆t = Te/40
is selected for the subsequent ship hydrodynamic analysis and ship motions.

4.4. Added Mass and Damping Coefficient

Since the hydrodynamic coefficients on the main diagonal have a significant influence
on ship hydrodynamic analysis and motion, the non-dimensional coefficients A′33, A′55, B′33,
and B′55 are selected for detailed numerical analysis.

For the Wigley I hull at Fn = 0.2, Figure 12 presents the comparisons of the non-
dimensional heave-heave added masses and damping coefficients, and Figure 13 presents
the comparisons of the non-dimensional pitch-pitch added masses and damping coeffi-
cients. In the legend of Figures 12 and 13, “present method” denotes numerical results
obtained by the TFSGF method without waterline terms in Equation (5). “experiment”
denotes previous literature experimental data [29] obtained by Journée, and the experi-
ments were carried out in the Shiphydromechanics Laboratory of the Delft University of
Technology. The experimental data on hydrodynamic coefficients, wave loads, and added
resistance for heave and pitch motions in head waves of Wigley I hull are sufficient.
“Magee’s method” denotes numerical results obtained by the TFSGF method [28] in which
the waterline integral terms of boundary integral equations are included. “LAMP method”
denotes numerical results obtained by LAMP software [21], in which the body nonlinear
method was adopted where the perturbation potential was computed on the instantaneous
wetted hull under the mean free surface.
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Figure 12. Non-dimensional heave-heave added mass and damping coefficients: (a) A′33; (b) B′33.
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Figure 13. Non-dimensional pitch-pitch added mass and damping coefficients: (a) A′55; (b) B′55.

Tables 5–8 present absolute relative errors of hydrodynamic coefficients for Wigley I hull
by “present method” and “Magee’s method”, which are compared with previous literature ex-
perimental data [29]. The absolute relative error can be written as ε =

∣∣(Nnum − Nexp
)
/Nexp

∣∣
(ε denotes absolute relative error, Nnum denotes numerical results obtained by various models,
and Nexp denotes a value for previous literature experimental data [29]).

Table 5. Absolute relative errors of heave-heave added mass A33 for Wigley I hull by various methods.

ω
′ 2.2 2.8 3.3 3.9 4.4 5.5

Present method 31.7% 3.7% 2.8% 1.4% 0.2% 2.5%

Magee’s method 40.6% 12.2% 11.0% 2.4% 0.2% 5.6%

Table 6. Absolute relative errors of heave-heave damping coefficients B33 for Wigley I hull by
various methods.

ω
′ 2.2 2.8 3.3 3.9 4.4 5.5

Present method 0.1% 3.9% 4.2% 1.9% 10.6% 33.5%

Magee’s method 11.5% 5.1% 1.0% 4.8% 4.2% 23.9%

Table 7. Absolute relative errors of pitch-pitch added mass A55 for Wigley I hull by various methods.

ω
′ 2.2 2.8 3.3 3.9 4.4 5.5

Present method 9.9% 2.3% 3.3% 17.1% 23.3% 28.5%

Magee’s method 57.0% 34.5% 32.1% 35.0% 40.0% 43.7%

Table 8. Absolute relative errors of pitch-pitch damping coefficients B55 for Wigley I hull by vari-
ous methods.

ω
′ 2.2 2.8 3.3 3.9 4.4 5.5

Present method 8.2% 9.7% 4.1% 2.6% 2.1% 14.0%

Magee’s method 14.6% 14.3% 14.7% 16.0% 11.0% 18.07%

From Figures 12 and 13, resonance occurs around the non-dimensional frequency
ω′ = 1.40, and there is a larger deviation between numerical results and previous literature
experimental data [29]. As the non-dimensional frequency increases, hydrodynamic coeffi-
cients obtained from “present method”, “Magee’s method”, and “LAMP method” show
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a similar change trend. From Tables 5–8, the numerical results obtained by the “present
method” are in better agreement with the previous literature experimental data [29] than
those obtained by “Magee’s method”. Based on the potential flow assumption, the viscosity
of a fluid is ignored. When both the field point and source point are on the mean free
surface, the amplitude and oscillating frequency of TFSGF increase rapidly with time pa-
rameter β, and there will be a larger numerical error if waterline integral terms of boundary
integral equations are included. The accuracy for hydrodynamic coefficient evaluation can
be improved by the present method with waterline integral terms excluded.

