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Abstract: Generation and propagation of waves in a numerical wave tank constructed using Weakly
Compressible Smoothed Particle Hydrodynamics (WCSPH) are considered here. Numerical wave
tank simulations have been carried out with implementations of different Wendland kernels in
conjunction with different numerical dissipation schemes. The simulations were accelerated by using
General Process Graphics Processing Unit (GPGPU) computing to utilize the massively parallel
nature of the simulations and thus improve process efficiency. Numerical experiments with short
domains have been carried out to validate the dissipation schemes used. The wave tank experiments
consist of piston-type wavemakers and appropriate passive absorption arrangements to facilitate
comparisons with theoretical predictions. The comparative performance of the different numerical
wave tank experiments was carried out on the basis of the hydrostatic pressure and wave surface
elevations. The effect of numerical dissipation with the different kernel functions was also studied
on the basis of energy analysis. Finally, the observations and results were used to arrive at the best
possible numerical set up for simulation of waves at medium and long distances of propagation,
which can play a significant role in the study of extreme waves and energy localizations observed in
oceans through such numerical wave tank simulations.

Keywords: WCSPH; GPGPU; numerical dissipation; numerical wave tank; Wendland kernels;
extreme waves

1. Introduction

Smoothed Particle Hydrodynamics (SPH) [1,2] is a meshless, Lagrangian, particle-
based numerical method. It has been widely used over the past few decades for astro-
physical simulations and understanding of hydrodynamic flows in coastal and marine
engineering. Different numerical models can be used for these numerical simulations,
mainly depending upon the complexity of the underlying equations, the size of the simula-
tion domain and the resolution, among other factors. These influence the computational
cost and thereby the choice of the model. Numerical methods based on a Eulerian approach
like IHFOAM (a three-dimensional numerical solver for simulation of coastal engineering
scenarios) [3] and COBRAS (Cornell Breaking Waves and Structure) [4] are used for a wide
range of coastal engineering applications with a high degree of accuracy, but they also pose
a number of problems in many situations. The computational mesh is required to overlap
with all regions where the material is to move, even if the material occupies only a small
part of the whole domain at a certain point in time. This results in a reduced resolution of
the numerical solution and increased computational costs. Furthermore, models based on
the Eulerian method require special treatment to track the positions of free surface particles
and moving interfaces.

On the other hand, Lagrangian methods, which can be used to intrinsically track
the motion of the free surface particles [5], are an excellent option for the simulation of
hydrodynamic flows in wave tanks. Being meshless in nature, Lagrangian methods also
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make it easier to simulate flows involving complex geometries and those exhibiting violent
phenomena like wave breaking, impact on structures or other surface-surface interactions,
in contrast to the grid-based methods. Despite the clear advantages that Lagrangian
methods like SPH can offer in simulating free surface hydrodynamic phenomena, they
have a serious drawback in that they require a large amount of computational resources,
especially those employing Navier-Stokes equations for more realistic simulations. SPH,
however, belongs to a class of particle methods that can be accelerated using general-
purpose computing on a graphics processor unit (GPGPU). This is done with the help of
sorting and binning algorithms, which help reduce the computational complexity from O
(N2) to O (N logN). In an earlier work from this group, Chabalko and Balachandran [6]
detailed the acceleration process of a similar particle method. The use of such computing
techniques and increase in computational powers over the years has greatly contributed to
an increase in applications of SPH in hydrodynamic simulations.

In SPH, the computational domain is discretized into a number of particles, with each
particle representing a small volume of the fluid with the respective mass, density, velocity
and other mechanical quantities associated with that volume. An interpolation scheme
is then used to evaluate the mechanical quantities of all the particles over time using a
weighted average of the properties of the adjacent particles within a certain domain as
described by a kernel function. Liu [7] provided a general approach to devise analytical
smoothing functions, pointing out that smoother second derivatives of kernel functions
lead to better numerical stability. Adjustable support domains lend better flexibility and
accuracy for kernel functions, as pointed out by Yang et al. [8]. At present, the cubic spline
function [9] and the Wendland C2 function [10] are the most popular smoothing kernel
functions. Using numerical convergence and linear stability tests, Dehnen and Aly [11]
found out that Wendland kernels are computationally more convenient and exhibit bet-
ter numerical convergence at large neighbor numbers (NH) compared to the traditional
B-spline kernels and present an excellent choice as smoothing functions in SPH. The Wend-
land C2 function that is commonly used as a smoothing kernel in SPH literature over the
years is a 5th-degree class 2 Wendland kernel. Other Wendland functions mentioned by
Dehnen and Aly include the 8th-degree class 4 kernel and the 11th-degree class 6 kernel
functions, commonly known as the Wendland C4 and the Wendland C6 smoothing func-
tions. Despite the use of the higher-order Wendland kernels for astrophysical simulations
and computing the consistency and truncation errors in integrals [12,13], they have not
been used in coastal engineering applications to the best of knowledge of the authors.

Numerical dissipation schemes also have an important role in WCSPH numerical
methods helping to dissipate the spurious density and pressure oscillations generated due
to the weakly compressible nature of the approach. Numerous approaches have been sug-
gested for this, with the most notable ones being the artificial viscosity term implemented
by Monaghan [14], the density reinitialization procedure [15] based on the Shephard filter,
and the density dissipation terms by Ferrari et al. [16], Molteni and Colagrossi [17], and rela-
tively recently by Antuono et al. [18]. Implementations of different numerical schemes have
been found to more suitable for different types of WCSPH simulations. Morris et al. [19]
developed a viscosity scheme for low Reynold number flows, which worked better than
the traditional artificial viscosity scheme. The δ-SPH scheme developed by Molteni and
Colagrossi is more suited for damping out pressure or density fluctuations compared to the
artificial viscosity scheme or the density reinitialization procedure. An improved δ-SPH
scheme where numerical dissipation is modified according to requirements in a complex
flow has been developed recently [20].

Long-duration numerical wave tank experiments provide an excellent alternative
to physical models in coastal engineering applications, especially when resources and
scale effects are considered. Fundamental to such numerical wave tank experiments is the
generation of waves that are able to propagate over the duration of the simulation without
dissipating almost immediately, which is a possibility in SPH if the parameters used are
inappropriate. Many studies have been carried out over the years to investigate the genera-
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tion of waves in numerical modeling. Biesel and Suqet [21] gave a solution for the first-order
wavemaker theory for piston-type wavemakers, which was subsequently improved by au-
thors like Ursell et al. [22] and Schaffer [23]. However, when first-order wavemaker theory
is used, the experimental flumes give rise to spurious secondary waves [24]. Madsen [25]
suggested an approximate solution to this by providing an expression to eliminate the
spurious secondary waves, which is accurate and computationally simple for generating
waves of second order, although within a range. Later, Schaffer [23] gave a complete solu-
tion to the second-order wavemaker problem. After utilizing Madsen’s implementation,
Altomare et al. [26] carried out long-crested wave generation for SPH-based models over
medium distances to validate against theoretical and experimental observations. More
recently, Trimulyono et al. [27] also made use of the DualSPHysics [28] model to simulate
waves over long distances and validate the findings against experimental observations.
Numerical wave tank experiments, if validated properly with theoretical and experimental
findings, can also open up avenues for further studies on extreme waves [29] in oceans,
which is increasingly gaining interest among engineers and scientists all over the world.
A number of such SPH studies using numerical wave tanks have been undertaken in the
past to investigate wave focusing and breaking. Manolidis et al. [30] studied the formation
of rogue waves against current gradients in oceans using numerical wave tanks. Recently,
numerical experiments have been carried out by Slunyaev and Kokorina [31] to simulate
sea surface rogue waves by using potential Euler equations. Unidirectional extreme events
were reproduced in numerical wave tanks using rogue wave measurements by Ducrozet
et al. [32]. Energy localization studies involving linear focusing using SPH in numerical
wave tanks have also been carried out [33]. These studies are a part of a larger effort
in the authors’ group to understand the mechanisms underlying the formation of rogue
waves [34–36].

