
Journal of

Marine Science 
and Engineering

Article

Investigation of the Starting-Up Axial Hydraulic Force and
Structure Characteristics of Pump Turbine in Pump Mode

Zhongyu Mao 1, Ran Tao 1,2, Funan Chen 1, Huili Bi 1, Jingwei Cao 1, Yongyao Luo 1, Honggang Fan 1

and Zhengwei Wang 1,*

����������
�������

Citation: Mao, Z.; Tao, R.; Chen, F.;

Bi, H.; Cao, J.; Luo, Y.; Fan, H.; Wang,

Z. Investigation of the Starting-Up

Axial Hydraulic Force and Structure

Characteristics of Pump Turbine in

Pump Mode. J. Mar. Sci. Eng. 2021, 9,

158. https://doi.org/10.3390/

jmse9020158

Academic Editor: José A. F. O. Correia

Received: 11 January 2021

Accepted: 1 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering,
Tsinghua University, Beijing 100084, China; maozy14@mails.tsinghua.edu.cn (Z.M.);
randytao@cau.edu.cn (R.T.); cfn18@mails.tsinghua.edu.cn (F.C.); bihuili2014@mail.tsinghua.edu.cn (H.B.);
caojw18@mails.tsinghua.edu.cn (J.C.); luoyy@tsinghua.edu.cn (Y.L.); fanhg@tsinghua.edu.cn (H.F.)

2 College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
* Correspondence: wzw@mail.tsinghua.edu.cn

Abstract: During the starting up of the pump mode in pump turbines, the axial hydraulic force acting
on the runner would develop with the guide vane opening. It causes deformation and stress on the
support bracket, main shaft and runner, which influence the operation security. In this case, the axial
hydraulic force of the pump turbine is studied during the starting up of pump mode. Its influences
on the support bracket and main shaft are investigated in detail. Based on the prediction results
of axial hydraulic force, the starting-up process can be divided into “unsteady region” and “Q flat
region” with obviously different features. The mechanism is also discussed by analyzing pressure
distributions and streamlines. The deformation of the support bracket and main shaft are found to
have a relationship with the resultant force on the crown and band. A deflection is found on the
deformation of the runner with the nodal diameter as the midline in the later stages of the starting-up
process. The reason is discussed according to pressure distributions. The stress concentration of the
support bracket is found on the connection between thrust seating and support plates. The stress of
the runner is mainly on the connection between the crown and the blade’s leading-edge. This work
will provide more useful information and strong references for similar cases. It will also help in the
design of pump turbine units with more stabilized systems for reducing over-loaded hydraulic force,
and in the solving of problems related to structural characteristics.

Keywords: axial hydraulic force; stress; deformation; pump turbine; starting-up

1. Introduction

Pumped storage power stations are crucial in electric power systems. They have
two main modes—the power generating (turbine mode) and pump-storing (pump mode)
modes—with the ability to quickly start up and shut down. During the peak period of
electricity demand, the pump turbine operates in turbine mode and converts the potential
energy of water in upstream to electrical energy. During the off-peak period, it operates in
pump mode and stores the excess energy via pumping water into the upstream reservoir.

The pump turbine, designed as reversible in modern times, is the key component of
pumped storage power stations [1]. It operates under complex conditions and suffers varying
hydraulic force on the runner, shaft and support bracket. Pump turbines are usually designed
and installed in vertical-axis style. The operating stability and security becomes very sensitive
to axial hydraulic force [2]. The total axial force that shaft systems suffer includes the axial
hydraulic force, the weight of the runner and the weight of the shaft system. Thus, the axial
force is an important technical requirement and also affects the design of thrust bearing.
The desirable condition of axial force is upward but slightly less than the runner-shaft weight.
The total axial force will be downward to ensure the unit is stable. However, a desirable
condition is usually difficult to achieve. Especially, the axial force strongly and complexly
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changes in transient conditions such as starting-up, load rejection, stalling, etc. If the upward
axial hydraulic force is too strong to exceed the unit weight, the unit lifting happens and
causes accidents [3–6]. On the contrary, if the downward axial hydraulic force is too strong,
especially with strong pulsation, the support bracket will strongly deform or even be damaged
due to plastic deformation or fatigue failure [7].

Investigating the axial hydraulic force characteristics and influences is a popular
topic in pump turbine engineering cases and other hydro-turbine cases. The mechanism
of axial hydraulic force is currently well known. It is caused by the pressure difference
between the inner and outer surfaces of the runner’s crown and the band and between the
runner blade’s suction and pressure sides [8–11]. Usually, the crown and band leakages
are filled with high-pressure flow, which is higher than the inner flow of the runner [4,12].
The pressure of the blade pressure side is higher than that of the suction side. However, the
total axial hydraulic force is empirically unpredictable because the influence factor is very
complicated. The condition parameters of the pump turbine, including head, flow rate and
rotation speed, impact the flow regime and pressure distribution [13–15]. Liu et al. [16]
presented an analytical method to calculate the axial hydraulic force, considering the
leakage size and the angular flow velocity in high-pressure leakages. They also pointed out
that the turbine axial force is mainly produced by crown and band leakages. The leakage-
induced axial force is much larger than that induced by other runner parts. Based on
Genetic Algorithm, large-quantity experiment and computational fluid dynamics(CFD)
simulation, Zhao et al. [17] put forward a prediction formulation of axial hydraulic force
with condition parameters, runner diameter and empirical coefficients. The axial force of
the centrifugal pump simulated by the CFD method was compared with the test result of
Zhou et al. [18]. The results indicated that an appropriate impeller rear shroud radius is
able to significantly reduce axial force. Based on experiment and simulation, the wear ring
radial clearance was found to influence the axial thrust. The solutions of hydraulic axial
thrust reduction of pumps were then presented [19,20]. In terms of the load-rejection of
generating mode, the axial force variation was found to have a strong relationship with
flow rate [21]. Li et al. [22] found that the amplitude of the force depends on the operating
conditions and the guide vane openings. For example, the axial force is prominent in the
common operation of turbine mode while the radial force is dominant in runaway and
shutdown processes.

