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Abstract: This work introduces a fuzzy optimization model, which solves in an integrated way the
berth allocation problem (BAP) and the quay crane allocation problem (QCAP). The problem is
solved for multiple quays, considering vessels’ imprecise arrival times. The model optimizes the
use of the quays. The BAP + QCAP, is a NP-hard (Non-deterministic polynomial-time hardness)
combinatorial optimization problem, where the decision to assign available quays for each vessel
adds more complexity. The imprecise vessel arrival times and the decision variables—berth and
departure times—are represented by triangular fuzzy numbers. The model obtains a robust berthing
plan that supports early and late arrivals and also assigns cranes to each berth vessel. The model
was implemented in the CPLEX solver (IBM ILOG CPLEX Optimization Studio); obtaining in a short
time an optimal solution for very small instances. For medium instances, an undefined behavior was
found, where a solution (optimal or not) may be found. For large instances, no solutions were found
during the assigned processing time (60 min). Although the model was applied for n = 2 quays,
it can be adapted to “n” quays. For medium and large instances, the model must be solved with
metaheuristics.

Keywords: berth allocation problem; BAP; quay cranes assignment problem; QCAP; fuzzy optimiza-
tion; fully fuzzy linear programing; combinatorial optimization; robust optimization

1. Introduction

Maritime container terminals (MCTs) are vital elements in the global supply chain.
The essential objective of an MCT is to provide the resources and organization to the
transport of containers between the landside and maritime mediums. In this process, the
MCT must guarantee the best conditions of speed, efficiency, and safety, in accordance with
the environment [1].

Due to the current rise in the global maritime trade, many ports have suffered from
resource constraints, such as space, time, quay cranes, etc. The problems that exist in an
MCT are different. This work addresses the berth allocation problem (BAP) and the quay
crane allocation problem (QCAP). The BAP is a NP-hard (Non-deterministic polynomial-
time hardness) combinatorial optimization problem [2], which involves assigning each
incoming vessel a berth position and arrival time at the quay. On the other hand, the QCAP
tries to assign a number of quay cranes (QC) to each berth vessel, aiming to perform all the
necessary unload or load movements of the containers in the vehicles. The QC are giant
cranes that are mounted on rails, therefore, they cannot break through to each other.

The vessel arrival times are very uncertain, i.e., they can arrive earlier or later than
their expected arrival time. This imprecision depends on several factors, such as: technical
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problems, weather conditions (winds, storms), additional terminal visits, or other rea-
sons [3,4]. This has effects over other MCT activities, such as load and unload operations,
negatively impacting the services required by customers. This work assumes the imprecise
arrival times of the vessels, where the arrival is known but the exact time is uncertain, as
this kind of uncertainty (ambiguity) can be modeled with fuzzy logic [5].

In [6], an exhaustive literature review which show a very limited number of reports,
the authors deal with the imprecise times in the BAP + QCAP.

The authors of [7] use discrete event simulation to show that the collaboration between
two MCTs (sharing resources such as berths, quay cranes, and the container yard) can
help reduce uncertainty in arrival time and the number of containers brought in by vessel,
although the authors do not present any mathematical models.

A reactive strategy for the BAP + QCAP with discrete berths is proposed in [8], a
mixed integer linear programming (MILP) model with practical constraints, is formulated
to obtain a basic planning when uncertainty problems appear (deviation of vessels’ arrival
times, deviation of vessels’ loading and unloading operation times, unscheduled vessel
calls, quay breakdowns, etc.), and a moving horizon heuristic is used to obtain good
feasible solutions. Another reactive strategy for the BAP + QCAP is proposed in [9], where
basic planning is obtained through the use of a multi-objective optimization model that
penalizes: the deviations of the vessels from their preferred berthing positions, the delay in
the berthing time in comparison to estimated arrival times, and the delay in departure times
compared to estimated departure times; then, with movable time windows the berthing
plans are updated.

Given that the model we propose is proactive, a review of works on this approach is
made below.

Regarding discrete and dynamic BAP, where a single berth quay is available with
some kind of imprecision present, a fuzzy mixed integer linear programming (MILP) model
was proposed in [10], the imprecise arrival times were represented by triangular fuzzy
numbers; however, this model does not addressed continuous BAP. According to [6], the
design of a continuous model would have a more complicated berthing plan than a discrete
one. Nevertheless, a continuous model has the advantage of better using the quay space.
In [11], a fully fuzzy linear programing (FFLP) model was developed for dynamic and
continuous BAP. The model obtained a robust berthing plan, which supports incidents in
the vessel arrivals. In [12], a MILP model and a genetic algorithm (GA) were created for
dynamic and continuous BAP+QCAP. In the modeling methodology, spaces of times were
added in the vessel departure, which mitigates the effects of imprecision and strengthens
the model’s accuracy.