The authors’ aim was to carry out validation experiments for wave generation and
propagation by using SPH in a numerical wave tank through the implementation of
different kernels and dissipation schemes. The rest of this paper is structured as follows.
First, in the next section, the authors briefly describe SPH formulations that are used.
The discussion includes the different numerical dissipation schemes and the different
Wendland kernels that have been used over the course of the simulations. Subsequently,
in the third section, short-duration numerical simulations of the classic “dam-break” and
sloshing experiments are carried out for the validation of the different numerical dissipation
schemes chosen. Comparisons are made regarding the suitability of the different numerical
dissipation schemes and the kernels used in these validation experiments. In the fourth
section, the authors follow with numerical wave tank simulations by using different
dissipation schemes for the three kernels. Wave characteristics like pressure after the
initialization, wave height, effect of dissipation, potential energy and kinetic energy are
determined for the different simulations and compared with theoretical results where
possible. Finally, the conclusions are drawn based on the numerical experiments, and a
setup that is best suited for wave propagation over medium and long distances is chosen.
The authors plan to use this setup for the analysis of extreme waves and energy localization
studies in future endeavors.

2. Smoothed Particle Hydrodynamics Formulation
2.1. WCSPH Numerical Model

There are two main approaches used for numerical modeling of fluids in the SPH
literature. The Incompressible Smoothed Particle Hydrodynamics (ISPH) [37] is based on
the solution of a Poisson equation for computing the pressure field with a very low level
of compressibility. Conversely, the WCSPH scheme is based on the assumption that the
fluid is weakly compressible and is solved with the help of a stiff equation of state. As men-
tioned earlier, with WCSPH, one can intrinsically track the free surface motion during
hydrodynamic simulations, and this aspect is needed for simulating free surface flows. The
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WCSPH scheme implemented in this study closely follows that used by Monaghan. The
basic discretised equation describing the function value at any computational node i is

fi(r) = ∑
j

f j
mj

ρj
W
(
ri − rj, h

)
(1)

where f j is the function value at the jth point, W
(
rij, h

)
is the smoothing function used, mj

and ρj are the mass and density related to the jth particle and h is the smoothing length. The
particles masses are assumed to be constant and represented by mi. The particle densities
can then be initialized according to Equation (1)

ρi = ∑j miW
(
rij, h

)
(2)

The pressure value corresponding to the ith particle can then be computed using the
equation of state proposed by Batchelor [38] as:

P = B
((

ρ

ρ0

)γ

− 1
)

(3)

where γ = 7, ρ is the current density of the ith particle, ρ0 is the reference density (defined
under initial pressure P0) and B is a constant that is given by

B =
ρ0cs

2

γ
(4)

where cs =
Vf√

η , in which η is the compressibility factor that has been taken to be 0.01 in
the present study, cs is the speed of the sound corresponding to the chosen compressibility,
and Vf is the maximum velocity of the fluid medium anticipated in a given problem. The
constant B, also known as the bulk modulus, is a measure of the incompressibility of the
system and measures the relative density fluctuations during the simulation. Making use of
the Navier-Stokes (NS) equations for the Lagrangian formulation, the particle accelerations
are computed as

dvi
dt

= −∑
j

mj

(
Pi
ρi

2 +
Pj

ρj
2

)
∇iW

(
rij, h

)
+ VTi + Fi (5)

where ∇iW
(
rij, h

)
represents the kernel gradient function, VTi represents the acceleration

due to viscous forces and Fi represents the acceleration due to body forces on the particles.
The continuity equation can then be used to compute the rate of change of density as
follows:

dρi
dt

= ∑
j

mjvij·∇iW
(
rij, h

)
(6)

Next, the particle velocities and their positions are calculated using the accelerations
computed in Equation (5) using a slightly modified version of the conventional leap-frog
formulation.

vi+ 1
2
= vi− 1

2
+ aidt (7a)

vi+1 = vi+ 1
2
+ ai

dt
2

(7b)

ri+1 = ri + vi+ 1
2
dt (8)

2.2. Numerical Dissipation Chemes

The major drawback of WCSPH numerical schemes is that they tend to suffer from
spurious density fluctuations. Consequently, the pressure fluctuations generated through-



J. Mar. Sci. Eng. 2021, 9, 233 5 of 30

out the course of the simulation are due to the weakly compressible nature of the scheme.
The viscous force term of the NS equations can be computed using the Laplacian of the
kernel function, but this often leads to instability of the scheme. To mitigate this, various
dissipative terms have been proposed over the years, three of which have been used for
the purpose of this study.

2.2.1. Artificial Viscosity

For damping numerical oscillations, a dissipative term is added to the momentum
equation of the numerical model as suggested by Monaghan [14], which has an effect like
the physical viscosity during the simulation. Adding the dissipative term Π, the VTi in
Equation (5) is then computed as

VTi =

 VTi
Mor + mj

αcijµij − βµij2
ρij

∇i W
(
rij, h

)
, vij·rij > 0

VTi
Mor , vij·rij < 0

(9)

where P = mj
αcijµij − βµij

2

ρij
is the dissipative term, where, µij =

hvij ·rij
rij

2 ; ρij =
ρi+ρj

2 is

the density average of the ith and jth particles; cij is the average speed of sound, which
is equivalent to cs; α and β are tuning parameters that depend upon the simulation at
hand. The term associated with α produces shear viscosity, while that involving β helps
prevent unphysical particle penetration and helps stabilize the numerical solution. Only
using α often leads to unphysically high viscous forces in low-velocity simulations; thus,

the viscosity term implemented by Morris et al. [19], VTi
Mor = ∑j

mj(µi+µj)
ρiρj

(
1
|rij|

∂wij
∂ri

)
is

used. After using α and VTi
Mor together and proper tuning of the parameters α and β,

the simulations can be rendered numerically stable without the generation of unphysical
viscous forces. Equation (9) is used for the computation of viscous forces in the study with
small necessary changes when other dissipation schemes are implemented.

2.2.2. Density Reinitialization

Spurious density fluctuations are generated throughout the simulation if the density is
evolved only according to Equation (6), which often does not allow the numerical solution
to converge. To address this issue, Colagrossi and Landrini [18] suggested applying a filter
to the density field after some fixed number of time steps throughout the simulation. The
density for each particle is reinitialized using a zeroth-order Shephard filter [39] repeatedly
after the fixed number of time steps as follows:

ρi = ∑
j

mjW∗ ij
(
rij, h

)
(10)

where

W∗ ij
(
rij, h

)
=

Wij
(
rij, h

)
∑j Wij

(
rij, h

)mj
ρj

(11)

For the present study, density is reinitialized after every 20 time steps according to
Equation (10). Unless stated otherwise, α and β are kept equal to zero in Equation (9) for
viscous force computation when the scheme is implemented.