The structure of the pump turbine mainly includes the support bracket, main shaft,
rotor generator and runner. The support bracket is a fixed component while the other
components are rotational. As the structural support, the weight of the unit and the
hydraulic force of the runner load on the support bracket [23,24]. It should be considered
as a fluid–structure interaction (FSI) problem in order to understand the influence of the
runner’s hydraulic force on structures [25]. Based on FSI, many studies were focused on
the stress on the runner. Considering the interaction between the hydraulic force of the
flow field and the deformation of the structure field, two-way FSI is used in structural
analysis of the runner and the accuracy is compared with experimental studies [26–29].
However, in terms of turbine FSI issues, the deformation of the runner structure is much
less than the flow characteristic length. In that case, Zhou et al. and Xiao et al. [30,31]
studied the fatigue and stress of runner at off-design operating points via one-way FSI.
They found that the stress caused by hydraulic force is one of the main reasons of the
runner fatigue failures and cracks. In terms of the other essential components of pump
turbines, Luo et al. [32–34] focused on the stress of the rotor bracket of the generator and
the piston rod of the blade. Improvements in design are made based on stress analyses.
However, the hydraulic force was usually simplified as a resultant force in the research on
shafts and support brackets [35–37]. It cannot accurately reflect the influence of hydraulic
force on unit structure due to the non-uniform force distributions.

In this study, based on one-dimensional (1D) hydraulic transient simulation in pipeline
and 3D CFD simulation in pump turbines, the axial hydraulic force of the pump turbine
in the starting up of pump mode is studied. The influence of axial force on pump turbine
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structure is also researched. The reliability of CFD simulation is verified by comparison
with the prototype on-site test. The influence of the operation parameters on axial hydraulic
force and the mechanism are analyzed and explained in detail. Based on one-way FSI,
the structural strength including deformation and stress of the support bracket, main shaft
and runner is calculated. The relationship between axial hydraulic force and structural
strength is well discussed. This research will provide more useful information and strong
references for similar cases. It helps the design of pump turbine units for a better hydraulic
and structural performance.

2. Numerical Method
2.1. Method of 3D Turbulent Flow Simulation

Given the incompressibility of water, the Reynolds averaged Navier-Stokes (RANS)
equations were used to calculate the 3D flow field in the pump turbine. The continuity
equation and momentum equation are [38]:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= fi −
1
ρ

∂p
∂xi

+ v∇2ui (2)

where u is flow velocity, f is body force, ρ is density, p is pressure, v is kinematic viscosity,
t is time and x is the coordinate component.

In the RANS method, the instantaneous component is decomposed into its time-
averaged component and fluctuating component. To close the equations, the turbulence
model is used to empirically model the fluctuating component. The SST k − ω transient
model which is an eddy viscosity model is applied in this study [39]. It can simulate
both the shear flow and adverse pressure gradient accurately and is particularly useful in
engineering simulations. The RANS equation with SST k − ω model can be written as:
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where lk−ω is the turbulence scale in which lk−ω=k1/2βkω, µ is dynamic viscosity, term
P is the production term, Cω is the coefficient of the production term, F1 is the blending
function, σk, σω and βk are model constants.

Based on the CFD commercial software CFX, the high resolution was used for dis-
cretization schemes in this paper.

The 3D flow simulation was processed with the steady simulation in CFX. The one-
dimensional (1D) hydraulic transient simulation of unsteady flow in pipe was processed
to consider the transient effect in starting-up. As the boundary conditions of 3D flow
field, the 1D hydraulic transient simulation was based on the continuity equation and
momentum equation.

U
∂H
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+
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∂t
−Usinα +
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g
∂U
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= 0 (5)
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= 0 (6)

where H is piezometric head, U is average velocity, g is gravity acceleration, f is Darcy-
Weisbach friction factor; α is pipeline slope; D is diameter of pipe; a is speed of pressure
pulse [40].
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2.2. Method of Structural Simulation

The structural simulation was proceeded using commercial software ANSYS. Based
on the structural static equilibrium equation, the stress and deformation are calculated
using the finite element method (FEM). The equilibrium equation is [41]:

[K]{d} = {F} (7)

where [K] is the stiffness matrix of the system, {d} is the vector with the nodal displacement
and {F} is the vector of force loaded on structure.

Via the displacement {d} solved by Equation (7), the static stress σ can be calculated
by [42,43]:

σ = [Ds][Bs]{d} (8)

where [Ds] is the elastic matrix based on Young’s modulus and Poisson’s ratio for the
material and [Bs] is the strain–displacement matrix based on the element shape functions.

Universally, the equivalent von Mises stress is applied in engineering to analyze the
stress characteristics of the structure. The equivalent von Mises stress σc can be calculated
using the fourth strength theory:

σc =

√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(9)

where σ1, σ2 and σ3 are the first, second and third principal stress.