In the case of BAPs, where vessels can berth in two quays; [13] proposed a MILP
model and a GA. However, imprecision was not included in the problem parameters. On
the other hand, a FFLP model for BAP which addressed the imprecision in the vessel
arrivals was presented in [14]. A MILP model for integrated laycan and berth allocation
and quay crane assignment problem (LBACAP) that considers multiple quays is proposed
in [15].

As far as we know, no models have been developed for the BAP + QCAP which
considers “n” quays and the uncertainty in the arrival times.

In this work, we present a fuzzy optimization model for the BAP + QCAP with two
quays, continuous and dynamic, which considers the vessels’ imprecise arrival times,
meaning they can arrive early or late of an allowed time. The vessels’ imprecise arrival
times are represented by triangular fuzzy numbers. The model optimizes the use of the
quays. In order to analyze the behavior and efficiency, the model is applied to a small,
medium, and large instances respectively.
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2. Materials and Methods
2.1. Fuzzy Arithmetic

Definition 1. Let X be the discourse universe, and a fuzzy set Ã in X is a set of ordered pairs.

Ã =
{(

x,µÃ(x)
)
, x ∈ X

}
(1)

where µÃ : X→ [0, 1] is the membership function, which represents the belonging degree of x with
the set Ã.

In this work, fuzzy sets are defined over the real numbers R. A membership function
can be triangular, trapezoidal, sigmoidal, quadratic, etc.

Definition 2. A fuzzy singleton is a fuzzy set with a membership function.

µÃ(x) =
{

1, x ∈ [a− ε, a + ε]
0, x /∈ [a− ε, a + ε]

(2)

where ε is a margin of error. The fuzzy singleton allows the expression of a real number as a fuzzy set.

Definition 3. A fuzzy number is a normal and convex fuzzy set in R.

Definition 4. A triangular fuzzy number is represented by ã = (a1, a2, a3).

Definition 5. A triangular fuzzy number ã = (a1, a2, a3) is positive if and only if a1 > 0.

Definition 6. A real number a can be represented by a fuzzy singleton in the form of a triangular
fuzzy number ã = (a− ε, a, a + ε), where ε is a margin of error.

Definition 7. For two non-negative triangular fuzzy numbers ã = (a1, a2, a3) and b̃ = (b1, b2, b3),
the sum difference and multiplication operations are defined as follows:

ã + b̃ = (a1 + b1, a2 + b2, a3 + b3)
ã− b̃ = (a1− b3, a2− b2, a3− b1)

ã.b̃ = (a1.b1, a2.b2, a3.b3).
(3)

Ordering methods allows us to decide the greater number between two fuzzy numbers
ã and b̃. Fuzzy numbers do not always provide an ordered set as found in real numbers.
Ordering methods in fuzzy numbers have advantages and disadvantages. There are
different ordering methods, depending on the representation: preference, rationality, and
robustness, etc. [16].

In this work, the objective of the fuzzy model optimization is to achieve an ordering
(planning) for the berthing of vessels, therefore, any ordering method that orders fuzzy
numbers could be used. Ordering methods that use intervals to order fuzzy numbers are
not recommended, as they could add more imprecision to the model.

This work utilizes the Yagger First Index [17] ordering method, which is defined below.

Definition 8. Given two triangular fuzzy numbers ã and b̃ alongside the ordering function,

<(ã) =
a1 + a2 + a3

3
(4)

ã ≤ b̃ when, <(ã) ≤ <
(

b̃
)

, Meaning, ã ≤ b̃ when a1 + a2 + a3 ≤ b1 + b2 + b3.
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2.2. Fully Fuzzy Linear Programming (FFLP)

There are different approaches in fuzzy mathematical programming, the classical fuzzy
linear programming methods are used when the parameters are fuzzy; in this work, some
of the decision variables are fuzzy, for this case, the FFLP approach is the most appropriate.

In the FFLP approach, the decision parameters and variables are fuzzy and linear,
respectively. Several solution methods can be applied to the FFLP model [18]. Most of
them convert the fuzzy model into a classic linear programming one. In this work, we use
the method proposed by Nasseri [19].

Given the FFLP problem:

max
n

∑
j=1

C̃jX̃j (5)

Subject to:
n

∑
j=1

ãij x̃j ≤ b̃i , ∀i = 1 . . . m (6)

where the parameters C̃j , ãij , b̃j and the decision variable x̃j are non-negative trian-
gular fuzzy numbers, C̃j =

(
c1j, c2j, c3j

)
, ãij =

(
a1ij, a2ij, a3ij

)
, b̃j = (b1i, b2i, b3i) y

x̃j =
(

x1j, x2j, x3j
)
.

The Nasseri method transforms the previous model into a classic linear program-
ming problem,

max <(
n

∑
j=1

(
c1j, c2j, c3j) (x1j, x2j, x3j

)
) (7)

Subject to:
n

∑
j=1

a1ijx1j ≤ b1i , ∀i = 1 . . . m (8)

n

∑
j=1

a2ijx2j ≤ b2i , ∀i = 1 . . . m (9)

n

∑
j=1

a3ijx3j ≤ b3i , ∀i = 1 . . . m (10)

where < is an ordering function (see Definition 8).