2.2.3. δ-SPH Scheme

Molteni and Colagrossi [17] suggested adding numerical dissipation to the continuity
equation to damp out numerical oscillations. This is commonly known as the δ-SPH
scheme. After adding the dissipation term to Equation (6), it reads as
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dρi
dt

= ∑
j

mjvij·∇iW
(
rij, h

)
+ Da (12)

where Da is given by

Da = 2δhc0 ∑
j

mj

ρj
ψji

(
xj − xi

)
·∇iWij(

xj − xi
)2 (13)

Here, δ is a tuning parameter, h is the smoothing length, c0 is the numerical speed of
sound and ψji is a second-order term that can take many forms. The form implemented
in [17] is given by

ψji = ρj − ρi (14)

Equation (12) in the given form has been implemented in the present study. Similar to
the density reinitialization scheme, unless stated otherwise, α and β are kept equal to zero
in Equation (9) for viscous force computation when this scheme is implemented.

2.3. The Smoothing Kernel Functions

The kernel function, as pointed out before, plays a pivotal role in the formulation
of the WCSPH numerical scheme. The use of one kernel for the density estimation and
a different kernel for the pressure computation to get better results was suggested by
Thomas and Couchman [40], but such an approach results in the violation of energy and
entropy conservation. Dehnen and Aly [11] carried out investigations into the stability of
kernel functions with respect to particle instability, and it was found out that the Wendland
functions were the ideal kernel functions, especially at higher-neighbor numbers. The
family of Wendland functions has a number of functions of increasing order, and three
of them normalized for use in 2D will be used in the present study for comparisons in
different simulation scenarios. Specifically, the kernels used in the present study are the
5th-degree class 2 kernel (WC2 from now on), the 8th-degree class 4 kernel (WC4 from now
on) and the 11th-degree class 6 kernel (WC6 from now on). The kernel functions have been
formulated to have a domain radius of 2h, where h is the smoothing radius. For all the
simulations carried out in the present study, h has been taken to be equal to 1.5∆x, where
∆x is equal to the inter-particle spacing. The kernel functions are given as follows.

W2(r, h) =

{
αd2(2q + 1)

(
1− q

2
)4 f or 0 ≤ q ≤ 2

0 f or q > 2
where, αd2 =

7
4πh2 (15)

W4(r, h) =

{
αd4
( 35

12 q2 + 3q + 1
)(

1− q
2
)6 f or 0 ≤ q ≤ 2

0 f or q > 2
where, αd4 =

9
4πh2 (16)

W6(r, h) =

{
αd6
(
4q3 + 25

4 q2 + 4q + 1
)(

1− q
2
)8 f or 0 ≤ q ≤ 2

0 f or q > 2
where, αd6 =

78
28πh2 (17)

Here, q = |r|
h . Their derivatives read as

∇W2(r, h) =

{
βd2
(
1− q

2
)3q r
|r| f or 0 ≤ q ≤ 2

0 f or q > 2
where, βd2 = − 35

4πh3 (18)

∇W4(r, h) =

{
βd4(70q + 28)

(
1− q

2
)5q r
|r| f or 0 ≤ q ≤ 2

0 f or q > 2
where, βd4 = − 3

8πh3 (19)

∇W6(r, h) =

{
βd6
(
8q2 + 7q + 2

)(
1− q

2
)7q r
|r| f or 0 ≤ q ≤ 2

0 f or q > 2
where, βd6 = − 858

112πh3 (20)

Here, r is the distance from the considered particle from its neighboring particles.
The plots of the kernel functions and their gradients are provided for the purpose of
visualization in Figure 1. As evident from this figure, with the increase in the order of the
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kernel function, the center peak value keeps increasing for the family of Wendland kernels.
Moreover, the domain of influence keeps decreasing sharply for the Wendland kernels
with increasing order. Thus, the Wendland C6 kernel has the particle itself significantly
influencing the computation of its properties. This influence is found to decrease with the
decrease in order of the kernel. Likewise, for the kernel gradient function, much more
impetus is given to the nearby particles during the calculation, when kernels of higher
orders are used. It can be seen that as the order of the kernel increases, the smoothing
becomes less and less gradual.

Figure 1. (left) Different Wendland kernels used in the study. (right) Derivatives of the kernel functions.

2.4. Boundary Handling

The boundaries in the present study are based on the dynamic boundary condition [41].
The boundary particles follow the same set of equations as the fluid particles, with the
only difference being that they are constrained not to move according to the forces. They
either remain fixed or move according to some externally applied forces, exerting repulsive
forces on particles that approach the boundary particles. With the absence of any explicit
no-penetration boundary condition, the spacing between the boundary particles sometimes
needs to be modified during different simulations for convergence. This approach has been
chosen for its simple nature, with all of the computations becoming possible only with a
single set of equations for all of the particles.

The numerical schemes are implemented by using CUDA 10.1 [42] to take advantage
of the massively parallel nature of the computation, thereby saving a huge amount of
computational time. Furthermore, the model is run by utilizing high-performance comput-
ing (HPC) facilities of the Bluecrab [43] cluster, specifically using the p100 GPU partition,
which allowed multiple jobs to be run at the same time, saving much time in the process.

3. Validation Studies

Several numerical experiments were carried out to validate the different numerical
dissipation schemes as well as compare the performance of the different Wendland kernels
in simulation scenarios, which occur over a small domain for a short period of time involv-
ing impact against structures. Specifically, three scenarios were considered. The first is the
common two-dimensional dam-break experiment. Pressure readings at a specified loca-
tion were determined to compare with corresponding experimental readings for different
Wendland kernels. The other simulation scenarios include the lateral and the roof sloshing
experiments, the details of which are available on the SPHERIC [44–47] website. Like the
dam-break problem, pressure measurements were determined at specific sensor locations
used in the simulations, and the results were compared to the experimental findings.
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3.1. Dam-Break Simulations

The two-dimensional classic dam-break problem consists of a tank of width W = 5.366H
with a fluid occupying a domain of width WF = 2H and height H = 600 mm at the lower
left end of the tank. The fluid column undergoes a simple hydrostatic initialization before
the breaking of the dam is initiated. As the simulation starts, the fluid column collapses and
moves towards the other wall where it undergoes an impact with the wall and settles down
finally after crashing down as a plunging wave. An illustration of the set-up of the experiment
is provided in Figure 2. The fluid properties and the parameters used during the simulations
are summarized in Table 1.

Figure 2. Schematic of the dam-break simulation tank with the associated dimensions.

Table 1. Parameters and numerical setting used for the dam-break simulations.

Fluid Particle Spacing (∆x) H/100

Boundary particle spacing 0.6∆x

Smoothing length h 1.5∆x

ρre f 1000

Artificial viscosity coefficient α ∈ [0, 0.2]

β used in momentum equation ∈ [0, 6.0]

δ—SPH coefficient ∈ [0, 0.2]

vmax
√

gH

c0 20 vmax

ν used in Morris viscosity factor 8.97 × 10−7

The simulation closely follows the simulation set-up used by Adami et al. [48] in their
work about ghost-particle boundary implementation. The tank in the present scenario was
kept closed (with a height of 2H) to prevent particles from moving out of the simulation
domain for lower computational costs. The pressure at a point on the far wall at a dis-
tance 0.19 H from the bottom was measured and compared against the results from an
experiment [49]. As pointed out before in other studies [48,50], the wave probe used in the
experiment was at a slightly different location, but following earlier validation studies [50],
we decided to use the said location for pressure measurements.

The different numerical dissipation schemes were implemented in the simulations
with the different kernel functions. With the use of WC4 kernel function, the obtained
behavior with the different dissipation schemes is shown in Figure 3. The pressure at the
desired location for the numerical simulation was computed using the basic equations of
the SPH that read as follows.
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Pi =
∑j PjWij

∑j Wij
(21)

where i is the particle location where the pressure is to be measured and j is the neighboring
particle. The location measurement is considered to be at a distance of 0.01h from the sensor
location on the right wall.