3. Computational Model and Boundary Conditions
3.1. Flow Field of Pump Turbine

In this study, the model is a prototype reversible pump turbine in a pumped storage
power station. In order to acquire the boundary conditions of the pump turbine, the hy-
draulic system has been modelled in 1D. As shown in Figure 1, the 1D system includes
the pipeline, reservoir, gate shaft, pump turbine and tank. The operate process studied
in this paper is the starting-up process of the pump mode. Because the reservoir level
has principle influence on hydraulic force, the most common situation is considered to be
the initial conditions with the maximum lower reservoir level of 294 m and the minimum
upper reservoir of 741 m. The length of upper pipeline is about 1160.9 m and the length of
lower pipeline is about 1108.5 m.
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The parameters of pump turbine are listed in Table 1. The 3D flow profile of the pump
turbine, shown in Figure 2, mainly consists of volute, stay vane, guide vane, runner and
draft tube. To consider the hydraulic force on the outside surface of the runner, the flow
field of the runner’s crown and shroud leakages, and pressure-balancing chamber, are also
modelled. Figure 3 shows the details of the runner and leakage. The hydraulic force of
runner and leakage flow acts on the fluid–structure interface including the blade suction
side (BSS), blade pressure side (BPS), crown outside surface (COS), crown inside surface
(CIS), band outside surface (BOS) and band inside surface (BIS). These interfaces are
illustrated in Figure 3.

Table 1. Parameters of pump turbine.

Parameter Value

Rated head Hr [m] 430
Rated rotation speed nr [r/min] 428.6
Rated power Pr [MW] 300
Rated flow rate Qr [m3/s] 68
Diameter on runner pressure side Dhi [m] 4.16

J. Mar. Sci. Eng. 2021, 9, 158 5 of 25 
 

 

Upper
Reservoir

Emergency
Gate-Shaft

Pump-Turbine

Draft Tube
Gate Chamber

Surge
Chamber

Gate
Tank

Lower
Reservoir

 
Figure 1. Schematic map of the hydraulic system of the studied pumped storage power station. 

The parameters of pump turbine are listed in Table 1. The 3D flow profile of the pump 
turbine, shown in Figure 2, mainly consists of volute, stay vane, guide vane, runner and 
draft tube. To consider the hydraulic force on the outside surface of the runner, the flow 
field of the runner’s crown and shroud leakages, and pressure-balancing chamber, are 
also modelled. Figure 3 shows the details of the runner and leakage. The hydraulic force 
of runner and leakage flow acts on the fluid–structure interface including the blade suc-
tion side (BSS), blade pressure side (BPS), crown outside surface (COS), crown inside sur-
face (CIS), band outside surface (BOS) and band inside surface (BIS). These interfaces are 
illustrated in Figure 3. 

Table 1. Parameters of pump turbine. 

Parameter Value 
Rated head Hr [m] 430 
Rated rotation speed nr [r/min] 428.6 
Rated power Pr [MW] 300 
Rated flow rate Qr [m3/s] 68 
Diameter on runner pressure side Dhi [m] 4.16 

 
Figure 2. Overview of the 3D flow profile of the pump. Figure 2. Overview of the 3D flow profile of the pump.

J. Mar. Sci. Eng. 2021, 9, 158 6 of 25 
 

 

 
Figure 3. Details of runner and leakage. 

While the runner keeps rotating at the rated speed, the air, which is pressurized into 
the runner chamber to reduce start-up torque, has been already released, instead of filling 
water. Then, the guide vane opens gradually from 0 degrees to the maximum opening 
angle. This process is called “starting-up” in pump mode. According to the guide vane 
opening law, the starting point is when the guide vane opening is 0 degrees and the start-
ing-up calculation duration in this paper is 30 s. The time step of 1D hydraulic transient 
simulation is 0.005 s. 

The 3D flow field during starting-up is calculated using CFD steady simulation at 
selected typical time points (STP), which is illustrated in Figure 4. The boundary condi-
tions of 3D CFD simulation is based on 1D hydraulic transient results of the pipe at the 
inlet and outlet of the pump turbine. The draft tube inlet is set as the mass flow rate inlet 
boundary. The volute outlet is set as the static pressure outlet boundary. The rotation 
speed is the rated speed. The guide vane opening rule, mass flow rate and static pressure 
at volute outlet are acquired from 1D hydraulic transient simulation, as shown in Figure 
4. All the parameters are at relative values of Q* = Q/Qr, Hout* = Hout/Hr, A* = A/Amax where 
Qr, Hr are the rated flow rate and rated head, Hout is the pressure at the volute outlet, Amax 
is the maximum guide vane opening. There is a fluctuation of Hout at the initial stage of 
starting-up, which is caused by the water hammer effect in the pipeline with the guide 
vane opening. 

The fluid medium is considered as incompressible in this case. The runner walls in 
leakages are set as counter-rotating. The other solid walls are set as no-slip wall type 
boundaries. The runner domain and FSI of leakage, COS and BOS are set as rotational. 
The other domain and wall are set as stationary. Interfaces between stationary domains 
are set as general connection. Interfaces between stationary and rotational domains are set 
as frozen-rotor type for good data transfer ability. The convergence criterion is set as the 
root-mean-square (RMS) residual of continuity equation, and momentum equation is set 
as less than 1 × 10−4. 

