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Abstract: We have carried out an experimental study of the turbulence kinetic energy dissipation
rate (ε), temperature dissipation rate (χ), and turbulent heat flux (THF) within the water surface
layer in the presence of non-breaking wave, surface convection, and horizontal heat and eddy fluxes
that play a prominent role in the front. We noted that the non-breaking wave dominates ε values
within the surface layer. While analyzing the vertical ε variability, the presence of a wave-affected
layer from the water surface to a depth of z ≈ 1.25λw is observed, where λw is the wavelength. ε

associated with non-breaking waves ranged to 4.9× 10−6–7× 10−6 m2/s3 for the wavelength range
of 0.038 m < λw < 0.098 m categorized as the gravity and gravity-capillary wave regimes. ε values
increase for longer λw and non-breaking wave ε values represent their significant contribution to the
ocean energy budget and dynamic of surface layer considering that the non-breaking wave covers
the large fraction of ocean surface. We also found that the surface mean square slope (MSS) and wave
generated ε have the same order of magnitude, i.e., MSS ∼ ε. Besides, we have documented that
the small-scale temperature fluctuation change (i.e., χ) is consistent with the large-scale temperature
gradient change (i.e., d < T > /dz). The value of the THF is approximately constant within the
surface layer. It represents that the measured THF near the water surface can be considered a surface
water THF, challenging to measure directly.

Keywords: turbulence; non-breaking wave; water surface layer; convection

1. Introduction

The ocean covers approximately 71 percent of the Earth’s surface [1]. At the air–sea
interface, the exchange of heat, moisture, momentum, and gas transfer is carried out by
molecular transfer processes; however, at a depth greater than ∼1 mm, the turbulence
dominates the mixing processes [2]. ε value has implications on heat flux across the
ocean interface [3], the air–sea gas fluxes velocity, Kg ∼ ε1/4 [4] and it is essential for the
oil industry [5] due to that the higher turbulence enhances the biodegradation of oil [6].
Understanding ε distribution and its role in near-surface water and ocean mixing are vital
in studying ocean processes and the upper ocean boundary layer dynamic.

The value of ε can be then found from the relationship ε = 2υ < sijsij > [7], where sij is

the fluctuating rate of strain: sij =
1
2 (

∂u′i
∂xj

+
∂u′j
∂xi

). Here, υ is the kinematic molecular viscosity,

i and j = 1, 2, and 3, and correspond to x, y and z coordinates, respectively. u′i represents the
fluctuating part of the velocity components, and < > is the ensemble average. The value
of χ comes from the equation χ = 2Kθ < ( ∂θ

∂xi
)2 >= 2Kθ < ( ∂θ

∂x )
2 + ( ∂θ

∂y )
2 + ( ∂θ

∂z )
2 >,

where Kθ is the thermal molecular diffusivity, and θ is the fluctuating part of temperature.
The vertical ε and χ variability have been investigated within the upper ocean boundary
layer while the boundary layer is influenced by one of the surface forcing such as heat
flux [4,8], internal sources of turbulence [9], surface gravity wave [8,10–13], and capillary
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wave [14]. Fredriksson et al. [4] simulated a numerical model to calculate ε for a free
surface flow driven by natural convection. They found that the oceanic free convection
results in a sharp change of ε beneath the water surface. Wuest et al. [15] measured ε in
the wind-forced stratified water and observed that ≈90% of turbulent kinetic energy was
dissipated within the upper boundary layer. Terray et al. [16] investigated ε under breaking
waves and observed a large uniform ε from the surface water to a depth of z = 0.6Hs,
where Hs is the significant wave height.

Given that the percentage of the ocean surface covered by wave breaking under
strong wind is less than 10% [17], it indicates the significant role of the non-breaking
wave on the ocean budget. Babanin and Haus [18] conducted a laboratory experiment to
measure ε beneath monochromatic non-breaking waves, which showed the presence of ε.
Bogucki et al. [19] observed that ε associated with non-breaking solitary waves ranged to
3× 10−4 m2/s3 for a wave amplitude of 50 cm.

The scarcity of field data hinders ε and χ universal parametrization within the upper
ocean boundary layer, especially very near the surface. This paper presents laboratory
experiments in the Air–Sea Interaction Saltwater Tank (ASIST) at the University of Miami.
We try to simply simulate the ocean when the horizontal heat and eddy fluxes play a
prominent role in the ocean, like the front in the Gulf of Mexico where the Mississippi River
with massive horizontal eddy fluxes reach the ocean and generate the Front [13,20]. We
investigate the THF, χ, and ε variability very close to the air–sea interface, 0.5 cm beneath
the water surface, when subject to the internal turbulence, surface convection, and non-
breaking wave categorized as the gravity and gravity-capillary wave regimes [21–23]. The
sources of turbulence and temperature flux in our experiment and the experimental setup
are addressed in Section 2. Section 3 describes the experimental results of ε, χ, and THF.
Finally, a conclusion is given in Section 4.