Figure 3. Comparison of the interpolated pressure data at the measurement location against the
experimental measurements for different numerical dissipation schemes using WC4 kernel. The

pressure and the time values have been non-dimensionalized by using P
ρgH and t

√
g
H , respectively.

It can be seen from Figure 3 that, apart from the behavior with the artificial viscosity
scheme, the behaviors with other numerical dissipation schemes are found to be quite
similar. Significant pressure oscillations are observed with the artificial viscosity scheme,
which is not the case with the other schemes. The density reinitialization scheme works
the best as far as the hydrostatic pressure initialization is concerned, and the scheme that
the authors ultimately made use of is a combination of the δ-SPH scheme with the density
reinitialization scheme along with the artificial viscosity term coefficients α and β for the
best results. It needs to be noted here that the parameter β is found to play a significant
role in the results obtained for the chosen scheme after sufficient tuning and also proved
important for the stability of the scheme. Though the results agree to a significant extent
with experimental observations, there are discernible deviations as well. The initial rise
of pressure at around t

( g
H
)0.5

= 2.5 as well as the pressure spike at around t
( g

H
)0.5

= 5.8
in the experiments are observed to be delayed in the simulation results. This may be
due to the modified location of the pressure probe leading to a phase difference. The
high-frequency pressure oscillations in the simulations not seen in the experimental results
are the result of the weakly compressible nature of the computational model itself; this
results in a high amount of noise. Similar results were obtained when the other kernel
functions were used with the above dissipation schemes. A grid study was carried out to
investigate the convergence of the different dissipation schemes used for the dam break
simulations. The results of this grid study are depicted through an L2 error plot in Figure 4,
wherein the L2 errors have been computed for three different resolutions for each of the
dissipation schemes and interpolated for other values within the range of these resolutions.
The different particle resolutions used are H

100 , H
50 , and H

25 . The L2 error for a particular
resolution has been computed using the formula
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L2 =

√√√√( 1
N

N

∑
i=1

(
Pcomp(ti)− Pexp(ti)

)2
)

(22)

where N is the total number of observations at specific time instants over the course of
the simulation, ti represents the time instants, Pcomp is the pressure computed numerically
at our location of interest at a specific time instant using Equation (21), and Pexp refers to
the experimental results from reference [49]. The interpolation in the plot was carried out
using the inbuilt MATLAB “fit” function, with which a smoothing spline model is utilized
to fit the data. A smoothing parameter with values lying between 0 and 1.0 can be used in
conjunction with this model type to determine the smoothness of the fit data, with a value
of 1.0 meaning that the fit data coincide with the original data. A smoothing parameter
of 0.995 was used for the present case. For purposes of comparison, the L2 errors were
plotted on a logarithmic Y-scale against the inter-particle distance. The errors decrease
with increasing resolution, thus showing that the schemes are convergent in nature when
used for the dam break simulations. Lines showing the order of increase of the errors with
increasing inter-particle distance have also been depicted for ease of visualization. It is
evident from Figure 4 that the use of an artificial viscosity scheme results in the largest
error throughout the range of the particle resolution used, increasing at a rate of 0.3rd
order of the inter-particle distance. For the δ—SPH scheme, the error decreases at a rate of
0.6th order of the inter-particle distance with increasing resolution, which is the highest
observed amongst the different schemes used. The least error is observed for the density
reinitialization and the chosen scheme, with the convergence rates being 0.18 and 0.02,
respectively. Based on this, it can be stated that the chosen dissipation scheme is the most
suitable for a wide range of particle resolutions when compared to the other schemes.
However, the δ—SPH scheme is expected to perform better at higher particle resolutions,
since it has the highest convergence rate.

Figure 4. The computed L2 error for the grid study interpolated over the range of particle reso-
lution shown for the different numerical dissipation schemes used for the dam break simulation.
Different order lines have been provided to aid in the interpretation of the convergence rates for the
dissipation schemes.
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In Figure 5, the authors compare the pressure data obtained from the simulations by
using the different kernels for the chosen dissipation scheme as described above against the
experimental findings. In the scheme chosen for the comparison of the kernels, the authors
combine the different dissipation schemes as discussed before, and the parameter β was
tuned carefully for each of the kernel functions to arrive at a result that has considerable
agreement with the experiment results. The time delay in the pressure rise and spike is
similar for all the kernels. However, the magnitude of the pressure and the offset from
the experimental observations are observed to be lesser for the WC4 and WC6 kernels
compared to that with the WC2 kernel. The frequency oscillations are observed to be of less
magnitude for the WC2 kernels compared to the other two. This leads to smoother surface
profiles of fluid particles for simulations when using WC2 in comparison to WC4 and WC6.
The pressure contour plots provided in Figure 5 help visualize these observations.

Figure 5. Comparison of the interpolated pressure data at the measurement location against the
experimental measurements for the chosen numerical scheme for different Wendland kernels.

From the second, third and fourth rows of the pressure snapshots in Figure 6, it can be
observed that the pressure at the location of interest remains higher in the case of the WC4
and WC6 kernel simulations compared to that obtained for the WC2 case. On the contrary,
the surface profile for the wave crest is much smoother in the case of the WC2 simulation
than for the WC4 and WC6 ones, as apparent from comparing the same subplots as above.

3.2. Sloshing Simulations

Two different scenarios involving lateral and roof impact in a rectangular tank were
simulated to validate the results against the findings from experiments conducted by Souto-
Iglesias and Botia-Vera. The details of the experiments can be found on the SPHERIC [44–47]
website. The experiment consists of a rectangular tank with a width W = 900 mm and
a height H = 508 mm. For sloshing to take place, the tank is rotated about an axis that
is fixed to the center of the bottom line of the tank. Pressure measurements were taken
at specific locations with sensors attached to the tank walls. Three different tank widths
were used during the actual experiment, but a two-dimensional case was considered for
the numerical studies.

Two different tank filling levels were used. The filling level corresponding to 18% of
the tank height (i.e., 93 mm) was used for lateral sloshing with pressure to be measured at
93 mm from the bottom on the left wall of the tank. The period of the sloshing motion for
this case was 1.919 s. For simulation purposes, the real-time angle curves provided on the
SPHERIC website were used. The filling level corresponding to 70% of the tank height (i.e.,
355.3 mm) was used for the roof sloshing experiment, with the resulting pressure being
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measured at 25 mm from the left wall at the top of the tank. A period of 1.167 s was used
for the actual experiment, but again, the provided real-time angle curves were used for
the simulations. An illustration of the set-up for the two different simulation scenarios is
provided in Figure 7.

Figure 6. Pressure contour plots at different times for the dam-break simulations by using the
Wendland kernels. The pressure and time values have been non-dimensionalized using P

ρgH and

t
( g

H
)0.5, respectively. The times are 1.94, 4.52, 5.49, 5.98 and 7.12 units from top to bottom. The plot

columns from left to right are for the WC2, WC4 and WC6 kernels, respectively.

Figure 7. Schematic of the simulation tank. (a) Lateral sloshing. The pressure is determined at the location depicted on the
left wall. (b) Roof sloshing. The pressure is determined at the location depicted on the top of the tank. Sloshing motion is
about the axis depicted in red at the bottom of the tank in (a). All dimensions are given in mm.
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The two simulation scenarios with the different fluid levels correspond to different
types of fluid motions. The lateral sloshing simulation with the low filling level involves
irregular fluid motion with overturning waves while the roof sloshing simulation with the
high filling level corresponds to fluid with high acceleration without any breaking waves.
For better visualization, the obtained snapshots of the velocity profiles for the simulations
are provided in Figure 8.