Figure 3. Details of runner and leakage.



J. Mar. Sci. Eng. 2021, 9, 158 6 of 24

While the runner keeps rotating at the rated speed, the air, which is pressurized into
the runner chamber to reduce start-up torque, has been already released, instead of filling
water. Then, the guide vane opens gradually from 0 degrees to the maximum opening angle.
This process is called “starting-up” in pump mode. According to the guide vane opening
law, the starting point is when the guide vane opening is 0 degrees and the starting-up
calculation duration in this paper is 30 s. The time step of 1D hydraulic transient simulation
is 0.005 s.

The 3D flow field during starting-up is calculated using CFD steady simulation at
selected typical time points (STP), which is illustrated in Figure 4. The boundary conditions
of 3D CFD simulation is based on 1D hydraulic transient results of the pipe at the inlet and
outlet of the pump turbine. The draft tube inlet is set as the mass flow rate inlet boundary.
The volute outlet is set as the static pressure outlet boundary. The rotation speed is the
rated speed. The guide vane opening rule, mass flow rate and static pressure at volute
outlet are acquired from 1D hydraulic transient simulation, as shown in Figure 4. All the
parameters are at relative values of Q* = Q/Qr, Hout* = Hout/Hr, A* = A/Amax where Qr,
Hr are the rated flow rate and rated head, Hout is the pressure at the volute outlet, Amax
is the maximum guide vane opening. There is a fluctuation of Hout at the initial stage of
starting-up, which is caused by the water hammer effect in the pipeline with the guide
vane opening.
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Figure 4. Boundary conditions acquired from 1D hydraulic transient simulation.

The fluid medium is considered as incompressible in this case. The runner walls
in leakages are set as counter-rotating. The other solid walls are set as no-slip wall type
boundaries. The runner domain and FSI of leakage, COS and BOS are set as rotational. The
other domain and wall are set as stationary. Interfaces between stationary domains are
set as general connection. Interfaces between stationary and rotational domains are set
as frozen-rotor type for good data transfer ability. The convergence criterion is set as the
root-mean-square (RMS) residual of continuity equation, and momentum equation is set as
less than 1 × 10−4.

3.2. Structural Field of Pump Turbine Unit

In the structural field simulation, the structural stress and deformation of pump tur-
bine unit are focused and simulated based on the finite element method (FEM). The struc-
tural model is composed of the support bracket, shaft, motor and runner. The rotating
components including the shaft, motor and runner are regarded as one. Figure 5 shows
the 3D structural model with corresponding boundary conditions. The material of the
pump turbine unit is steel; the properties that refer to the prototype pump turbine are
listed in Table 2. The total weight of rotating components is about 550 t. The coordinate
system is shown in Figure 5 with a downward +z (axial) direction. The bracket has, in total,
eight supporting arms, fixed by concrete foundations at the arm end (fixed support 1) and
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connected with the generator stator at the bottom (fixed support 2). The diameter of the
basic support part is 4 m and the diameter with eight supporting arms is 10 m. The thrust
bearing is simplified by spring element (the element type is COMBIN14), connecting the
thrust collar and thrust seating of the support bracket. The upper bearing, lower bearing
and turbine bearing are simplified by the bearing element (the element type is COMBI214),
constraining the radial motion of the shaft. The stiffness coefficients k of thrust bearing
and guide bearing are listed in Table 3 [37]. Hydraulic force loads on the fluid–structure
interfaces of runner based on one-way FSI. The hydraulic force is acquired from 3D flow
field simulation and is mapped onto the fluid–structure interface of the runner structure
using the profile-preserving method. The rotation speed of the rotating components is
nr. The gravity and centrifugal force of the rotating components are fully considered in
this study.
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Table 2. Pump turbine unit material properties.

Density ρ
[kg/m3]

Young’s Modulus E
[Pa]

Poisson’s Ratio µ
[-]

7850 2.1 × 1011 0.3

Table 3. Bearing stiffness coefficients k.

Upper Bearing Lower Bearing Turbine Bearing Thrust Bearing

Stiffness
coefficients k

[N/m]
2.0 × 109 2.0 × 109 1.5 × 109 2.5 × 109
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4. Mesh and Independence Check
4.1. Mesh of Flow Field

The flow field of the pump turbine is discretised using tetrahedral-hexahedral hybrid
mesh elements to balance the computational cost and simulation accuracy. The schematic
map of mesh is shown in Figure 6. It is worth noting that the guide vane flow domain is
remeshed with consistent element size and rules as the guide vane opening is changing.
The y+ value is also checked by adjusting the near-wall mesh height. To apply the automatic
wall functions, y+ is finally controlled within 30~300.
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In order to validate the mesh independence and the simulation accuracy, the com-
parison of pressure on typical locations between the prototype pump turbine test data
and simulation is conducted, as pressure distribution is the key point of hydraulic force.
Four pressure sensors were arranged on the prototype pump turbine at the location marked
in Figure 7, working during the starting-up in pump mode. The sampling frequency of the
pressure sensor is 800 Hz. For comparison with simulation results at STP, the frequency
of test pressure shown in Figure 8 is 4 Hz, which is averaged from the original data with
800 Hz. The relative pressure coefficient Cp is defined as:

Cp =
P

ρgHr
(10)
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corners. These regions are extremely sensitive to the mesh quality [44]. Therefore, as 
shown in detail in Figure 10, mesh in special regions like the corners of support plates, the 
connections between the blade and the crown, and the connection between the blade and 
the runner’s band, are locally refined. According to the maximum stress on local refine-
ment zones of the runner and support bracket, the mesh independence check is conducted 
with four schemes, as listed in Table 5. The four schemes have different element sizes, 
especially in sensitive regions. As shown in Figure 11, the changes of maximum stress at 
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As shown in Figure 8, the pressure on typical locations shows good agreement between
the test and simulation, with errors below 10.7%. Larger errors mainly exist in the initial
stage of the starting-up process as both the guide vane opening and mass flow rate are
very small. Furthermore, relative head H* = H/Hr and relative pressure at draft tube inlet
Hin* = Hin/Hr between 1D hydraulic transient and 3D CFD steady simulation are compared
in Figure 9. The H* and Hin* predicted by CFD matches well with the 1D-predicted results.
Therefore, the mesh is sufficient for the hydraulic force simulation based on steady state CFD
simulation. The final mesh of the flow field in this study has about 6.89 million nodes and
9.91 million elements. The mesh detail of each component is, respectively, listed in Table 4.
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4.2. Mesh of Structural Field

Figure 10 shows the mesh of structural field including support bracket, shaft and
runner. The support bracket is meshed by tetrahedral mesh elements. The shaft and runner
are meshed by hexahedral mesh elements. The element type in ANSYS simulation is
SOLID185. The tress concentration often occurs at the “T-shape” connection and at the
corners. These regions are extremely sensitive to the mesh quality [44]. Therefore, as
shown in detail in Figure 10, mesh in special regions like the corners of support plates, the
connections between the blade and the crown, and the connection between the blade and
the runner’s band, are locally refined. According to the maximum stress on local refinement
zones of the runner and support bracket, the mesh independence check is conducted with
four schemes, as listed in Table 5. The four schemes have different element sizes, especially
in sensitive regions. As shown in Figure 11, the changes of maximum stress at typical sites
are monitored to be less than 2% in the check. The final mesh scheme has 0.92 million
nodes and 1.17 million elements. The mesh details of each component are listed in Table 6.
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Table 5. Mesh details for mesh independence check.

Mesh1 Mesh2 Mesh3 Mesh4

Nodes 635,012 827,539 915,961 1,972,471
Elements 774,907 1,009,839 1,169,321 2,640,587
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Table 6. Mesh details of the final structure field.

Component Shaft and Generator Rotor Support Bracket Runner Total

Nodes 262,888 121,470 540,639 915,961

5. Results and Analysis
5.1. Axial Hydraulic Force
5.1.1. Characteristic and Development

Based on the CFD simulation at the STP, the development of total axial hydraulic force
acting on runner during the starting up process is analyzed, as presented in Figure 12. The
relative axial hydraulic force is defined as:

F∗z =
Fz

mtg
(11)

where mt is the weight of rotating components including the shaft system and runner.
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In this paper, the downward axial force is defined as positive according to the defi-
nition of the +z direction. |F∗z | is adopted to stress the magnitude of axial hydraulic force.
To find out the mechanism of axial hydraulic force and its relationship with flow parameters
of the turbine, the relative flow rate Q* and relative head H* from 1D hydraulic simulation
are also shown in Figure 12 as a reference.

During starting-up, |F∗z | is upward and changes between approximately 0.05 and
0.23. There, t = 0 corresponds to the onset of the opening up of the guide vane. In 0~4.5
s, |F∗z | gradually decrease and reach the first local valley. During this period, H* reaches
the maximum with fluctuation. Before t = 11 s, the guide vane has opened for 46% and
Q* increases to 0.88. |F∗z | suffers the largest fluctuation from 0.05 to 0.23. It can be found
that the axial hydraulic force, head and flow rate are very fluctuant until the guide vane
opens to 46%, which is about half of the maximum opening. This period is defined as the
“unsteady region” where the phenomenon will be discussed in later sections. Then, Q*
increases flatly when the guide vane is continually opening, while H* is almost constant.
This period is defined as the “Q flat region”. It is worth stressing the point that |F∗z | has a
sharp increase and is strongly positively related to flow rate in this “Q flat region”.

In order to identify the axial hydraulic force on specific locations of the runner, the com-
ponents of |F∗z | are plotted in Figure 13. It may be helpful to have a clear knowledge of the
variation mechanism of axial hydraulic force during the starting up process. As shown
in Figure 13a, the directions of F∗z on COS and BIS are downward and those on CIS and
BOS are upward. It is very unstable for axial hydraulic force on the surface of the crown
and band in the “unsteady region” while it is almost flat in the “Q flat region”. For the
runner’s crown, |F∗z | on COS is larger than CIS, so the resultant axial force acting on crown
is downward, as shown in Figure 13b. For the runner’s band, the resultant axial force is
upward as |F∗z | on BOS is larger than BIS. It can be estimated that pressure in the leakages is
higher than that in the runner. Hence, the axial hydraulic force on the outside surface of the
runner is larger than on its inside surface. With the opening of the guide vane, the resultant
force on the crown and band decreases with the increasing of the flow rate. The other point
observed in Figure 13b is that the resultant force on the crown is smaller than that on the
band. Figure 13c provides the |F∗z | value on the blade with the comparison against that on
the crown and the band. |F∗z | on the blade is found downward because pressure on blade
pressure side is always higher than that on the suction side. In the “unsteady region”, |F∗z |
on the blade increases with the opening of the guide vane because the differential pressure
on the blade is increasing. In contrast, it decreases in the “Q flat region” as the guide vane
is continually opening and the flow rate is flatly increasing. For the resultant force on the
crown and the band, some fluctuations can be found in the “unsteady region”, as well as a
slight increase in the “Q flat region”.