2.3. Problem Description

According to [20], an MCT is a composition of several subsystems integrated into
a single one. This system has physical and information connections with the transport
networks (landside and maritime). The subsystems (see Figure 1) are:

1. The loading–unloading container subsystem, which is responsible for resolving the
maritime interface.

2. The storage container subsystem, which occupies most of the MCT surface.
3. The landside reception and delivery subsystem, which act as gates in the landside for

trucks and/or railways.
4. The internal connection subsystem. To the previous three subsystems, which address

the basic terminal functions, a fourth subsystem must be added, this ensures the
horizontal transport of containers between the previous subsystems.
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Figure 1. MCT subsystems in plant (top image) and elevation (bottom image) [20].

The BAP + QCAP discussed in this work occur in subsystem 1, however any incident
will affect the other subsystems. For example, if a vessel berths outside their scheduled
time, it will cause problems to the assigned cranes, affecting the prepared warehouses for
the containers and the trucks waiting to receive them.

The existence of n quays in the port is assumed, where vessels can berth in any of them.
Arrival time is imprecise, i.e., vessels are allowed to be early or late until a predetermined
time. The BAP focuses on choosing a quay (if any) and the arrival time and position
where each arriving vessel at the MCT must berth. The other problem is the QCAP, which
involves the assigning of a number of quay cranes to each vessel to be handled.

The BAP can be represented in a two-dimensional form (see Figure 2), where the
horizontal axis represents the time and the vertical axis represents the berth length.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. MCT subsystems in plant (top image) and elevation (bottom image) [20]. 

The BAP + QCAP discussed in this work occur in subsystem 1, however any incident 
will affect the other subsystems. For example, if a vessel berths outside their scheduled 
time, it will cause problems to the assigned cranes, affecting the prepared warehouses for 
the containers and the trucks waiting to receive them. 

The existence of n quays in the port is assumed, where vessels can berth in any of 
them. Arrival time is imprecise, i.e., vessels are allowed to be early or late until a prede-
termined time. The BAP focuses on choosing a quay (if any) and the arrival time and po-
sition where each arriving vessel at the MCT must berth. The other problem is the QCAP, 
which involves the assigning of a number of quay cranes to each vessel to be handled. 

The BAP can be represented in a two-dimensional form (see Figure 2), where the 
horizontal axis represents the time and the vertical axis represents the berth length. 

 
Figure 2. Two-dimensional BAP representation. 

We consider the following assumptions and limitations: 
Assumptions: The vessel information is previously known, each vessel has a draft 

less or equal than the quay, and that the berthing and departure do not consume much 
time. Simultaneous berthing is allowed and the safety distance between vessels is not con-
sidered. The number of cranes assigned to the vessels does not change during the berthing 
time, once a QC starts a task on a vessel they must complete it without any pause, all QCs 
assigned to vessel i have the same working time = ℎ  , ∀ ∈ , = 1). The model 

Figure 2. Two-dimensional BAP representation.

We consider the following assumptions and limitations:



J. Mar. Sci. Eng. 2021, 9, 152 6 of 15

Assumptions: The vessel information is previously known, each vessel has a draft
less or equal than the quay, and that the berthing and departure do not consume much
time. Simultaneous berthing is allowed and the safety distance between vessels is not
considered. The number of cranes assigned to the vessels does not change during the
berthing time, once a QC starts a task on a vessel they must complete it without any pause,
all QCs assigned to vessel i have the same working time (tik = hi, ∀k ∈ QC, uik = 1). The
model assigns the berthing place to each vessel, that is, preference zones are not allowed
for berthing a vessel.

Limitations: The quay length must be limited, the available crane number in each
quay is five. There is a safety distance between cranes which must to be maintained (35 m).
The maximum crane number that can be assigned to a vessel is four. The number of crane
movements performed in a given time is 2.5. There must be at least one QC assigned to
each vessel.

In this work we use the following notation, which was taken from [12]:

H: Planning Horizon.

Let be Q the set of existent quays in an MCT, where q ∈ Q is a quay.

QCq: Available cranes at quay q. All QCs perform the same number of movements per unit
time (movsQC), data provided by the MCT.
QC +

iq : The maximum number of QCs assigned to each vessel i at quay q
Lq: Length of quay q.

Let be V a set of vessels which arrive at the port, the data for each vessel i ∈ V is given
by:

ai: Vessel arrival time at port.
li: Vessel length.
ci: Required number of movements to load or unload the containers from the vessel.

The decision variables are:

BMiq: Takes the value of 1 when vessel i berths at quay q, and takes 0 otherwise.
miq: Berthing time of vessel i at quay q. The waiting time (wi) is computed as
(wi = miq − ai)

piq: Position at quay q, where vessel i must berth.
niq: Number of QCs in quay q assigned to vessel i.
uik: Indicates whether k, (which belonging to QCq) works (1) or not (0) on vessel i.