Figure 8. (a) Snapshot of the velocity profile for the lateral sloshing simulation at t = 2.95 s showing an overturning wave.
(b) Snapshot of the velocity field for the roof sloshing simulation at t = 2.22 s with high fluid particle velocities.

As was done in the dam-break problem, the different dissipation schemes were
impleented with the different Wendland kernels to compare the simulation results against
the experimental pressure readings. The fluid properties and the parameters used during
the simulations for this numerical experiment are tabulated in Table 2.

Table 2. Parameters and the numerical setting used in the sloshing simulations.

Fluid Particle Spacing (∆x) W/450

Boundary particle spacing 0.6∆x

Smoothing length h 1.5∆x

ρre f 998

Artificial viscosity coefficient α ∈ [0, 0.2]

β used in the momentum equation ∈ [0, 4.5]

δ—SPH coefficient ∈ [0, 0.3]

vmax 1.0

c0 20 vmax

ν used in Morris viscosity factor 8.97 × 10−7

As observed during the dam-break simulations, the artificial viscosity scheme when
used alone with only the artificial viscosity coefficient α resulted in huge pressure oscilla-
tions during the lateral sloshing studies. Discernible differences in the pressure distribution
at the measurement location during the time of impact were also observed among the
other dissipation schemes. Similar to the dam-break simulations, a numerical dissipation
scheme was created by utilizing the density reinitialization, the δ—SPH coefficient and the
artificial viscosity coefficients α and β. This scheme was implemented in addition to the
other discussed schemes for the different kernels after a proper tuning of the parameters α,
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β and δ. The results were found to be in good agreement with the experimental readings.
In Figure 9a, a comparison of the different dissipation schemes for the WC2 kernel for
the lateral sloshing simulations is provided. In Figure 9b, the authors compare the results
obtained with the implementation of the previously mentioned dissipation scheme for the
different kernels with the corresponding experimental observations.

Figure 9. (a) Comparison of the interpolated pressure data at the measurement location against the experimental measure-
ments for different numerical dissipation schemes with the WC2 kernel. (b) Comparison of the interpolated pressure data
using the chosen numerical scheme for different Wendland kernels.

The implementation of the artificial viscosity scheme with the artificial viscosity
coefficient α only has not been included in Figure 9a due to the high-magnitude pressure
oscillations throughout the course of the simulation. These oscillations pose difficulties
for the interpretation of the plot. The implementation of the δ—SPH scheme alone results
in a high second pressure spike just after the first, which was not observed during the
physical experiment. The results obtained with the density reinitialization scheme closely
resemble the experiment, with considerably less pressure fluctuations before and after the
pressure spike. After using the density reinitialization along with the δ—SPH scheme with
properly tuned parameters α and β, the authors obtained a much better result in terms of
agreement with the physical experimental readings. Similar to the dam-break simulations,
the parameter β was found to play a significant role during the tuning process to arrive at
the final results.

The dissipation scheme thus chosen was implemented with the different Wendland
kernels. As evident from Figure 9b, the different Wendland kernels yield quite similar
results when used with the abovementioned dissipation scheme, albeit with modified
parameters within the range given in Table 2. However, some noticeable differences
can also be observed. The pressure oscillations were the most frequent and of a higher
magnitude with the WC6 implementation compared to the results obtained with the other
kernels. The oscillations were the least for the WC2 kernel, as was the case during the
dam-break experiments. The magnitude of the pressure spike was best captured with the
help of the WC4 kernel, while the other kernels overestimated that by some margin. When
compared with the physical experimental readings, a slight delay occurs in the formation
of the pressure spike for all of the simulations. Furthermore, the presence of pressure
oscillations, can be attributed to the weakly compressible nature of the numerical model.

Similar efforts were pursued for the roof sloshing simulations. The WC6 kernel was
initially used for comparison among the different numerical dissipation schemes. This was
followed by the comparison of the different kernels and the experimental readings using
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the finally adopted dissipation scheme. In Figure 10a, the authors give the comparison of
the different dissipation schemes, and in Figure 10b, they compare the implementation
of the adopted dissipation scheme amongst the different kernels with the experimental
observations.

Figure 10. (a) Comparison of the interpolated pressure data at the measurement location with the experimental measure-
ments for different numerical dissipation schemes using WC6 kernel. (b) Comparison of the interpolated pressure data
using the chosen numerical scheme for different Wendland kernels.

A similar behavior was observed from the implementation of the different numerical
dissipation schemes, as was the case for the lateral sloshing simulations. As evident from
Figure 10a, the artificial viscosity scheme resulted in large pressure oscillations during the
time of impact, while the density reinitialization procedure was found to provide better
results in terms of estimating the pressure spike magnitude with less pressure oscillations.
The δ—SPH scheme when used alone with the parameter δ did not converge for the range
of δ mentioned in Table 2. The parameter β had to be added to the scheme for stability;
however, a significant amount of pressure oscillations was still seen after the scheme was
implemented. The scheme combining the density reinitialization, the δ—SPH scheme with
tuned artificial viscosity parameters α and β, showed the most agreement with the physical
experiments, as was seen for the lateral sloshing simulations. This scheme was adopted for
studying the kernel performance.

A similar trend was observed in the comparisons using the chosen scheme between
the kernels and the experimental data. The WC6 and WC4 kernels were found to give very
similar results that agreed well with the experimental data, with a stark difference observed
towards the end of simulation duration. With the WC4 implementation, there were sudden
pressure oscillations not observed in experimental data. The WC2 simulation results were
found to resemble the experimental data the most, correctly capturing the pressure spike
magnitude, unlike the overestimations observed with the WC4 and WC6 kernels.

4. Numerical Wave Tank Experiments
4.1. Wave Generation and Propagation

When one uses first-order wavemaker theory to generate regular waves in physical
wave flumes, there is often the generation of unwanted secondary waves that influence
the wave profile and height of the resultant waves as pointed out by Gōda [24] in 1967.
This influence becomes more prominent with the increase in wave steepness (H/L) (H
is the wave height and L is the wavelength of the wave) or the decrease in relative depth
(d/L)(d is the water depth), with the waves generated not able to reach the predicted
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amplitudes. Second-order wave theory can be used to mitigate this problem and produce
waves without spurious secondary wave components. The numerical simulations in the
present study were carried out by implementing a second-order wavemaker theory with a
piston-type wavemaker for intermediate water depth, a practical and common scenario
in coastal engineering applications. The simple second-order wavemaker theory put
forward by Madsen [25] and later improved on by Hughes [51] can be used to compute
the displacement for a piston-type wavemaker to generate second-order Stokes waves.
The equation for the same is given as follows:

s(t) =
S0

2
sin(ωt + δ) +

[(
H2

32d

){
3cos h(kd)
sinh3(kd)

− 2
m1

}]
sin(2ωt + 2δ) (23)

where s(t) is the wavemaker displacement, S0 is the piston stroke length, ω = 2π/T is the
angular frequency where T is the time period, δ is the initial phase which can vary from 0
and 2π, H is the wave height, d is the water depth, k = 2π/L is the wave number where
L is the wavelength and m1 is the Biesel transfer function for a piston type wavemaker,
which is expressed as follows:

m1 =
H
S0

=
2 sinh2(kd)

sinh(kd) cos(kd) + kd
(24)

Schaffer [23] introduced a non-linearity parameter S, wherein for S ≥ 1, second-order
Stokes theory fails to predict the second-order harmonics correctly in a wave group. For
a regular wave with angular frequency ω, wavenumber k and wave height H, the non-
linearity parameter S is given by:

S = 2H
∣∣∣∣ ωH+

2g2ktanh(2kd)− 4gω2 −
1

4g

(
g2k2

ω2 − 3ω2
)∣∣∣∣ (25)

where H+ is given by

H+ = 2ω

(
ω2 − g2k2

ω2

)
+ ω3 − g2k2

ω
(26)

The wave conditions described in Table 3 correspond to a value of 0.5451 for the
non-linearity parameter S. Hence, the wavemaker theory describing the 2nd-order Stokes
waves is considered to be valid for the above wave conditions.