In summary, the process of pump mode’s starting-up should be divided to two parts—
the “unsteady region” and the “Q flat region”—when discussing the characteristics of axial
hydraulic force. The dividing point of two periods is that the guide vane opens to around
half. In the two periods, obviously different axial hydraulic force characteristics and their
relationships with flow parameters can be found. By analyzing the local components, it
is found that the magnitude of axial hydraulic force on the runner’s local surface is 4~10
times the weight of the pump turbine unit, but in the opposite direction. The total axial
hydraulic force is generated due to the counteraction among all the force components. The
total |F∗z | value is much smaller than these local axial force values. Therefore, because of
the combined influence of local axial force, the resultant force develops according to a
complicated law.



J. Mar. Sci. Eng. 2021, 9, 158 13 of 24

J. Mar. Sci. Eng. 2021, 9, 158 13 of 25 
 

 

force is upward as |𝐹௭∗| on BOS is larger than BIS. It can be estimated that pressure in the 
leakages is higher than that in the runner. Hence, the axial hydraulic force on the outside 
surface of the runner is larger than on its inside surface. With the opening of the guide 
vane, the resultant force on the crown and band decreases with the increasing of the flow 
rate. The other point observed in Figure 13b is that the resultant force on the crown is 
smaller than that on the band. Figure 13c provides the |𝐹௭∗| value on the blade with the 
comparison against that on the crown and the band. |𝐹௭∗| on the blade is found down-
ward because pressure on blade pressure side is always higher than that on the suction 
side. In the “unsteady region”, |𝐹௭∗| on the blade increases with the opening of the guide 
vane because the differential pressure on the blade is increasing. In contrast, it decreases 
in the “Q flat region” as the guide vane is continually opening and the flow rate is flatly 
increasing. For the resultant force on the crown and the band, some fluctuations can be 
found in the “unsteady region”, as well as a slight increase in the “Q flat region”. 

In summary, the process of pump mode’s starting-up should be divided to two 
parts—the “unsteady region” and the “Q flat region”—when discussing the characteris-
tics of axial hydraulic force. The dividing point of two periods is that the guide vane opens 
to around half. In the two periods, obviously different axial hydraulic force characteristics 
and their relationships with flow parameters can be found. By analyzing the local compo-
nents, it is found that the magnitude of axial hydraulic force on the runner’s local surface 
is 4~10 times the weight of the pump turbine unit, but in the opposite direction. The total 
axial hydraulic force is generated due to the counteraction among all the force compo-
nents. The total |𝐹௭∗| value is much smaller than these local axial force values. Therefore, 
because of the combined influence of local axial force, the resultant force develops accord-
ing to a complicated law. 

  
(a) (b) 

  
(c) 

Figure 13. Axial hydraulic force components during pump mode’s starting up. (a) Inside and outside surface of runner; 
(b) Crown and band; (c) Crown and band, blade. 

  

0 5 10 15 20 25 30

2

4

6

8

10

0 5 10 15 20 25 30
0

1

2

3

Figure 13. Axial hydraulic force components during pump mode’s starting up. (a) Inside and outside surface of runner; (b)
Crown and band; (c) Crown and band, blade.

5.1.2. Mechanism Discussion

Pressure distribution in the runner and leakages is the key factor influencing axial
hydraulic force. In order to discuss the mechanism of axial hydraulic force, Figure 14
provides the pressure coefficient Cp distribution on the cross-section view in runner domain
and leakages at typical selected time points, t = 3 s, 4 s, 6 s, 11 s, 16 s, 21 s.
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During the starting-up process, pressure reaches the lowest level at t = 11 s, accompa-
nied with the smallest axial hydraulic force. Before reaching this point (in the “unsteady
region”), unstable pressure development can be observed in the runner and leakages.
At t = 4 s, the pressure level becomes lower than before and after. This is the time with
the first valley value, as shown in Figure 12. Hence, the valley values of axial hydraulic
force are, along with the lower pressure level in the “unsteady region”, at t = 4 s and 11 s.
Moreover, in this period, the pressure in crown and band leakages are apparently higher
than that in the runner. In contrast, there is a small difference of pressure between the
runner and leakages from t = 11 s to 21 s. Pressure in the crown and band leakages remain
almost unchanged in the “Q flat region”. At the same time, pressure in the runner near the
draft tube increases with the flow rate.

Figure 15 shows the streamlines and relative velocity coefficient Cv in the mid-span of
the guide vane at typical selected time points of t = 3 s, 6 s in the “unsteady region” and
t = 16 s, 21 s in the “Q flat region”. The relative velocity coefficient Cv is defined as:

Cv =
v

πnD
60

(12)
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In the “unsteady region”, the guide vane opening is relatively small. The high-speed
flow from runner is blocked in front of the guide vane and forms an obvious jet flow
between two guide vane blades. Due to the disturbance of the jet, the twin-vortex flow
structure can be seen in the vaneless region between the guide vane and the stay vane. This
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twin-vortex flow structure causes strong local blockage in the guide vane. Therefore, the
flow blockage leads to high-pressure in the runner and leakages. The twin-vortex causes
the flow pattern to be significantly more turbulent and unstable. This is the reason why
axial hydraulic force fluctuates in this period. With the guide vane opening becoming
larger in the “Q flat region”, the flow pattern in the guide vane becomes well-behaved
with no obvious separation and vortex. The axial hydraulic force develops stably with a
positive correlation against flow rate. It is worth noting that the flow pattern distribution
in the guide vane is asymmetric in the later period during starting-up. This phenomenon
will be discussed in the following sections.