2. Experimental Setup, Data Acquisition, and Analysis

We simulated the oceanic-like forcing in our laboratory experiment by having the three
turbulence sources, i.e., the internal sources of turbulence, surface convection, and non-
breaking surface waves.

2.1. Experimental Setup

The experiments were conducted in the ASIST tank at the University of Miami,
equipped with the turbulence generating grid and a heated grid (Figure 1). The tank
walls are constructed of acrylic panels with a thickness of 0.024 m and have dimensions
15 m long, 1 m wide, and 1 m high. In our experiment, we analyzed data for the mean water
flow velocity of < U >= 0.066 m/s, 0.125 m/s, 0.167 m/s, and 0.183 m/s. The heated
grid was located at the tank entrance, and the turbulence-generating grid was mounted
0.5 m behind the heater. The freshwater depth during the experiment was kept constant,
dt = 0.5 m. The thickness of the bar of the grid was db = 0.02 m, and the distance
between the centers of two cells on the grid horizontally and vertically was M = 0.1 m.
The solidity of the grid was σ = db

M (2− db
M ) = 0.36 [24]. The grid Reynolds number in our

experiment was given by ReM = (σM < U > /υ) [25] (Table 1). The minimum turbulence
Reynolds number, Reλ = (< u′i >rms λ)/υ [26], calculated based on the Taylor microscale,

λ ≈ 2
√

15υ
ε < u′i >rms, was Reλ = 487 for < U >= 0.066 m/s, where < u′i >rms is the root

mean square of the velocity fluctuation.
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Figure 1. (a) A schematic of the Air–Sea Interaction Saltwater Tank (ASIST) tank at the University of
Miami. Heated grid and grid-generated turbulence were installed at the tank entrance. The vertical
microstructure profiler (VMP), laser slope, and current meter locations from turbulence generating
grid are shown by x/M. The insets indicate a side view of the instrument’s vertical position at
the tank with a freshwater level of 0.5 m and the turbulence generating grid’s mesh shape. (b) A
schematic of internal and surface sources of turbulence. The blue arrows show the direction of the
mean flow velocity. The swirl lines represent the background or internal turbulence generated by
the grid.

Table 1. The table indicates the summary of the experiment.

<U> = Mean Flow Velocity (m/s) 0.101 0.125 0.167 0.183

ReM = (σ M <U>/υ) = grid Reynolds number 2366 4482 5988 6630
MSS = Mean square slope 2.35× 10−5 6.2× 10−5 1.04× 10−4 1.23× 10−4

λw = wavelength (m) 0.038 0.051 0.074 0.098
H = 2 < η > = wave height (m) 0.003 0.0034 0.0060 0.0068

ε0 = background turbulence at x/M = 37 (m2/s3) 1.5× 10−6 4.2× 10−6 1.05× 10−5 1.34× 10−5

B0 = surface buoyancy flux (m2/s3) 1.70× 10−8 1.72× 10−8 1.74× 10−8 1.75× 10−8

L0 = Oboukhov length scale (m) 1.24 1.22 1.2 1.16
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The flow velocity was measured with a current meter (Infinity-EM, Model AEM-
USB) with a sampling rate of 10 Hz. The Rockland Scientific vertical microstructure
profiler (VMP200) [27–30] was used to measure the ε and χ with a sampling rate of 512 Hz.
The VMP200 was equipped with two shear sensors that the sensors sampled the small-scale
shear component. The shear probe, called the airfoil probe, was initially developed for the
wind tunnel work [31], and Osborn [32] adopted it for oceanic measurements. The shear
probe senses velocity fluctuations cross-stream to its travel direction. The VMP200 was
also equipped with a fast thermistor FP07. The response time of the thermistor FP07 is
7 ms in water for the speed of 1 m/s [29]. The speed increase causes the decrease in ther-
mistor response time. The temperature resolution of the FP07 is 0.0001 ◦C. The measured
temperature temporal gradients ∂θ

∂t via Taylor’s frozen hypothesis to ∂θ
∂x = 1

<U>
∂θ
∂t .