The variables that are deduced from above are:

hi: Vessel handling time i. hi = ci/(niq ∗movsQC).
tik: Working time of k (belonging to QCq) which is assigned to vessel i.
di: Vessel departure time

(
di = miq + hi

)
.

siq ; eiq: Indices for the first and last QC, on quay q, used in vessel i, respectively.
M: Is a sufficiently large number.

2.4. Fuzzy Optimization Model for the BAP + QCAP with Two Quays

The arrival, berthing, handling, waiting and departure time of each vessel are consid-
ered imprecise (fuzzy), they are denoted by: ã, m̃, h̃, w̃ and d̃ respectively.

Assuming the presence of imprecision in some parameters and decision variables,
the fuzzy optimization model for BAP + QCAP is introduced. This model is based on the
deterministic model developed in [12]. The objective function minimizes the waiting and
handling time for all vessels.

min ∑
i∈V

(
w̃i + h̃i

)
(11)

Subject to:
∑q∈Q BMiq = 1 , ∀i ∈ V , ∀q ∈ Q (12)
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m̃iq ≥ ãi , ∀i ∈ V, ∀q ∈ Q (13)

w̃i + ãi = m̃iq , ∀i ∈ V, ∀q ∈ Q (14)

d̃i = m̃iq + h̃i , ∀i ∈ V, ∀q ∈ Q (15)

piq + li ≤ Lq , ∀i ∈ V, ∀q ∈ Q (16)

niq = ∑
k∈QCq

uik , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (17)

1 ≤ niq ≤ QC +
iq , ∀i ∈ V, ∀q ∈ Q (18)

1 ≤ siq , eiq ≤
∣∣QCq

∣∣ , ∀i ∈ V, ∀q ∈ Q (19)

siq ≥ eiq , ∀i ∈ V, ∀q ∈ Q (20)

niq = eiq − siq + 1 , ∀i ∈ V, ∀q ∈ Q (21)

∑
k∈QCq

tink ∗movQC ≥ ci , ∀i ∈ V, ∀q ∈ Q (22)

h̃i = maxk∈QCq tik , ∀i ∈ V, ∀q ∈ Q (23)

tik −M ∗ uik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (24)

h̃i −M(1− uik)− tik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (25)

uik + ujk + zx
ijq < 2 , ∀i, j ∈ V , i 6= j, ∀k ∈ QCq, ∀q ∈ Q (26)

M(1− uik) +
(
eiq − k

)
≥ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (27)

M(1− uik) +
(
k− siq

)
≥ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (28)

piq + li ≤ pjq + M
(

1− zx
ij

)
, ∀i, j ∈ V, i 6= j, ∀q ∈ Q (29)

eiq + 1 ≤ sjq + M
(

1− zx
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (30)

d̃i ≤ m̃jq + M
(

1− zy
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (31)

m̃iq + h̃i ≤ H , ∀i ∈ V, ∀q ∈ Q (32)

zx
ijq + zx

jiq + zy
ijq + zy

jiq ≥ 1 , ∀i, j ∈ V, i 6= j, ∀q ∈ Q (33)

zx
ijq, zy

ijq ∈ {0, 1} , ∀i, j ∈ V, i 6= j, ∀q ∈ Q (34)

There are two auxiliary variables: zx
ijq is a decision variable that indicates whether the

vessel i is located to the left of vessel j at quay (zx
ijq = 1), while zy

ijq indicates that vessel i
berths before vessel j in time, at quay q (zx

ijq = 1) (see restriction 34).
Constraint (12), assigns each vessel to a quay q. Constrain (13), indicates that all

vessels can berth once they arrive at the port. Constraints (14) and (15) set the waiting and
departure times for vessel i, according with the berthing time. Constraint (16) ensures the
berth position of vessel i does not exceed the length of the quay q.

Constraints (17)–(21) assign a number of working QCs at quay q for vessel i. Constraint (22)
sets the minimum handling time required to load or unload containers, according with the
assigned number of QCs to vessel i. Constraint (23) assigns the handling time to vessel i.
Constraint (24) ensures that unassigned QCs have a value of tik = 0. Constraint (25) forces
the assigned QCs in vessel i to work the same number of hours. Constraint (26) prevents a
QC from being assigned to different vessels at the same time. Constraints (27) and (28) force
QCs to be contiguously assigned (from si to ei) at quay q. Constraint (29) takes into account
the safety distance. Constraint (30) prevents a vessel from using a QC which breaks through
other QCs. Constraint (31) prevents vessel j from berthing at the quay, while vessel i is still
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berthed at the same quay. Constraint (32) indicates that the berthing and handling time for
vessel i must not exceed the planning horizon (H). Finally, constraint (33) establishes the
relationship between each pair of vessels.