5.2. Structural Characteristic of Unit

Based on the FEM method, structural simulation of pump turbine unit, including
the support bracket, shaft and runner, is conducted during pump mode’s starting-up
process. The hydraulic force on the runner and leakages are obtained from the CFD results
above. It is loaded on the fluid–structure interface based on the one-way FSI method. The
Von-Mises stress σ and axial deformation D, which influence the operation safety of the
pump turbine, are the main parameters in the structural simulation.

5.2.1. Deformation

The deformation Dmax distribution on the main shaft and support bracket are almost
constant during starting-up, as shown in Figures 16 and 17 at t = 21 s. In this paper,
the downward deformation is positive. The Dmax of the main shaft is 1.3 mm at t = 21 s
and the location is at the top of shaft. It is noted that the end of the shaft, which connects
the runner, has the smallest deformation. This means that the shaft is pushed upward
because of centrifugal force. The Dmax of the support bracket is 0.35 mm at t = 21 s and the
location is at the thrust seating, which bears the axial hydraulic force and the self-weight of
rotating components. The deformation decreases as the radius increases since the ends of
the support arms are fixed.
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Figure 16. Deformation of main shaft at t = 21 s.
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Figure 18 shows the Dmax variation of the main shaft and support bracket during pump
mode’s starting-up process. To emphasize the effect of hydraulic force, the deformation
without hydraulic force is plotted as a reference. The resultant force on the crown and band
is also shown as a reference. The total axial force FzT acting on the shaft and bracket can be
calculated as:

FzT = FzH + FzW (13)

where FzH is the hydraulic axial force and FzW is the self-weight of rotating components.
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Based on Equation (7), there is the relationship that D ∝ FzT . Since FzW is constant,
it is the case that D ∝ FzH . The finding that the axial deformation of the main shaft and
support bracket do not relate to the total axial hydraulic force is unexpected. However,
it relates to the resultant axial hydraulic force on the crown and band (FzCB). As Figure 18
shows, when hydraulic force has not been loaded on the fluid–structure interface, the Dmax
of the shaft and bracket is 3.2 mm and 0.85 mm. The hydraulic force makes Dmax decrease,
as a result of the upward axial hydraulic force. At the initial point of starting-up, Dmax is
the largest, with values of 2.35 mm for the shaft and 0.63 mm for the bracket. Dmax of the
shaft and bracket have similar tendencies during starting-up. They decrease before t = 6 s
and reach the first valley value, which corresponds to the first valley of FzCB. Then, they
increase and reach the peak value at t = 11 s which corresponds to the first peak of FzCB.
In the “Q flat region”, the Dmax of the shaft and bracket decrease and correspond to the
FzCB with a similar tendency. It indicates that the resultant axial hydraulic force on the
crown and band plays a principal role that affects the deformation of the shaft and bracket.
However, the axial force on the blade has only a slight effect. This is a new breakthrough
understanding because total axial hydraulic force was, previously, usually regarded as
important. Now, the influence of the resultant axial hydraulic force on the runner’s crown
and band should be specially focused.

Unlike the shaft and bracket, a developing distribution of the runner axial deformation
during starting-up is shown in Figure 19. Initially, the D distribution of the runner is radial-
symmetric. The Dmax is 1.65 mm and the location is at the outer edge of the crown. The Dmin
is at the bottom of the band (shown in Figure 19a) due to the effect of centrifugal force.
However, at t = 6 s, there are different degrees of deformation between the two sides of
the runner. As shown in Figure 19b,c, the maximum is at one side of the outer edge of the
crown while the minimum is at the other side, at the bottom of the band. In the later period
of the starting-up process, the runner is obviously deflected with the nodal diameter as
midline. Dmax and Dmin are, respectively, at the two sides outer edge of crown, as shown in
Figure 19d. Considering the operation of the pump turbine, it is important to find out this
phenomenon. This is because the deformation on the crown and band may change the size
of leakages and then influence the leakage flow field.
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Figure 19. Deformation of main shaft during starting-up at t = 3 s, 6 s, 16 s, 21 s. (a) t = 3 s; (b) t = 6 s; (c) t = 16 s; (d) t = 21 s.

In order to understand the runner deflection, based on the location of Dmax and Dmin
at t = 21 s (marked as D1 and D2 in Figure 19d), the deformation development is provided
in Figure 20. During starting-up, the maximum location is at D1 all the time. The variation
of Dmax of the runner has a similar tendency to those of the shaft and bracket as a result
of the superposition of deformation. The largest Dmax is 1.7 mm at t = 11 s. After that, the
Dmax is at lower values of around 0.75~1 mm. In terms of D2, it is very close to D1 at the
beginning. With the increase in guide vane opening, the difference between D1 and D2
also increases. Figure 21 provides the development of ∆D = D1− D2 which provides a
visualized illustration. According to the asymmetric streamlines in the guide vane region,
as shown in Figure 15, a possible explanation is that the increasing of the flow rate leads to
a more serious asymmetric flow field distribution as the volute are asymmetric. This may
induce the large runner deflection phenomenon.
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0 5 10 15 20 25 30
0

0.5

1

1.5

2

Figure 21. ∆D of runner during starting-up.