The VMP was mounted horizontally in the tank (Figure 1), and it collected a time
series of the velocity shear and temperature at a depth range of 0.5 cm < z < 25 cm.
By considering the standard assumption that the oceanic flow can be approximated by
idealized homogenous and isotropic turbulence, the ε values were calculated by the
VMP200 measured shear spectrum Ψ(K) as [27,33] ε = 15/2ν

∫ ∞
0 Ψ(K)dK, where K is the

wavenumber. The shear probe’s finite spatial size causes it to spatially average the smallest
eddies for large K. The lost variance is corrected with a transfer function [28]. The shear
spectrum is also fixed for the vibration-coherent portion by Goodman et al.’s technique [34].

Kolmogorov [35] derived the shear spectrum by assuming that the larges scales of
turbulence are much larger than the Kolmogorov scale. Kolmogorov [35] presented that
the shear spectrum is proportional to K1/3 in the inertial subrange. Due to difficulties in
resolving eddies scales smaller than the Kolmogorov length [36], the shear spectrum can be
fitted with an empirical turbulence spectrum such as the Nasmyth spectrum [29,37] over
the viscous and inertial subrange. The Nasmyth spectrum’s integral over the wavenumber
is considered as a ε value in this paper.

Temperature dissipation rate is estimated from temperature gradient spectra φ(K)[37,38]
in one direction as χ = 6Kθ

∫ ∞
0 φ(K)dK [33]. For measuring χ values in this paper, we

first find the fitting line for temperature gradient spectra along the dropping part of the
spectrum. χ values were measured by multiplying 6Kθ with the integral of the tempera-
ture gradient spectrum and fitting line along the wavenumber domain. A sophisticated
thermistor signal processing, installed on the VMP200, minimizes the electronics noise.
Therefore, the measured temperature spectra are only limited by the thermistor inertia [27].
When traveling through the water column is faster than 0.1 m/s, the thermistor (FP07)
used in the VMP200 does not fully resolve the temperature variance of the temperature
field (Lueck 1977), considering that we did not implement the thermistor spectral response
function correction on the χ values [39]. The correction of χ values is difficult because
the thermistor’s response time has been found to depend on the VMP velocity [39] and
thickness of the glass coating of the sensor tip [40] that varies for each individual thermistor.
Nash et al. [40] observed that only 10% of the temperature gradient variance could be
resolved at a profiler of 0.6 m/s for χ values larger than 1× 10−6 ◦C2/s. The VMP200-
measured χ values are the underestimates of the χ for the mean flow velocity of faster than
0.1 m/s. The imprecise-measured values present the χ behavior within the surface layer,
and due to that, we present χ values in this paper.

The direction of the flow and the VMP probes generates an instantaneous angle of
attack. The angle of attack was one of the most critical parameters that could affect the
VMP results. The effects of this angle on the results of ε and χ were investigated in the
ASIST tank. The shear and thermistor probe results were found to be consistent for an angle
of attack <12 degree, with an error of about 10% and 20% for the shear and the thermistor
probes, respectively. The angle of attack was kept less than 1 degree in experiment that
gave an error of less than 2%.

The non-breaking waves were observed to be propagated and spread uniformly along
the tank. We are unsure of the source of propagating waves; therefore, the generated-wave
may not be entirely representative of the effects of actual ocean waves. We speculate that
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the surface stress created by the friction between the moving water and the stationary air
contribute partially to generate a surface wave in addition to the grid. The sidewall also
has effects on the wave’s generation for larger flow velocity.

The laser wave slope instrument is used to measure the water surface slope, dη/dx
(installed 1.35 m in front of the VMP). The η is the surface elevation that equals < η >=
0.5H, where H is wave height. The point height/slope gauge consisted of an Argon-Ion
(488 nm—blue) laser transmitting 2 W of power, whose beam was directed upward through
the water surface. Above the tank along the sidewall, a line-scan camera observed the
surface spot and tracked the vertical movement [41]. The surface slope spectrum equals
P(K) = K2S(K) , where S(K) is the elevation spectrum of η, and the mean square slope
(MSS) is (MSS)2 =

∫ ∞
0 P(K)dK [42].

2.2. Internal Source of Turbulence

The internal source of turbulence, or preexisting source of turbulence, in the ocean
was simulated by the grid generated turbulence, which was created by passing water
through a solid grid (Figure 1). The values of ε, χ, and temperature variance, < θ2 >,
decay with distance from the grid proportional to ε ≈ (x)−(n+1), χ ≈ (x)−(m+1), and <
θ2 >≈ (x)−m, respectively [43] (see Appendix A). The power-law exponent of m and n
are to be determined empirically. Antonia et al. [44] showed a value of n to be n = 1.28,
and more recently Hearst and Lavoie [45] found a value of n = 1.37 and 1.39 behind a
square-fractal-element grid. Warhaft and Lumley [46] found that the temperature decay
rate varied over a wide range of 0.87 < m < 3.09.