Table 3. Wave conditions for the monochromatic wave used in the simulations.

Height H 0.12 m

Depth d 0.66 m

Wavelength L 4.52 m

Time Period T 2 s

Initial phase δ 0

Steepness s 0.026

Relative depth 0.146

The simulation setup closely follows that of Altomare et al. [26], where passive ab-
sorption is provided at the end of the numerical setup to carry out long-duration wave
simulations with much less reflection than for a fully rectangular tank. For the simulations
used in the present study, the passive absorption was carried out through the addition of a
long dissipative beach at the end of the rectangular part of the wave tank, where the wave
energy dissipates due to the breaking of waves. The implementation of such a feature is
advantageous as it requires no other modification to the existing code with a moderate
increase in the size of the simulation domain. The simulation domain used for the current
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work consisted of a rectangular tank of width 11.5 m with a dissipative beach having a
slope of 5.71◦ at the end of the rectangular part, making the total length of the simulation
domain equal to 19.46 m. The wavemaker was located at a distance of 0.5 m from the left
wall of the tank, and a water bed of depth 0.66 m stretched from the right of the wavemaker
to the end of the simulation domain. Four wave probes, denoted as WP1, WP2, WP3 and
WP4, were put at distances of 6 m, 7 m, 8 m and 9 m from the initial wavemaker position to
measure the surface wave elevation at the respective positions. The setup of the numerical
wave tank is illustrated in Figure 11.

Figure 11. Schematic of the numerical wave tank used for the simulations. The height of the piston type wave maker is
1.5 m.

The wave experiments were carried out using monochromatic waves with the wave
properties listed in Table 3. The wave conditions in Table 3 were chosen in a manner such
that the monochromatic wave generated from the wavemaker motion corresponding to
these conditions represent a second-order Stokes wave in the intermediate depth range,
verified using the Le Mehaute abacus, as depicted in Figure 12.

Figure 12. The wave conditions for the monochromatic wave used plotted on the Le Mehaute abacus.
A MATLAB function designed by Byford [52] has been used to create the plot with the depicted
wave condition.

Similar to the validation experiments carried out previously, the different dissipation
schemes were implemented for the three Wendland kernels during the numerical wave tank
experiments to compare the results. The fluid properties and the simulation parameters
used during the course of the experiments are tabulated in Table 4. As can be seen from
Table 4, different values of fluid particle spacing were used to study the behavior of the
kernels with decreasing grid spacing by comparing the wave elevations at the locations
of the four wave probes. It was found that with a boundary particle spacing of 0.7∆x for
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implementations with the WC4 and WC6 kernels, the authors were able to prevent the fluid
particles from going out of the simulation domain through the boundaries, but they were
unable to do so with the WC2 kernel. Hence, a finer boundary particle spacing of 0.5∆x
had to be used to prevent the penetration of the boundary particles with the WC2 kernel.

Table 4. Parameters and the numerical setting used for the numerical wave tank conditions.

Fluid Particle Spacing (∆x) ∈
{

2×10−2 m, 1.5×10−2 m, 1×10−2 m, 5×10−3 m
}

Boundary particle spacing ∈ {0.7∆x, 0.5∆x}
Smoothing length h 1.5∆x

ρre f 1000

Artificial viscosity coefficient α ∈ [0, 0.01]

β used in momentum equation ∈ [0, 2.0]

δ—SPH coefficient ∈ [0, 0.1]

vmax 3.0

c0 10 vmax

ν used in Morris viscosity factor 8.97 × 10−7

Time step (Fixed time integration) 1× 10−5 s

4.2. Results and Discussion
4.2.1. Hydrostatic Pressure Initialization

During the numerical wave tank experiments, the wave maker motion was imposed
on the fluid particles after 5 s of stationary time to allow the fluid particles to settle
down. The hydrostatic pressure at the bottom of the numerical tank after the end of the
initialization was calculated for the three kernel functions and compared with the analytical
solution. The particle spacing used for the simulations carried out was 5× 10−3 m . The
analytical pressure value at the bottom of the tank was 6.4746× 103 Pa. While the relative
error in the computed pressure value and the analytical solution for the WC2 kernel was
found to be 21.4%, those for the WC4 and WC6 kernels were calculated to be 15.2% and
10.4%, respectively. The higher error for the WC2 kernel could be due to the finer boundary
particle spacing used during the simulation. However, the lower error obtained with the
WC6 kernel compared to that with the WC4 kernel implies that, with the WC6 kernel, one
obtains a better approximation of the hydrostatic pressure profile at the end of hydrostatic
initialization in numerical wave tank experiments.

4.2.2. Comparisons with Different Dissipation Schemes

The different numerical dissipation schemes were implemented in the numerical
model to see their suitability in capturing the wave surface elevation accurately. The
comparisons were carried out between the elevations found out numerically and the wave
elevation predicted by Stokes’ second-order wave theory [53] given as follows:

η(x, t) = a
{

cos(kx−ωt) + ka
3− tanh2(kd)

4tanh3(kd)
cos 2(kx−ωt)

}
(27)

where a is the wave amplitude and all other symbols have their usual meanings. Unless
otherwise specified, the δ–SPH coefficient when used in the numerical experiments was
assumed to have a value of 0.05. For the WC2 kernel, the simulation became unstable
when the density reinitialization procedure was used alone; however, implementing it with
δ-SPH yielded acceptable results. For all of the kernels, when implementing the artificial
viscosity scheme alone, a minimum value of α = 0.01 was required for numerical stability.
Since α is associated with the addition of dissipation in the simulations, this was always
found to result in lower valued approximations than the theoretical predictions according



J. Mar. Sci. Eng. 2021, 9, 233 19 of 30

to Equation (27). Lower values of α could have provided better approximations, but it
was not possible because of the aforementioned numerical instability. As done previously,
numerical experiments were also carried out by combining the above dissipation schemes.
The comparisons of the wave elevations at the wave probe located at x = 6 m for the
different dissipation schemes obtained with the different kernels are given in Figure 13.

Figure 13. Comparison of the wave surface elevation at x = 6 m for the different dissipation schemes
for the three Wendland kernels with the theoretical second-order Stoke’s solution.

For better visualization of the results obtained, the corresponding errors with the
theoretical predictions at x = 6 m over 30 s of the simulation duration are also provided in
Figure 14. For a better understanding, the relative errors are used for the plots, wherein the
relative errors are computed as the absolute error divided by the maximum error observed
for a particular kernel function during the numerical experiments.

Figure 14. Comparisons of errors in wave elevations obtained with the different numerical dissipation
schemes for the three different Wendland kernels.