4.5. The Wave Exciting Forces

The Wigley I hull advances in head regular waves at Fn = 0.2. The wave exciting forces
are composed of F–K forces and diffraction forces in the frequency domain, and diffraction
forces in the frequency domain can be obtained by Fourier transformation [15]. Figure 14
shows the numerical results of amplitudes of the non-dimensional wave exciting forces
obtained by various methods. ”SAMP method” denotes numerical results obtained by a
transient free surface Green function method in the linear time domain [21].
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Figure 14. Non-dimensional wave exciting force amplitude at Fn = 0.2: (a) heave; (b) pitch.

From Figure 14, the maximum relative error between “present method” and “ex-
periment” is within 10.0%, and the non-dimensional wave exciting forces obtained from
“present method”, “Magee’s method” and ”SAMP method” show a similar change trend.
Thus, the reliability of analytical expression for F–K forces evaluation is verified.

4.6. The Motion Responses

Figure 15 shows the time history of motions of Wigley I hull at Fn = 0.2 in head regular
waves (α = π).
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Figure 15. Non-dimensional time history of motions of Wigley I hull (λ/L = 1.5): (a) heave; (b) pitch.
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From Figure 15, the instantaneous influences of the initial disturbance on the time his-
tory of motion disappear after about 3~5 wave periods. Thus, the three-dimensional linear
time-domain simulation program developed in the present study is numerically stable.

Figure 16 shows heave response amplitude operators (Raos) and pitch response
amplitude operators for ship motions in head regular waves at Fn = 0.2. The response
amplitude of heave motion can be defined as ζ30/η0, and ζ30 is the amplitude of ship
heave motions. The response amplitude of pitch motion can be defined as (ζ50L)/(2πη0),
and ζ50 is the amplitude of ship pitch motions. In Figure 16, “Kim’s method” denotes the
numerical results obtained by a three-dimensional Rankine panel method in the linear time
domain [35].
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From Figure 16, for ship heave motion responses, both “present method” and “Kim’s
method” can be in good agreement with previous literature experimental data [29]; for ship
pitch motion responses, the numerical results obtained by “present method” are closer
to previous literature experimental data [29] than those obtained by “Kim’s method”.
When λ/L approaches 1.80, the numerical results of the pitch motion responses show
non-ignorable errors compared with the previous literature experimental data [29]. As
λ/L approaches 1.80, the wave encounter frequency is nearly equal to the natural fre-
quency of pitch motion. Thus, the resonance can take place, and the previous literature
experimental data [29] is quite larger than the numerical results. In the present study, the
TFSGF method is adopted to solve ship motion problems. The TFSGF can automatically
satisfy the free surface boundary condition, and the numerical errors involved in radiation
boundary conditions can be reduced. Thus, the numerical results obtained by the “present
method” can be in better agreement with previous literature experimental data [29] than
“Kim’s method”.

5. Conclusions

In the present study, a three-dimensional time-domain panel method is developed
to study the ship’s hydrodynamic analysis and motions in regular waves. The Wigley I
hull is taken as a study case. The following conclusions can be made based on numerical
simulation and investigations:

(1) The precise integration method with variable parameter m is adopted for TFSGF
evaluation, which can improve the efficiency and numerical stability. It can provide a
reliable solver for a ship’s hydrodynamic analysis.

(2) Based on the TFSGF method, the boundary integral equation without waterline terms
is established to solve the perturbation velocity potential. When µ = 0, the violent
oscillation and amplitude amplification characteristics of TFSGF could lead to worse
numerical calculation results. The numerical results of hydrodynamic coefficients
obtained by the present method can be in good agreement with previous literature
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experimental data [29]. In comparison with the TFSGF method, including waterline
terms, the present method shows higher accuracy.

(3) The derived analytical integration expressions for F–K forces evaluation over quadri-
lateral panels have been proved to provide exact results. For a much simple hull
shape, like a barge vessel, only about ten quadrilateral panels are required to dis-
cretize the hull body, which needs much fewer mesh grids than the Gauss integration
method. The wave exciting forces of the Wigley I hull in regular head waves are in
good agreement with both previous literature experimental data [29] and numerical
results by other published results [21,28]. Thus, the algorithm developed for F–K
forces can be validated.

(4) Since TFSGF can automatically satisfy the free surface condition, the ship pitch
motion response results obtained by the present method are in better agreement with
previous literature experimental data [29] than the three-dimensional Rankine panel
method [35].

(5) Based on the present research work, different levels of nonlinearity can be considered
in future study work. The boundary integral equation can be built on the instanta-
neous wetted hull surface instead of the mean wetted hull surface, in which the body
nonlinearity can be incorporated more fully. Moreover, the second-order drift forces
can also be derived from the present boundary value problem formulation, which
can be used to study the ship maneuvering problem.