2.3. Convection and Turbulent Heat Flux

In the experiment, the mean water temperature at a depth of z = 0.15 m was
< T > = 26.82 ◦C (see Section 3.2) and the air temperature was < T > = 25.70 ◦C at
0.2 m above the water surface. The heat transfer from the freshwater to air resulted in
thermal convection in our experiment as salinity was approximately zero within the water
depth. Convection affects the vertical transport of heat, momentum, and other properties.
Despite their importance to ocean circulation within the upper ocean boundary layer [47],
the vertical fluxes of heat and momentum are only estimated indirectly. The turbulent heat
flux (THF) was estimated as THF ≈ ρCP < w′θ > [48], where ρ is water density and Cp is
the specific heat of water. We followed the Osborn and Cox [49] approach to determine the
value of turbulent temperature flux < w′θ >. For the steady and homogeneous turbulence,
by retaining only vertical dependence and by neglecting the surface wave for simplicity,
the turbulent temperature flux is given by [50]

< w′θ >
∂ < T >

∂z
= −Kθ < (∇θ)2 >= −1

2
χ (1)

The values of χ and temperature gradient Tz = ∂<T>
∂z were measured in our ex-

periment; therefore, the value of the turbulent temperature flux can be estimated as
< w′θ >== − 1

2 χ/Tz. Therefore, the THF equation is rewritten as

THF ≈ −1
2

ρCPχ/Tz (2)

2.4. Turbulence Scaling

Normalizing of ε aids in understanding which processes have significant effects
on the surface layer turbulence [4,51]. The upper ocean turbulence is predominantly
generated due to atmosphere–ocean interaction by convection and surface wave [51].
The base of our understanding of the vertical turbulence variability within the surface
boundary layers in the ocean is mainly based on the turbulent flow studies over the solid
wall-layer turbulence with the corresponding “law of the wall” (LOW), ε = u∗3

(kz) , where
k = 0.41 is von Karman’s constant [52,53] and u∗ is water-side friction velocity defined as
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u∗ =
√

τ
ρ . Here, τ is wind stress that assumes to be constant across air–sea interface so

that τ = u2
∗ρ = u2

∗aρa [54], where u∗a and ρa are water-side friction velocity and air density,
respectively. Terray et al. [16] suggested enhanced values for ε relative to the LOW in the
upper ocean, and we used their scaling method for wave-generated turbulence, εWave (see
Appendix B). In addition to wave, the transfer of heat between water and air increases ε
within the upper ocean boundary layer [51] due to that the surface buoyancy flux, B0, is
used to investigate the surface convection role on turbulence [4,55].

B0 = −C−1
p ρ−1gαQ + ρ−1gβsE (3)

where g is gravity, α is the thermal expansion coefficient of water, β is the coefficient of
salinity expansion, s is the surface salinity, and E is the evaporation rate.

3. Results and Discussion

Two sets of experiments were conducted. The first set was to establish the power-law
exponent of m and n. The data were collected at a depth of z = 0.25 m downstream of the
grid-generated turbulence, 25< x/M <38, and at an equal distance from the horizontal
sidewalls. In the second set of experiments, the data were collected within the surface
boundary layer at a x/M = 37 to clarify how the magnitudes of THF, χ, and ε change
when approaching the water surface. The data were collected between depths of 0.005 m
< z < 0.17 m vertically and at an equal distance from sidewalls. The heater was set to the
high setting (P0 = 8.3 kW) when χ and ε were measured.

As mentioned in Section 2.1, χ and ε values are measured by temperature spectrum
and empirical Nasmyth spectrum. Comparing the shear spectrum with the Nasmyth
spectrum for < U >= 0.167 m/s at x/M = 37 indicates an acceptable fitness between
the graphs (Figure 2). The shear spectrum starts to rise at a wavenumber by a factor of 70
below its peak (Figure 2), which shows the spectrum contains more than 90 % of all shear
variance as mentioned in Rockland scientific international note 28 [29].

This section uses four parts to represent the results of our experiment. Section 3.1 displays
the power-law decay results and the modified grid-generated turbulence model. The changes
in THF, χ, and ε within the surface boundary layer are presented in Sections 3.2 and 3.3. Finally,
the effects of non-breaking waves on the near-surface ε are shown in Section 3.4.