To illustrate the reason of runner deflection, the pressure distribution of COS and BOS
are found to be asymmetric in the later part of starting-up, when t = 21 s, as shown in
Figure 22. It is obvious that the pressure distribution at 135◦ direction of both COS and
BOS are smaller than that of the opposite direction. As the direction of axial hydraulic
force of COS and BOS is opposite and the effects would be counteracted against each other,
the pressure distribution on every 45◦ line (as marked in Figure 22a) of COS and BOS is
provided in Figure 23 for comparison. R* is the relative radial distance where R* = 2R/Dhi.
In COS and BOS, Cp of PL4 is the largest while that of PL2 is the smallest. It can be compared
to the difference between the PL4 and PL2 of COS, which is larger than that of BOS, which
means that COS plays the principal role in affecting the runner deflection. In this case,
it can be summarized that the downward hydraulic force on the D1 side is larger than that
on the D2 side. Therefore, the deflection of runner can be well explained.
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5.2.2. Von-Mises Stress

Unlike the deformation of the runner, the Von-Mises stress distribution and the σmax
location on the runner are almost constant during starting-up. It is also almost constant
on the support bracket. The stress of the main shaft, which is very small, is not discussed
in detail in this case. Figures 24 and 25 show the distribution of Von-Mises stress on the
support bracket and runner at t = 21 s. The maximum stress of the support bracket concen-
trates on the connection between the thrust seating and the support plates. The maximum
stress value is about 90.2 MPa at t = 21 s. However, the strength of other sites is strong
enough as the stress is only around 10 MPa. For the runner, the stress concentration occurs
on the connection between the crown and the leading-edge of the blade. The σmax of the
runner is about 105.8 MPa at t = 21 s and that of the other regions is less than 60 MPa.
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Figure 26 shows the σmax development of the support bracket and the runner during
starting-up. For the support bracket, the σmax development has a similar trend with
deformation. It is principally influenced by the resultant force on the crown and band.
The largest σmax of the support bracket is 172.8 MPa at the beginning of starting-up.
As guide vane opens completely, σmax reaches the smallest value of 90.2 MPa. It indicates
that the beginning of starting-up should be focused when considering the strength and
safety of the support bracket. Differently, the σmax of the runner reaches the peak value
of 134.1 MPa at t = 11 s. It is obvious that the stress of the runner is not only influenced
by the hydraulic force on the crown and band but also affected by the blade force. In this
paper, the axial hydraulic force is mainly focused. The radial and circumferential force
components and their influence on structural stress will be discussed in future research.
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6. Conclusions

This paper studied the axial hydraulic force characteristics on the runner in a pump
turbine case during the starting up of the pump mode. Conclusions can be drawn as follows:

1. According to the features of axial hydraulic force, the pump mode’s starting-up
process can be divided into two parts—those of the “unsteady region” and the
“Q flat region”. In the “unsteady region”, the axial hydraulic force and its com-
ponents are obviously fluctuant. In the “Q flat region”, the axial hydraulic force
shows a strong positive relationship with flow rate. The dividing point of these two
regions is, approximately, at the half-opening of the guide vane. The components of
axial hydraulic force are in different directions at different positions. Therefore, the
total axial hydraulic force is formed by the counteraction among force components.
It is the main reason for the complexity of axial hydraulic force characteristics.

2. The pressure distribution in the runner and leakages and the streamline in the guide
vane region enabled the identification of the mechanism of axial hydraulic force
development. In the “unsteady region”, the pressure is obviously unstable. Pressure
in the runner’s crown and band leakages is apparently higher than in the runner.
A twin-vortex flow structure can be observed in the vaneless region between the guide
vane and the stay vane with strong flow blockage. In the “Q flat region”, the pressure
in the crown and band leakages remains almost unchanged, while the flow regime in
the guide vane is well-behaved. It is worth noting that the flow pattern distribution
in the guide vane is asymmetric in the later period of the starting-up process.

3. The maximum deformation of the main shaft is located at the top of shaft. The maxi-
mum deformation of the support bracket is on the thrust seating. The finding that
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the resultant axial hydraulic force on the crown and band plays a principal role in
affecting the deformation of the shaft and bracket is unexpected. However, the axial
force on the blade has just a slight effect. The deformation on the runner is radially
symmetric at the beginning of starting-up, while the runner clearly deflects with
the nodal diameter at the midline in the later period. The reason is found to be the
asymmetric pressure distribution of COS and BOS. Among them, COS plays the
principal role.

4. The maximum stress on the support bracket concentrates on the connection between
the thrust seating and the support plates. The maximum stress on the runner is on
the connection between the crown and the blade inlet edge. The σmax development
of the support bracket has a similar tendency with the development of deformation.
The stress on the runner is found not only to be influenced by hydraulic force on the
crown and band, but also to be affected by the blade force.

Finally, this paper will be helpful in realizing the axial hydraulic force of the pump
turbine during the starting-up of the pump mode and can provide support for the design
of structural components. In the further works in the future, the transient characteristics
of axial hydraulic force, vibration and structural dynamic stress should be analyzed and
discussed in order to facilitate further improvement in more actual engineering cases.
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