The particle spacing used for the simulation results depicted in Figures 13 and 14 is
1× 10−2 m. From Figure 13, it can be clearly seen that the density reinitialization scheme is



J. Mar. Sci. Eng. 2021, 9, 233 20 of 30

not suitable for numerical wave tank simulations of large domains over long periods of
time. The fluid particle spacing becomes unphysically high towards the surface with the
progress of simulation, resulting in an increase in the fluid surface level, thus rendering
the surface elevation observations inaccurate. With the other dissipation schemes, one
observes similar behavior with respect to the elevation results, with only minor noticeable
differences. The artificial viscosity coefficient helps incorporate dissipation into the system
as pointed out before, and this induces some extra error as noticeable from Figure 14 for the
WC2 simulations, where both the artificial viscosity scheme and the combination of δ-SPH
and artificial viscosity with α being 0.00001 results in a larger error margin compared to the
δ-SPH scheme implementation alone. A similar result to that obtained with the WC2 kernel
was observed when the density reinitialization procedure was implemented for the WC4
kernel function with the surface elevation becoming increasingly unphysical as the simula-
tion unfolded. The simulations returned similar errors for the other dissipation schemes
with very little differences in the case of the WC4 kernel. As was noticed for the WC2
kernel, the density reinitialization did not lead to meaningful results for the WC6 kernel,
with increasing fluid surface level over time. α was taken as equal to 0.00001 when used in
the δ-SPH scheme. The errors obtained for the other implemented schemes were found to
be larger than those obtained with the WC2 simulations, with no noticeable differences
amongst the error magnitudes for the various dissipation schemes. The WC6 and WC4
kernels thus seem more robust than the WC2 kernel with respect to the implementation of
these dissipation schemes, when wave surface elevation measurements are concerned. On
the other hand, when accuracy is of interest, the WC2 kernel results are found to be the best
when the δ-SPH scheme is implemented. Henceforth, for all future comparisons among
the kernels, the results from the implementation of the δ-SPH scheme were considered.

Based on observing similar behavior of the Wendland kernels with regard to the imple-
mentation of the different dissipation schemes, a representative grid study was carried out
by using one of the kernel functions to investigate the convergence characteristics of the dif-
ferent numerical dissipation schemes. The WC6 kernel was chosen for this purpose, and the
grid resolutions used for the purpose of the investigation were 2× 10−2 m, 1.5× 10−2 m
and 1× 10−2 m. The wave elevation at x = 6 m was extracted for the different cases and
compared with the analytical solution. The location was chosen since it is sufficiently away
from the ends of the wave tank. Thus, there are negligible effects of wave reflection to be
anticipated in the results. The L2 errors for the different resolutions were computed for the
different resolutions and then interpolated over the range of the particle resolutions chosen
by using the MATLAB “fit” function with a smoothing parameter magnitude of 0.995. The
L2 error is computed using the formula

L2 =

√√√√( 1
N

N

∑
i=1

(
ηcomp(6, ti)− ηtheo(6, ti)

)2
)

(28)

where N is the total number of observations at specific time instants over the course
of the simulation, ti represents the time instants, ηcomp is the wave elevation computed
numerically, and ηtheo is the wave elevation according to Equation (27). It is evident
from Figure 15 that the different numerical dissipation schemes exhibit convergence when
used for wave tank experiments, as the errors decrease with increasing grid resolution.
It is observed that the implementation of the density reinitialization scheme results in the
maximum error over the range of the particle resolutions chosen. However, the convergence
rate observed for this is also the maximum, with the errors increasing at the 2.32nd order
of resolution with increasing inter-particle distance. The δ-SPH scheme implementation
results in the lowest error at lower particle resolutions and associated with it is the lowest
convergence rate of 0.25. The artificial viscosity scheme and the combination of artificial
viscosity and δ-SPH schemes behave quite similarly with convergence rates of 0.85 and
0.98, respectively, with the lower L2 error observed at the highest resolution than the δ-SPH
scheme. From the results depicted in Figure 15, it is expected that a similar trend would be
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observed for the WC2 and WC4 kernels, with minor differences in the convergence rates of
the different numerical dissipation schemes.

Figure 15. The computed L2 error for the grid study interpolated over the range of particle resolution
shown for the different numerical dissipation schemes used for the wave tank experiment using
Wendland C6 kernel. Different order lines are provided to aid in the interpretation of the convergence
rates for the dissipation schemes.

4.2.3. Particle Resolution Study

The δ-SPH scheme chosen for further experiments was implemented for the different
kernels using the four values of the particle spacing given in Table 4. The purpose of this
was to study the behavior with the different kernel functions with respect to different
particle resolutions used in the simulations. Similar to the previous study, the wave
elevation at the location of x = 6 m was used for comparison with the theoretical solution.
The observations at the said location for the simulations run with the three kernels for the
time window of 10 to 12 s are provided in Figure 16a. The computed L2 errors for the
different kernel function implementations over the different particle resolutions are given
in Table 5.

In Figure 16b, the authors provide a better visualization of the above grid study by
computing the L2 errors for the different resolutions for the three kernels and interpolating
them over the range of grid resolution used. As observed from both Figure 16a and the
observations tabulated in Table 5, the WC2 kernel is found to have the best agreement with
the theoretical findings generally over the range of the particle resolution used. The L2
error plot given in Figure 16b aids in the visualization of this finding. The interpolation in
this plot was carried out through the MATLAB “fit” function with a smoothing parameter
magnitude of 0.995. For purposes of comparison, the logarithm of the errors was plotted
against the inter-particle distance. The errors decreased with the increase in resolution for
the different kernels, as expected. Lines depicting the order of increase of errors with the
increase in resolution have also been provided. As evident from the plot, the error increases
most sharply with increasing inter-particle distance for the WC6 kernel, corresponding to a
0.14th order line. The increase in error with a decrease in resolution is the most gradual for
the WC4 kernel, corresponding to a 0.08th order line, while for the WC2 kernel, the error
increases at a rate of 0.09th order of the inter-particle distance. The error is observed to
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be the least for the WC2 kernel at the highest resolution, while it is the least for the WC4
kernel at the highest inter-particle distance. An increase in resolution might achieve better
results with the WC6 kernel; however, the increase in computational cost outweighs the
improvements in results obtained.

Figure 16. (a) Particle grid study with four different values of particle spacing for the three kernels. ∆ x1 = 0.005 m,
∆ x2 = 0.01 m, ∆ x3 = 0.015 m, and ∆ x4 = 0.02 m (b) The L2 error for the corresponding grid study interpolated over the
range of particle resolution is shown.

Table 5. Computed L2 errors for the particle resolution study using the different kernel functions.

Fluid Particle Spacing (∆x)
{

2×10−2 m, 1.5×10−2 m, 1×10−2 m, 5×10−3 m
}

Wendland C2 errors {0.0176, 0.0162, 0.0156, 0.0155}

Wendland C4 errors {0.0177, 0.0155, 0.0160, 0.0156}

Wendland C6 errors {0.0195, 0.0165, 0.0164, 0.0159}

4.2.4. Effect of Kernels on Numerical Dissipation

Numerical dissipation is an intrinsic aspect of the WCSPH model due to the dissipation
schemes that are included in the model for numerical stability. However, this becomes a
problem for simulations of progressive waves that can travel over a large distance in a
numerical wave tank with discernible wave structure throughout. Through the simulations
conducted here, it was investigated if the kernel function itself has any discernible effect on
being able to resist numerical dissipation in a numerical wave tank. To realize this, wave
elevations were determined at the locations of the four wave probes and compared with
the theoretical solutions. The comparison of the wave elevations at the three of the probe
locations at x = 6 m, x = 8 m and x = 9 m are given in Figure 17.