Figure 2. Comparison of the Shear spectrum with Nasmyth spectrum for <U> = 0.167 m/s at
x/M = 37 and depth of z = 0.25 m. Kc is wave number in the unit of cpm that it equals to
Kc = K/(2π). The spectrum peak is shown with a red star, and the red arrow shows the rising part
of the spectrum.
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Figure 3. (a) Temperature variance (θ2) and χ values along the streamwise direction are shown.
The dashed blue and brown lines are fitting lines of the θ2 and χ profiles, respectively. The mean
flow velocity was < U >= 0.183 m s−1. (b) The normalized value of ε/(< U >3 /M) along the
streamwise direction is shown. The black and red lines are fitting lines of the data for 0.167 m/s
and 0.183 m/s, respectively. The data were collected at z = 0.25 m. The heated-grid power was
P0 = 8.3 kW for both graphs (a,b).

3.1. Steady and Spatially Decaying Background Turbulence—Grid-Generated Turbulence

The VMP200 [27] measured ε, χ, and temperature variance < θ2 > at a constant
depth of z = 0.25 m and selected distances along the tank centerline (25 < x/M < 38)
for < U >= 0.183 m/s. The data collected for < U >= 0.167 were measured between
28 < x/M < 38. We estimated a background heat flux of about 25 W/m2 from the equation
of Q =| (ρCpKθ

∂<T>
∂z )/Aw | [56], where Aw is the water surface area. It likely changes

during the experiments (the measured background heat flux is the summation of heat
transfer from all sides of the tank walls and the water surface through the whole length of
the tank).

The linear fitting line is used to find the power-law exponent for χ and θ2 that they
were m = 1.13 and m = 1.25, respectively (Figure 3). We found that the power-law
exponent for the decay of ε values was n = 1.04 and 1.16 for the flow velocities of 0.167 m/s
and 0.183 m/s, respectively (Figure 3). Based on the observed ε and χ in our experiment
(Figure 3) and following Zhou et al. [43] and Bogucki et al. [57], we found the following
set of equations for χ and ε as a function of mean flow velocity <U> and distance to
turbulence-generating x:

χ = 0.2× 1
< U >

× P2
0 × (x/M)−2.13 (4)

and
ε = 5× < U >3 ×(x/M)−2.1 (5)

The set of equations are defined due to observed m and n in our experiment. The val-
ues are considered to be as m + 1 = 1.13 + 1 = 2.13 for χ and the average of n + 1 =
(1.04 + 1.16)/2 + 1 = 2.1 for ε. To have the χ in [◦C2/s] and ε in [m2/S3], the < U > has
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to be expressed in [m/s], the P0 in [W], and the factors of 0.2 and 5 have units of [mc2

j2 ],

and [1/m], respectively.

3.2. Observations of Free Convective Flow and Associated Vertical Heat Flux

Data were collected at x/M = 37, where the air–water temperature difference was
approximately uniform during the experiment. The average net surface vertical heat flux
of Q ≈| 25 | W/m2 in our experiment was not substantial in comparison to the mean
range of net vertical heat flux in the ocean Q <| 150 |W/m2 [58], and also the heated-grid
generated a horizontal heat flux of 16.6 kW/m2, which is smaller than of the 5-year mean
of the south China Sea front region ∼4.6 ∗ 102 kW/m2 [59] (for a mixed boundary layer of
Lm = 35 m).

The surface heat flux increased the temperature gradient near the water surface,
z = 0.028 m up to the water surface (Figure 4a). Due to the water surface cooling, the posi-
tive temperature gradient results in the near-surface convection in our experiment. The tem-
perature drives the density as, in our freshwater experiment, the salinity is close to zero in
the entire water depth. The water density decreased about ≈0.132 kg m3 from the water
surface to a depth of 0.14 m, causing an unstratified boundary layer.

An appropriate normalization method is not identified for χ values; therefore, χ values
are depicted as non-normalized values in Figure 4b similar to the Bogucki et al. [12,13] and
Peterson and Fer [36] works. Comparing χ (Figure 4a) and temperature (Figure 4b) reveals
that the gradient of χ varies when the temperature gradient changes (it is shown with red
lines). χ value increases by approaching the water surface (Figure 4b) as the temperature
gradient increases, which shows that the large-scale vertical temperature gradient change,
d < T > /dz, is consistent with the value of small-scale temperature fluctuation, χ.

The average of the THF values (the red line shows it in Figure 4c) are approximately
constant within the surface layer; however, the THF’s variance increases up to 50% at
0 < z < 0.028 m, which is in the range of the wave-effected layer (see Figure 5c).