2.5. Fuzzy Optimization Model Solution

It is assumed that, in the fuzzy optimization model from Section 2.4, the imprecision times
related with the vessel operations: arrival, berthing, handling, and departure, are represented
by the triangular fuzzy numbers ã = (a1, a2, a3), m̃ = (m1, m2, m3), h̃ = (h1, h2, h3),
and d̃ = (d1, d2, d3), respectively. h̃, is considered a fuzzy singleton; also, if the model
parameters are linear, the model is a FFLP.

The method used to transform the FFLP model into a classic linear programming model
requires the application of fuzzy arithmetic operations; restrictions (25), (31), and (32) show
such operations between fuzzy and real numbers, in order to perform such operations,
real numbers are considered to be fuzzy singletons (See Definition 6), for example, in
constraint (31),

d̃i ≤ m̃jq + M
(

1− zy
ijq

)
Is transformed into,

(d1i, d2i, d3i) ≤
(
m1jq, m2jq, m3jq

)
+ M

(
(1, 1, 1)−

(
zy

ijq, zy
ijq, zy

ijq

))
Simplifying,

(d1i, d2i, d3i) ≤
(

m1jq + M
(

1− zy
ijq

)
, m2jq +

(
1− zy

ijq

)
, m3jq +

(
1− zy

ijq

))
As indicated in the Nasseri method (see Section 2.2), operations between fuzzy num-

bers which involve sum, difference, and multiplication operations, are performed in the
FFLP model; an ordering method is applied to the objective function, in this case, the First
Yagger Index is used (see Definition 8), obtaining the following MILP model.

min ∑
i∈V

1
3
(
(m1iq − a3i + h1i

)
+
(
m2iq − a2i + h2i

)
+ (m3iq − a1i + h3i)) (35)

Subject to:
∑q∈Q BMiq = 1 , ∀i ∈ V , ∀q ∈ Q (36)

m1iq ≥ a1i , m2iq ≥ a2i , m3iq ≥ a3i , ∀i ∈ V, ∀q ∈ Q (37)

m3iq ≥ m2iq , m2iq ≥ m1iq , ∀i ∈ V, ∀q ∈ Q (38)

w1i + a1i = m1iq, w2i + a2i = m2iq , w3i + a3i = m3iq , ∀i ∈ V, ∀q ∈ Q (39)

d1i = m1iq + h1i , d2i = m2iq + h2i , d3i = m3iq + h3i , ∀i ∈ V, ∀q ∈ Q (40)

piq + li ≤ Lq , ∀i ∈ V, ∀q ∈ Q (41)

niq = ∑
k∈QCq

ũik , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (42)

1 ≤ niq ≤ QC +
iq , ∀i ∈ V, ∀q ∈ Q (43)

1 ≤ siq , eiq ≤
∣∣QCq

∣∣ , ∀i ∈ V, ∀q ∈ Q (44)

siq ≥ eiq , ∀i ∈ V, ∀q ∈ Q (45)

niq = ẽiq − s̃iq + 1 , ∀i ∈ V, ∀q ∈ Q (46)

∑
k∈QCq

tink ∗movQC ≥ ci , ∀i ∈ V, ∀q ∈ Q (47)
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h1i = maxk∈QCq tik , h2i = maxk∈QCq tik , h3i = maxk∈QCq tik , ∀i ∈ V, ∀q ∈ Q (48)

tik −M ∗ uik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (49)

h1i −M(1− uik)− tik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (50)

h2i −M(1− uik)− tik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (51)

h3i −M(1− uik)− tik ≤ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (52)

uik + ujk + zx
ijq < 2 , ∀i, j ∈ V , i 6= j, ∀k ∈ QCq, ∀q ∈ Q (53)

M(1− uik) +
(
eiq − k

)
≥ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (54)

M(1− uik) +
(
k− siq

)
≥ 0 , ∀i ∈ V, ∀k ∈ QCq, ∀q ∈ Q (55)

piq + li ≤ pjq + M
(

1− zx
ij

)
, ∀i, j ∈ V, i 6= j, ∀q ∈ Q (56)

eiq + 1 ≤ sjq + M
(

1− zx
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (57)

d1i ≤ m1jq + M
(

1− zy
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (58)

d2i ≤ m2jq + M
(

1− zy
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (59)

d3i ≤ m3jq + M
(

1− zy
ijq

)
, ∀i ∈ V, i 6= j, ∀q ∈ Q (60)

m1iq + h1i ≤ H , m2iq + h2i ≤ H , m3iq + h3i ≤ H , ∀i ∈ V, ∀q ∈ Q (61)

zx
ijq + zx

jiq + zy
ijq + zy

jiq ≥ 1 , ∀i, j ∈ V, i 6= j, ∀q ∈ Q (62)

zx
ijq, zy

ijq ∈ {0, 1} , ∀i, j ∈ V, i 6= j, ∀q ∈ Q (63)

3. Results

For both the case study and the model evaluation efficiency a set of uniform distributed
instances were used. The model was implemented with the IBM ILOG CPLEX Optimization
Studio (CPLEX) solver and was programmed on a personal computer: Intel(R) Core (TM)
i7-8550U CPU, 1.80 GHz processor and 8 GB of RAM. The experiments were conducted
within a 60 min timeout.