Author Contributions: Methodology, P.Z.; formal analysis, P.Z. and T.Z.; Investigation, P.Z.; writing—
original draft preparation, P.Z.; writing—review and editing, P.Z., T.Z., and X.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is supported in part by the National Natural Science Foundation of China
(Grant. 51909022, 61976033), the Natural Science Foundation of Liaoning Provence (Grant. 2019-BS-
024), and the Fundamental Research Funds for the Central Universities (Grant. 3132019347).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors gratefully acknowledge the financial support from the National
Natural Science Foundation of Chin.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Subramanian, R. A Time Domain Strip Theory Approach to Predict Maneuvering in a Seaway. Ph.D. Thesis, The University of

Michigan, Ann Arbor, MI, USA, 2012.
2. Ogilvie, T.E.; Tuck, E.O. A Rational Strip Theory for Ship Motions; Report; University of Michigan: Ann Arbor, MI, USA, 1969.
3. Tasai, F. On the swaying, yawing and rolling motions of ships in oblique waves. Int. Shipbuild. Prog. 1967, 14, 1–20. [CrossRef]
4. Salvesen, N.; Tuck, E.O.; Faltinsen, O. Ship motions and sea loads. Trans. Soc. Naval Archit. Mar. Eng. 1970, 78, 250–287.
5. Fonseca, N.; Guedes Soares, C. Time domain analysis of large amplitude vertical motions and wave loads. J. Ship Res. 1998, 42,

100–113. [CrossRef]
6. Fonseca, N.; Soares, C.G. Comparison of numerical and experimental results of non-linear wave induced vertical ship motions

and loads. J. Mar. Sci. Technol. 2002, 6, 193–204. [CrossRef]
7. Tavakoli, S.; Niazmand, R.; Mancini, S.; De Luca, F.; Dashtimanesh, A. Dynamic of a planing hull in regular waves: Comparison

of experimental, numerical and mathematical methods. Ocean Eng. 2020, 217, 107959. [CrossRef]
8. Nakos, D.E. Ship Wave Patterns and Motions by a Three-Dimensional Rankine Panel Method. Ph.D. Thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 1990.
9. Kring, D.C. Time Domain Ship Motions by a Three-Dimensional Rankine Panel Method. Ph.D. Thesis, Massachusetts Institute of

Technology, Cambridge, MA, USA, 1994.
10. Chen, J.P.; Zhu, D.X. Numerical simulations of wave-induced ship motions in time domain by a Rankine panel method.

J. Hydrodyn. 2010, 22, 373–380. [CrossRef]
11. Wehausen, J.V.; Laitone, E.V. Surface Waves. Encyclopedia of Physics, Vol. IX/Fluid Dynamics III; Springer: Berlin, Germany, 1960.
12. Blandeau, F.; Francois, M. Linear and non-linear wave loads on FPSOs. In Proceedings of the ASME 9th International Conference

on Offshore Mechanics and Arctic Engineering, Brest, France, 30 May–4 June 1999; Available online: https://onepetro.org/
ISOPEIOPEC/proceedings-abstract/ISOPE99/All-ISOPE99/ISOPE-I-99-039/24645 (accessed on 7 January 2021).

http://doi.org/10.3233/ISP-1967-1415303
http://doi.org/10.5957/jsr.1998.42.2.139
http://doi.org/10.1007/s007730200007
http://doi.org/10.1016/j.oceaneng.2020.107959
http://doi.org/10.1016/S1001-6058(09)60067-6
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE99/All-ISOPE99/ISOPE-I-99-039/24645
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE99/All-ISOPE99/ISOPE-I-99-039/24645


J. Mar. Sci. Eng. 2021, 9, 87 19 of 19

13. Wu, G.X.; Eatock Taylor, R. A Green’s function form for ship motion at forward speed. Int. Shipbuild. Prog. 1987, 34, 189–196. [CrossRef]
14. Liapis, S.J. Time Domain Analysis of Ship Motions. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 1986.
15. King, B.K. Time Domain Analysis of Wave Exciting Forces on Ships and Bodies. Ph.D. Thesis, The University of Michigan,

Ann Arbor, MI, USA, 1987.
16. Rodrigues, J.M.; Guedes Soares, C. Froude-krylov forces from exact pressure integrations on adaptive panel meshes in a time

domain partially nonlinear model for ship motions. Ocean Eng. 2017, 139, 169–183. [CrossRef]
17. Zhang, L.; Li, Y.B.; Huang, D.B. The Effect of the Water Line Term on Wave Diffraction by a Floating Body with Forward Speed.