Figure 4. (a) The vertical profiles of temperature, (b) χ with associated error bars, and (c) turbulent
heat flux | THF |. The data for all three graphs were collected at a downstream distance of x/M = 37.
The mean flow velocity is < U > = 0.183 m/s, and the heater power was P0 = 8.3 kW. The dashed
red lines show the depth that the temperature and χ gradient changes. The graph fitting lines are
presented with red lines. Note, the near-surface turbulent heat flux (THF) is approximately constant,
as denoted by the red line segment (c).
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Figure 5. ε vertical profile is shown for the mean flow velocity range of 0.101 m/s< < U > < 0.183 m/s.
The data were measured at a depth of z = 0.005 m to 0.17 m at the downstream distance of
x/M = 37. (a) ε is normalized by the background, or internal, turbulence kinetic energy dissipation
rate generated by the grid, ε0. The associated error bars are depicted for < U > = 0.125 m/s and
0.183 m/s. (b) ε is normalized by the summation of surface buoyancy flux, B0, and ε0. (c) The ε is
normalized by the summation of wave-generated turbulent kinetic energy dissipation rate, εwave,
and ε0. The wave-affected layer is presented with the dashed red line.

3.3. Vertical ε Profile Observations

The data were collected at x/M = 37 from a depth of z = 0.17 m up to z = 0.005 m
to investigate the vertical ε profile. Scaling of ε aids in understanding and describing the
boundary layer physics (Figure 5). ε is normalized by the grid-generated turbulent kinetic
energy dissipation rate called “background turbulence” ε0 (Figure 5a). The surface buoy-
ancy flux B0 (Equation (5)) and the wave-generated turbulent kinetic energy dissipation
rate εwave (Equation (3)) are also used to normalize ε (Figure 5b,c).

ε0 was measured at the tank center (z = 0.25 m). The background turbulence ranges be-
tween ε0 ≈ 0.5− 3× 10−5 m2/s3 that are within the subset of ocean range, ε ≈ 10−11− 10−3

m2/s3 [60–62]. The normalized ε with background turbulence for different velocities con-
verge together in deeper water; however, they diverge by approaching the water surface
(z > 0.02 m). In Figure 5b, ε values are normalized with the summation of the surface
buoyancy flux B0 and background turbulence ε0, i.e., ε/(B0 + ε0) (Figure 5b). The Obukhov
length scale L0 = ku∗3/B0 [47] is used to normalize the water depth (Figure 5b), which
characterizes the relative importance of the shear and buoyant convection in the boundary
layer [47,63]. The change in B0 for the mean flow velocity range of 0.066 m/s to 0.183 m/s
was small ≈2.8% (Table 1) given that the air temperature, humidity, and water tempera-
ture did not change during the experiment. The similar rates for both scaling methods
(Figure 5a,b) suggest that the background turbulence is larger than the turbulence gen-
erated with the surface convection, and the convergence of ε/ε0 in depth indicates the
dominance of the grid-generated turbulence.

The non-breaking surface wave is another source of turbulence in addition to the surface
convection. Given that the source of propagating waves is not clear, we must note that our
wave-generated ε measurements may not be truly representative of results that would be
obtained in the field. The Doppler shifting correction [64,65] was performed on the surface
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elevation spectrum and graphed in Figure 6a for the mean flow velocity of < U >= 0.125 m/s,
which represented the presence of the surface waves. In addition to the surface elevation
spectrum, the visual observations show that the uniform surface waves are created along the
whole tank when the water moves along the tank with the grid (Figure 6b) and without the
grid (the figure does not show) inside the tank. The wave number of elevation spectrum
peak, Kmax (Figure 6a), is considered to calculate the wavelength λw of non-breaking waves.
The wavelength ranges between 0.038 m < λw < 0.098 m (Table 1) categorized as the
gravity or gravity-capillary regimes [22]. The integration of elevation spectrum S(K) gives
the < η2 >=

∫ ∞
0 S(K)dK [42], hereupon the wave height H = 2 < η > .

The normalized ε with the summation of the wave-generated turbulence εWave,
Equation (A9), and background turbulence, ε0, i.e., ε/(εWave + ε0) are presented in
Figure 5c. The normalized ε values converge together from water surface to depth of
z = 1.25λw (Figure 5c), where the average of normalized ε values is approximately one.
This indicates that the wave-generated turbulence plays a dominant role on the near-surface
ε value in comparison to the surface convection and internal turbulence, and that is why
the layer from the water surface to the depth of z = 1.25λw is called the “wave-affected
layer” in our paper.