3.1. Study Case

To evaluate the model, an instance of ten vessels was used as a case study (see Table 1);
the input data are the vessel imprecise arrival times (early, exact, late), its length, and the
number of crane movements required to handle it. Figure 3 displays the vessels’ uncertain
arrivals from Table 1, represented as triangular fuzzy numbers.

Table 1. Instance of ten vessels with imprecise arrival times.

Vessel a1 a2 a3 l (m) QC Mov.

V1 14 16 20 260 4160
V2 18 31 48 232 9680
V3 56 68 86 139 3640
V4 81 82 97 193 7610
V5 92 105 119 287 6860
V6 106 116 133 318 6300
V7 126 138 147 366 8110
V8 155 167 176 166 1560
V9 159 163 164 109 7830

V10 162 179 186 251 2220
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Table 2. The fuzzy berthing plan and crane allocation obtained by the model.

Vessel m1 m 2 m 3 h d1 d2 d3 p Cranes Q

V1 14 16 20 694 708 710 714 440 2 0
V2 927 928 943 1076 2003 2004 2019 0 3 1
V3 56 68 86 607 663 675 693 193 2 1
V4 81 82 97 846 927 928 943 0 3 1
V5 583 600 607 763 1346 1363 1370 0 3 0
V6 708 710 714 1050 1758 1760 1764 382 2 0
V7 663 675 693 1352 2015 2027 2045 334 2 1
V8 409 426 433 174 583 600 607 0 3 0
V9 1346 1363 1370 870 2216 2233 2240 0 3 0

V10 162 179 186 247 409 426 433 189 3 0
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For example, for vessel V7, the arrival time with all its possibilities gives us 138 time
units, but it can also arrive early or late by up to 126 and 147 time units, respectively. The
vessel length is 366 m and 8110 crane movements are required to handling it.

The model assumes that: two quays are used; each having five cranes, with a minimum
of one crane operating on each vessel to a maximum of four cranes per vessel. Each quay
has a length of 700 m.

The obtained results are shown in Table 2. Within an hour of computing time, an
objective value of 15,570 was obtained, this is not the optimal value; but the best value
obtained within that time.

Berthing time (m1, m2, m3) and output time (d1, d2, d3) are triangular fuzzy numbers.
Q = 1 refers to quay 1, and Q = 0 to quay 2.

For example, vessel V7 can berth between the time units 663 and 693, with more
possibility at time unit 667. It can depart between units 2015 and 2045, with more possibility
at unit 2027. Additionally, it must berth at position 334 of the quay. Finally, two cranes are
assigned to this vessel, and they must berth at quay 1.

The fuzzy berthing plan is displayed in Figure 4. Vessels are represented as polygons
(not as rectangles as in the deterministic problem). The red polygon line represents the
allowed early time which can be tolerated for the vessel to berth; meanwhile the green
line is the tolerated late arrival time. The small triangle represents the berthing with
more possibility.
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In Figure 4, in quay 2, the blue circle suggests a conflict area between the departure
and berthing of vessels V5 and V9. However as explained in Figure 5, such conflict is not
real. For example, if vessel V5 departures late from the quay at time unit 1365, vessel V9
could berthing between the 1365 and 1370 units.
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In order to verify the fuzzy model robustness, incidences were simulated in the vessel
arrivals (see Table 3). With these incidences, the final berthing plan is obtained (see Table 4).
Figure 6 shows that the final berthing plan is part of the fuzzy berthing plan.



J. Mar. Sci. Eng. 2021, 9, 152 12 of 15

Table 3. Arrival incidence in vessels.

Vessel Incidence Time

V1 Exactly 0
V2 Exactly 0
V3 Early 6
V4 Late 10
V5 Exactly 0
V6 Late 15
V7 Exactly 0
V8 Late 8
V9 Early 3
V10 Exactly 0

Table 4. Final berthing plan.

Vessel m l h d p Cranes Q

V1 16 260 694 710 440 2 0
V2 938 232 1076 2014 0 3 1
V3 62 139 607 669 193 2 1
V4 92 193 846 938 0 3 1
V5 583 287 763 1346 0 3 0
V6 710 318 1050 1760 382 2 0
V7 669 366 1352 2021 334 2 1
V8 409 166 174 583 0 3 0
V9 1346 109 870 2216 0 3 0

V10 179 251 247 426 189 3 0J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 16 
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3.2. Model Efficiency Analysis

In order to analyze the model efficiency, data from vessels 5 to 35 with 100 instances
each were used. The results are shown in Table 5.
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Table 5. Instances evaluation results.