J. Harbin Eng. Univ. 1998, 19, 1–7.
18. Sun, W.; Ren, H.L. Ship motions with forward speed by time domain Green function method. Chin. J. Hydrodyn. 2018, 33, 216–222.
19. Singh, S.P.; Sen, D. A comparative linear and nonlinear ship motion study using 3-D time domain methods. Ocean Eng. 2007, 34,

1863–1881. [CrossRef]
20. Datta, R.; Rodrigues, J.M.; Soares, C.G. Study of the motions of fishing vessels by a time domain panel method. Ocean Eng. 2011,

38, 782–792. [CrossRef]
21. Lin, W.M. Numerical Solutions for Large-Amplitude Ship Motions in the Time Domain. In Proceedings of the 18th Symposium

on Naval Hydrodynamics, Ann Arbor, MI, USA, 19–24 August 1990.
22. Lin, W.M.; Zhang, S.; Weems, K.; Yue, D.K. A mixed source formulation for nonlinear ship motions and wave-induced loads.

In Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nantes, France, 19–22 July 1999.
23. Shan, P.; Wang, Y.; Wang, F.; Wu, J.; Zhu, R. An efficient algorithm with new residual functions for the transient free-surface green

function in infinite depth. Ocean Eng. 2019, 178, 435–441. [CrossRef]
24. Clement, A.H. An ordinary differential equation for the green function of time-domain free-surface hydrodynamics. J. Eng. Math.

1998, 33, 201–217. [CrossRef]
25. Shen, L.; Zhu, R.C.; Miao, G.P.; Liu, Y. A practical numerical method for deep water time domain in Green function. Chin. J.

Hydrodyn. 2007, 3, 380–386.
26. Zhong, W.X. On precise integration method. J. Comput. Appl. Math. 2004, 163, 59–78.
27. Li, Z.F.; Ren, H.L.; Tong, X.W.; Li, H. A precise computation method of transient free surface Green function. Ocean Eng. 2015,

105, 318–326. [CrossRef]
28. Magee, A.R.; Beck, R.F. Compendium of ship Motion Calculations Using Linear Time-Domain Analysis; (Report No. 310); Department

Naval Architects Marine Engineering, University of Michigan: Ann Arbor, MI, USA, 1988.
29. Journée, J.M.J. Experiments and Calculations on Four Wigley Hull Form; (Report 0909); Faculty of Mechanical Engineering and

Marine Technology, Delft University of Technology: Delft, The Netherlands, 1992.
30. Kara, F. Time Domain Hydrodynamic and Hydroelastic Analysis of Floating Bodies with Forward Speed. Ph.D. Thesis, University

of Strathclyde, Glasgow, UK, 2000.
31. Zhang, T.; Ren, J.S.; Zhang, X.F. Mathematical model of ship motion in regular waves based on three-dimensional time-domain

Green function method. J. Traffic Transp. Eng. 2019, 19, 110–121.
32. Hess, J.L.; Smith, A.M.O. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. J. Ship Res. 1964, 8,

22–44. [CrossRef]
33. Kukkanen, T. Numerical and Experimental Studies of Nonlinear Wave Loads of Ships. Ph.D. Thesis, Vtt Technical Research

Centre of Finland, Espoo, Finland, 2012.
34. Sun, L. Study of Ship-Generated Waves and Its Effects on Structures. Ph.D. Thesis, Dalian University of Technology, Dalian,

China, 2009.
35. Kim, K.H.; Kim, Y. Comparative study on ship hydrodynamics based on Neumann-Kelvin and double-body linearizations in

time-domain analysis. Int. J. Offshore Polar Eng. 2010, 10, 265–274.

http://doi.org/10.3233/ISP-1987-3439802
http://doi.org/10.1016/j.oceaneng.2017.04.041
http://doi.org/10.1016/j.oceaneng.2006.10.016
http://doi.org/10.1016/j.oceaneng.2011.02.002
http://doi.org/10.1016/j.oceaneng.2019.03.003
http://doi.org/10.1023/A:1004376504969
http://doi.org/10.1016/j.oceaneng.2015.06.048
http://doi.org/10.5957/jsr.1964.8.4.22

	Introduction 
	Materials 
	Coordinate Systems 
	Boundary Value Problem 
	The Hydrodynamic Problem Formulation 
	Solving the Ship Motion Equations 

	Numerical Methods 
	Analytical Expression for F–K Forces Evaluation 
	Numerical Method for TFSGF Evaluation 

	Results and Discussions 
	The Numerical Results of TFSGF 
	The Study Case and Parameter Setting 
	The Convergence Study on Panel Number N and Time Step t  
	Added Mass and Damping Coefficient 
	The Wave Exciting Forces 
	The Motion Responses 

	Conclusions 
	References