Figure 6. (a) The surface elevation spectrum for the mean flow velocity of < U >= 0.125 m/s is
shown. The wavenumber related to the spectrum peak is shown by Kmax. (b) The non-breaking
surface wave generated for < U >= 0.125 m/s while the grid is located inside the tank. (c) The
ε change for different mean square slope (MSS) is depicted at a depth of z = 0.005 m. (d) The
normalized ε value of different flow velocities is shown at three depths. The ε values are normalized
with the ε of the lowest mean flow velocity of each depth, ε<U>min. (e) The subtraction of the
averaged-ε within the wave-affected layer, ε1.25λw , from the background turbulent kinetic energy
dissipation rate, ε0, is considered as the wave-generated turbulent kinetic energy dissipation rate,
εwave−generated = ε1.25λw − ε0. The data were collected at the downstream distance of x/M = 37.
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3.4. Wave-Generated ε

The mean flow velocity increase resulted in the increment of the mean square slope (MSS)
and wavelength λw (Table 1). ε has a larger value while the MSS increases (Figure 6c), and they
have the same order of magnitude, i.e., MSS ∼ ε below the water surface z = 0.005 m. ε
for the different mean flow velocities were compared at three different depths (Figure 6d) to
investigate the effects of the non-breaking surface wave and the grid-generated turbulence on
ε along the water column. Figure 6d indicates that at a depth of z = 0.145 m, ε change rate
(red line) is higher than at z = 0.005 m (black line) while the surface heat flux was constant.

The turbulent kinetic energy dissipation rate comparison between the mean flow
velocity range of 0.066 m/s to 0.183 m/s at the different depths shows that ε values
increase ≈780%, 370%, and 95% at a depth of z = 0.145 m, z = 0.0175 m, and z = 0.005
m, respectively (Figure 6d). By considering constant heat flux during the experiment,
the ε change rate should be the same when approaching the water surface if the grid
was the only source of turbulence. The different change rates, like wave scaling results
(Figure 5c), indicate that the non-breaking waves play a dominant role in ε on the surface
layer. The subtraction of the averaged-ε within the wave-affected layer, ε1.25λw , from the
background turbulent kinetic energy dissipation rate, ε0, is considered the wave-generated
turbulent kinetic energy dissipation rate, εwave−generated = ε1.25λw − ε0. The εwave−generated

for wavelength of 0.038 m <λw< 0.098 m ranged to 4.9× 10−6 − 7× 10−6 m2/s3 (Figure 6e).
Given that the breaking wave is often related to the enhanced turbulent kinetic energy
dissipation rate within the surface layer, εwave−generated values represent the significant
role of non-breaking waves on the upper-ocean mixing intensity. It indicates that well-
documented researches are necessary to shed light on the poor understanding of the
non-breaking wave-generated turbulence. Furthermore, it depicts that the precise values
of non-breaking wave-generated turbulent kinetic energy dissipation rate are required to
quantify the air–sea interface processes.

4. Conclusions

Oceanic turbulence measurements are practically impossible when attempting to
address processes within a few upper centimeters below the wave ocean surface. Our
experiment aimed to investigate how the weak surface forcings and the horizontal heat
and eddy fluxes affect the near-surface layer in a controlled laboratory setting like the
front in the Gulf of Mexico where the Mississippi River with massive horizontal eddy
fluxes reaches the ocean and generates the front. In our lab experiment, the internal ε and
horizontal heat flux generated by the grids were the subsets of the ocean ε [60–62] and heat
fluxes range [59].

While analyzing the vertical ε variability, we have observed that there is a “wave-
affected layer” from the water surface to a depth of z ≈ 1.25λw. Turbulence kinetic energy
dissipation rate associated with non-breaking waves εwave−generated ranged to 4.9 × 10−6–
7 × 10−6 m2/s3 for the wavelength range of 0.038 m <λw< 0.098 m categorized as the
gravity and gravity-capillary regimes [21–23]. The increase in the MSS resulted in the
larger ε, and they have the same order of magnitude MSS ∼ ε. Given that the non-breaking
waves typically cover a larger fraction of the ocean surface, 90–100% [17], than breaking
waves, the ε results indicate their significant contribution to the ocean energy budget.
Therefore, the non-breaking wave’s turbulence kinetic energy dissipation rate budget has
to be considered to properly quantify the air–sea interface processes such as cool skin
thickness [66], which is a fundamental parameter required for quantifying the physical
process taking place at the air=-sea interface like the gas transfer [4] and heat transfer [67].