Vessels Average Objective Value Average Processing Time (Minutes) Optimal No Optimal

5 4922.0 0.2 100 0
6 6655.3 1.3 47 53
7 9401.3 60.0 0 1
8 10,499.7 60.0 0 1
9 13,724.7 60.0 0 1

10 15,522.3 60.0 0 1
11 19,741.3 60.0 0 1
12 23,714.3 60.0 0 1
13 28,762.3 28.9 2 98
14 36,194.7 19.0 3 97
15 39,153.0 38.8 1 99
16 42,786.3 30.8 2 98
17 49,753.0 25.0 2 98
18 57,623.7 28.5 2 98
19 68,661.0 24.7 2 98
20 71,727.3 22.8 2 98
21 80,968.3 21.2 2 98
22 92,723.3 22.1 2 98
23 88,050.0 60.0 0 1
24 96,369.0 60.0 0 1
25 110,842.3 60.0 0 1
26 108,655.3 60.0 0 1
27 128,984.3 60.0 0 1
28 116,706.3 60.0 0 1
29 172,058.3 39.7 1 99
30 142,758.3 60.0 0 1
31 158,178.0 60.0 0 1
32 177,955.3 60.0 0 1
33 156,638.7 60.0 0 1
34 200,806.0 60.0 0 1
35 - 60.0 0 0

Optimal values were found for five vessels, with an average objective value and
processing time of 4922 and 0.2 min, respectively; this was the unique number of vessels
for which an optimal solution was obtained in all its instances. For six vessels, an average
objective value of 6655.3 was obtained within an average processing time of 1.3 min, where
a total of 47 instances were optimally solved. No optimal solutions were found for 7 to
12 vessels. Instead, a single non-optimal solution was found in just one instance. For 13
to 22 vessels there were between one and three optimal solutions. No optimal solutions
were found for 23 to 34 vessels, rather, just a best solution in the given processing time.
However, for 29 vessels an optimal solution was obtained. For 35 vessels onwards, no
solution was found.

Regarding the processing time (see Figure 7), is noted that for six vessels, the average
time it took to find a solution was 1.3 min. Meanwhile, for seven vessels the average
processing time drastically increases until it matches the allowed processing time (60 min).
For 13 to 22 vessels the time varies between 19 and 38.8 min, respectively. For 23 vessels
onwards, the time processing was 60 min, except for 29 vessels, which takes 39.7 min.
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Figure 8 shows a trend of increase in the target value, alongside, the polynomial curve
which best adjusts the data; this is a quadratic curve, with a determination coefficient
R2 of 0.9775.
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4. Discussion

A fuzzy optimization model for the BAP + QCAP with two quays was developed,
considering the vessels’ imprecise arrivals. The model was implemented in the CPLEX
solver. For previously known input data from a set of vessels, the model obtained a fuzzy
berthing and crane allocation plan, which supported incidences of vessels being early or
late in their arrival times.

The model efficiency was evaluated with a benchmark of 100 instances for each
number of vessels, with one hour of computing processing. Only for a very small number
of instances (five vessels) were optimal solutions obtained in all instances. For 6 to 34
vessels, only some optimal and non-optimal solutions were obtained: these do not follow a
defined behavior regarding the processing time, this is because the problem is NP-hard
and solutions will only be obtained in medium instances that have a structure that allows
the algorithm used by the Solver CPLEX to find a solution. For 35 vessels onwards, the
CPLEX solver was unable to find solutions within the allowed processing time. The same
results applied for large instances.

The model was designed for “n” quays, but in this work is applied to only n = 2. Each
time the quay number increases, the complexity will increase as well.

For medium and large instances, the model must be solved with metaheuristics,
because it is a highly complex combinatorial optimization problem.



J. Mar. Sci. Eng. 2021, 9, 152 15 of 15

Author Contributions: Conceptualization, E.L. and F.G.; methodology, C.S.-E.; software, E.L.; val-
idation, M.J.-C., J.R.-M. and C.S.-E.; formal analysis, F.G.; investigation, E.L.; resources, M.J.-C.;
data curation, F.G.; writing—original draft preparation, C.S.-E.; writing—review and editing, F.G.;
visualization, J.R.-M.; supervision, E.V.; project administration, E.V.; funding acquisition, E.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by INNOVATE-PERU, grant number Project N PIBA-2-P-069-14.

Conflicts of Interest: Declare conflicts of interest or state—The authors declare no conflict of interest.

References
1. CCIM (Maritime Industry Knowledge Center) “PORTS AND TERMINALS”. Available online: https://www.maritimeinfo.org/

es/Maritime-Directory/ports-and-terminals-es-21f71f7e802b11e2bf310013721274c6 (accessed on 17 June 2019).
2. Lim, A. The berth planning problem. Oper. Res. Lett. 1998, 22, 105–110. [CrossRef]
3. Bruggeling, M.; Verbraeck, A.; Honig, H. Decision support for container terminal berth planning: Integration and visualization of

terminal information. In Proceedings of the Transport Logistics Working Days (VLW2011); University Press: Zelzate, Belgium, 2011;
pp. 263–283.

4. Laumanns, M. Robust adaptive resource allocation in container terminals. In Proceedings of the 25th Mini-EURO Conference
Uncertainty and Robustness in Planning and Decision Making, Coimbra, Portugal, 15–17 April 2010; pp. 501–517.

5. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
6. Bierwirth, C.; Meisel, F. A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res.

2010, 202, 615–627. [CrossRef]
7. Budipriyanto, A.; Wirjodirdjo, B.; Pujawan, I.N.; Gurning, S. A Simulation Study of Collaborative Approach to Berth Allocation

Problem under Uncertainty. Asian J. Shipp. Logist. 2017, 33, 127–139. [CrossRef]
8. Xiang, X.; Liu, C.; Miao, L. Reactive strategy for discrete berth allocation and quay crane assignment problems under uncertainty.

Comput. Ind. Eng. 2018, 126, 196–216. [CrossRef]
9. Xiao, L.; Hu, Z.-H. Berth Allocation Problem with Quay Crane Assignment for Container Terminals Based on Rolling-Horizon

Strategy. Math. Probl. Eng. 2014, 1. [CrossRef]
10. Exposito, C.; Lalla, E.; Melian, B.; Moreno, J. Fuzzy optimization models for seaside port logistics: Berthing and quay crane

scheduling. Comput. Intell. 2016, 323–343. [CrossRef]
11. Gutierrez, F.; Lujan, E.; Vergara, E.; Asmat, F. Fuzziness in the Berth Allocation Problem. Recent Adv. Comput. Optim. Stud.

Comput. Intell. 2019, 795, 149–174. [CrossRef]
12. Rodriguez, M.; Ingolotti, L.; Barber, F.; Salido, M.; Puente, J. A genetic algorithm for robust berth allocation and quay crane

assignment. Prog. Artif. Intell. 2014, 2, 177–192. [CrossRef]
13. Frojan, P.; Correcher, J.; Alvarez, R.; Koulouris, G.; Tamarit, J. The continuous Berth Allocation Problem in a container terminal

with multiple quays. Expert Syst. Appl. 2015, 42, 7356–7366. [CrossRef]
14. Gutierrez, F.; Lujan, E.; Vergara, E.; Asmat, R. Fully Fuzzy Linear Programming Model for the Berth Allocation Problem with Two

Quays. Uncertain. Manag. Fuzzy Rough Sets Recent Adv. Appl. Stud. Fuzziness Soft Comput. 2019, 377, 87–113. [CrossRef]
15. Bouzekri, H.; Alpan, G.; Giard, V. Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem

in tidal ports with multiple quays. Eur. J. Oper. Res. 2021, in press. [CrossRef]
16. Young-Jou, L.; Hwang, C. Fuzzy mathematical programming: Methods and applications. In Lecture Notes in Economics and

Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1992; Volume 394, pp. 74–186. [CrossRef]
17. Yager, R. A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 1981, 24, 143–161. [CrossRef]
18. Das, S.K.; Mandal, T.; Edalatpanah, S.A. A mathematical model for solving fully fuzzy linear programming problem with

trapezoidal fuzzy numbers. Appl. Intell. 2017, 46, 509–519. [CrossRef]
19. Nasseri, S.H.; Behmanesh, E.; Taleshian, F.; Abdolalipoor, M.; Taghi-Nezhad, N.A. Fully fuzzy linear programming with inequality

constraints. Int. J. Ind. Math. 2013, 5, 309–316.
20. Saurí, S. Operations and Tails of Vessels in Ports. Available online: https://upcommons.upc.edu/handle/2099.1/6271

(accessed on 16 June 2019).

https://www.maritimeinfo.org/es/Maritime-Directory/ports-and-terminals-es-21f71f7e802b11e2bf310013721274c6
https://www.maritimeinfo.org/es/Maritime-Directory/ports-and-terminals-es-21f71f7e802b11e2bf310013721274c6
http://doi.org/10.1016/S0167-6377(98)00010-8
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1016/j.ejor.2009.05.031
http://doi.org/10.1016/j.ajsl.2017.09.003
http://doi.org/10.1016/j.cie.2018.09.033
http://doi.org/10.1155/2014/845752
http://doi.org/10.1007/978-3-319-23392-5_18
http://doi.org/10.1007/978-3-319-99648-6_9
http://doi.org/10.1007/s13748-014-0056-3
http://doi.org/10.1016/j.eswa.2015.05.018
http://doi.org/10.1007/978-3-030-10463-4_5
http://doi.org/10.1016/j.ejor.2020.12.056
http://doi.org/10.1007/978-3-642-48753-8_3
http://doi.org/10.1016/0020-0255(81)90017-7
http://doi.org/10.1007/s10489-016-0779-x
https://upcommons.upc.edu/handle/2099.1/6271

	Introduction 
	Materials and Methods 
	Fuzzy Arithmetic 
	Fully Fuzzy Linear Programming (FFLP) 
	Problem Description 
	Fuzzy Optimization Model for the BAP + QCAP with Two Quays 
	Fuzzy Optimization Model Solution 

	Results 
	Study Case 
	Model Efficiency Analysis 

	Discussion 
	References