We also found that χ changes, which is the small-scale temperature fluctuation, are
consistent with the large-scale temperature gradient, d < T > /dz, changes. The value of
the THF is approximately constant within the surface layer. It represents that the measured
THF near the water surface can be considered a surface water THF in the ocean, challenging
to measure directly.
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In addition, we observed that the power-law exponent of the tank is m = 1.13 and
m = 1.25 for the decay of χ and temperature variance < θ2 >, respectively, and the decay
of ε equals n = 1.04 and n = 1.16 for the velocities 0.167 m/s and 0.183 m/s.

The future work would be to connect the laboratory observation to the field observa-
tion. We will explore whether the THF value is constant within the upper ocean boundary
layer as observed in this research. We would also like to study the importance of ε below
the non-breaking gravity wave and investigate if the observed affected layer in this paper
is common properties below the non-breaking and breaking waves in the ocean.
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Appendix A. Transport Equation of ε and χ for Grid-Generated Turbulence

The internal turbulence was generated by passing water through the grids, see
Section 4, and the internal turbulence rate was controlled by changing the mean flow
velocity of passing water. Batchelor and Townsend [68], and Warhaft and Lumley [46]
observed that the mean fluctuating turbulent kinetic energy, < q2 >=< u′2 > + <

v′2 > + < w′2 > and temperature variance, < θ2 >, decay with distance from the
grid. Tresso and Munoz [69] reported the existence of steady-state turbulence in the
point behind the grid, where U is the flow velocity in the streamwise direction, x, and is
represented by U =< U > +u′ (see Figure 2), where the mean flow velocity is represented
by < U > and the fluctuation part of velocity is u′. Similarly, the other velocity components
are expressed by V =< V > +v′ in the y-direction, and W =< W > +w′ in the z-
direction. The water temperature is defined by T =< T > +θ′, where < T > is the
mean temperature value and θ is the fluctuation part of the temperature. The governing
equations for the evolution of mean turbulent kinetic energy and the temperature variance
of the homogeneous and isotropic shear flow are [7]

d < q2 >

2dt
≈ P− ε (A1)

and
d < θ2 >

2dt
≈ Pθ − εθ (A2)

Here, P and Pθ are the turbulent kinetic energy production and the temperature
variance production rate, respectively. In the grid-generated turbulence, the production
terms are equal to P = 0. Assuming a constant mean current, we get [43]

− < U >

2
d < q2 >

dx
≈< ε > (A3)

https://data.gulfresearchinitiative.org
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and

− < U >

2
d < θ2 >

dx
≈< εθ > (A4)

Numerous experiments [43,68] suggest that the downstream decay of the mean turbu-
lent kinetic energy and temperature variance behind the grids are

< q2 >≈ A(x)−n (A5)

and
< θ2 >≈ B(x)−m (A6)

where n and m are the exponents of the mean turbulent kinetic energy and temperature
variances, respectively. The constants A and B depend on the grid geometry and are
typically determined empirically, and x is the horizontal distance from the turbulence
generating grid. By substituting Equations (5) and (6) into (3) and (4), the power-law decay
exponents for ε and χ are [43]

< ε >≈ n < U > A
2

x−(n+1) (A7)

and
< εθ >≈ m < U > B

2
x−(m+1) (A8)

Appendix B. Wave Scaling

Terray et al. [16] suggested enhanced values for the ε relative to the LOW in the upper
ocean, and this enhanced vertical ε resulted from the wind–wave field. They reported three
vertical layers [16]:

εWave(z) =


0.3α1

u3
∗

Hs (
zb
Hs )
−2 z < zb

0.3α1
u3
∗

Hs (
z

Hs )
−2 zb ≤ z ≤ zt

u∗3

(kz) z > zt

(A9)

The vertical ε had a constant uniform value due to the breaking waves from the water
surface to a depth of “breaking depth”, zb = 0.6Hs, here Hs is a significant wave height.
For simplicity, the wave height H = 2 < η > (Table 1) and significant wave height Hs
are considered equal in our experiment. In this layer, the ε is assumed to be an order of
magnitude larger than the LOW. Below the breaking layer, the ε is decreased downward to
“transition depth”, zt = 0.3Hs

c
ua∗

, and below that the ε follows the behavior of the LOW.
c is an effective wave speed that is determined to be dominated by the short waves and
equals c ≈ 1 m/s [70]. α1 is defined as a function of wave age cp

u∗a , where cp is the phase
velocity of the waves.

α1 =

{
0.5( cp

u∗a )(
ρ
ρa
)1/2 for cp

u∗a ≤ 11
12( cp

u∗a )
−1/3( ρ

ρa
)1/2 for cp

u∗a > 11
(A10)
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