The plots shown in Figure 17 reveal that for all the kernels, the errors between the
theoretical predictions and the numerical computations of the wave surface elevation
increase gradually with increasing distance from the wavemaker, especially, in being
unable to capture the troughs of the surface profile accurately. However, the behaviors
with each of the kernels are found to be quite similar, and one cannot differentiate one from
the other in these plots.
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Figure 17. Comparisons of the wave surface elevations for the different kernel functions at three of the wave probe locations
used in the numerical experiments.

Since dissipation means loss of energy in a system, post-processing calculations were
carried out to aid in better visualization of the numerical dissipation effect for the different
kernel functions using the results generated for Figure 17. The particle spacing used for
the simulations in this case is 5× 10−3 m. For this, the energy change per unit area at the
wave probe locations was calculated by assuming that the total energy comprised potential
energy, kinetic energy and the internal energy of the fluid particles. The different energy
terms are calculated as follows.

Eint =
mpρ0

ρ0(γ− 1)

((
ρt

ρ0

)γ−1
+

ρ0

ρt
(γ− 1)− γ

)
+ Eint(ρ0) (29)

Ekin = mp
vp

2

2
(30)

Epot = mpgyp (31)

where mp is the mass of each particle, ρt is the density of the particle at time t, ρ0 is the
reference density, vp is the velocity of particles and yp is the height of the particle above the
tank base.

Equation (29) is used to calculate the change in internal energy of each particle [50],
while Equations (30) and (31) are used to calculate the kinetic energy and potential energy
of each fluid particle. For computation, a strip of length of 2∆x around the wave location is
used, where ∆x is the particle spacing and the energies of all the particles lying within the
strip are calculated and summed up and finally divided by 2∆x to give the total energy per
unit area at the location at a particular time. This was calculated for the entire simulation
duration at the wave probe locations for all the experiments carried out to obtain the results
shown in Figure 16. An illustration of the working method is provided in Figure 18 for
clarification. The wave probe locations from x = 6 m to x = 9 m were chosen for this study
as the effect of wave reflection is minimum in this central part of the numerical tank.
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Figure 18. Construction of the strip for calculation of energies of the particles. The length of the strip has been exaggerated
to aid in visualization.

Following the computations of the different energies using the process and equations
mentioned, a time series is obtained for each of the energy quantities. To gauge the numeri-
cal dissipation effect on each kernel function, an average value of each of the quantities at
the different locations was found out by using the RMS value of the observations as follows:

Q =

√√√√ 1
N

N

∑
i=1

y(ti)
2 (32)

where Q is the average value of the energy quantity under consideration, N is the number
of time observations, and y(ti) are the computed values of the different energy quantities at
different time instants. N has been taken equal to 875 for the experiments carried out above.
The plots depicting the RMS values of the energy quantities at the wave probe locations
are given in Figure 19. The intermediate values between the actual locations have been
interpolated using the MATLAB “fit” function with a smoothing parameter magnitude of
0.995 as done before.

It is the evident from the plots in Figure 19 that the potential energy change accounts
for the bulk of the total energy, with relatively small contributions from the kinetic energy
and internal energy changes during the simulation. From the plots, it is clear that the
potential energy continues to decrease gradually for the WC4 and WC6 kernels with the
increase in distance from the wavemaker, with no oscillating nature detected. With the
RMS average potential energy for the WC2 kernel, one sees an oscillatory pattern for the
range of distances with no continuous decay of energy observed. The kinetic energy RMS
value for the WC2 kernel also is higher than those obtained with the other two kernels,
signifying that the particle velocities remain higher during the WC2 kernel simulations
than during the WC4 or WC6 simulations, with the loss of energy also slightly lower at
this distance. The internal energy RMS value is found to remain fairly constant throughout
the simulations for the WC2 and WC4 kernels, while it drops by a very small amount for
the WC6 kernel. Overall, the total energy RMS value is found to follow the trend observed
with the potential energy, signifying that the WC2 kernel gives the best option against the
effect of numerical dissipation for long-range numerical wave tank simulations. To look
at a possible explanation for the observations above, the kernel functions and gradients
are investigated closely. The energy calculations involve the velocities and positions of
the particles, which are calculated from the particle accelerations. The calculation of the
acceleration, as seen from Equation (5), depends on the kernel gradient as well as the
function itself. The shape of these function plots is indicative of the behavior of these kernel
functions. For the higher-order kernel functions with sharper profiles, there is a greater
influence of the particles in the immediate vicinity of the particle under consideration when
calculating the velocities and positions. For the lower-order kernels with more flattened
profiles, the neighbors far away also have considerable influence on the calculation of a
particle’s properties. This helps in achieving better smoothing of the properties, and thus,
when averaged over particles within a certain span of distance, the calculation of energy is
better smoothed out, with lower fluctuations over time and possibly better conservation.

To better consolidate this observation, the potential energy, kinetic energy and the
total energy quantities were computed over a considerable portion of the wave tank at a
particular time instant using the procedure discussed above. The internal energy was not
included since it only accounted for a negligible amount of the total energy change. The
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different plots with the comparisons of the energy profiles among the kernels from x = 2 m
to x = 10 m of the wave tank are given in Figure 20.

Figure 19. Comparisons of the RMS values at the different probe locations with increasing distance
from the wave-maker for the different Wendland kernels: (a) potential energy, (b) kinetic energy,
(c) internal energy, and (d) total energy.

Figure 20. Comparisons over x = 2 m to x = 10 m of the wave tank with the implementations of the three Wendland
kernels: (a) potential energy, (b) kinetic energy and (c) total energy profiles.
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To generate the results of the above plots, the time chosen was t = 20 s. The potential
energy profiles for the three kernel functions were very similar at this particular time
instant, but the kinetic energies of particles started decaying towards the end of the tank
for the WC4 and WC6 kernels. This results in a loss of the total energy due to numerical
dissipation in a more pronounced manner compared to the WC2 kernel.

5. Variation of Parameters in WCSPH Simulations

The weakly compressible nature of the WCSPH numerical scheme results in spurious
density fluctuations over the course of a simulation. As pointed out before, numerical
dissipation schemes were devised to dissipate these pressure oscillations to help render
realistic simulations. These numerical schemes involve a number of parameters, which
need to be modified according to the simulation scenario for the required numerical stability
and a desired level of accuracy. The dissipation schemes implemented in the different
simulations throughout the present work involve a host of parameters that had to be tuned
based on the simulation conditions to get realistic results. These include the artificial
viscosity coefficient α, the coefficient β used in the momentum equation, the δ—SPH
coefficient and the speed of sound c0, which depends on the maximum fluid velocity vmax.
The smoothing length h was varied between 1.3 ∆x and 1.5 ∆x, and finally, a value of 1.5 ∆x
was used for the different simulations. A larger value of the smoothing length is often
found to lead to a tensile instability, and hence, this was avoided. On the other hand, for a
lower value, not enough neighbors are involved for accurate calculations.

The coefficient α depends on the size of the simulation domain and the particle
resolution used. The smaller the simulation domain and the number of particles used, the
larger the value of α that is required for numerical stability. For the dam break simulations,
when used alone, a value of α greater than at least 0.1 is required for numerical stability.
However, when used with other parameters like β or δ, smaller values like 0.02 can help
achieve the required stability. When α > 0.2 is used, larger viscous forces are generated,
leading to excessive dissipation that renders the simulation impractical. For sloshing
simulations, a similar trend is observed. For α in the range of 0.08–0.2, stable solutions
are realized when implemented separately. However, with higher values of α, excessive
damping is observed. For the wave tank simulations that involve a larger domain and
a much greater number of particles, with a smaller value of α = 0.01, one can obtain
stable solutions. However, the damping involved does not allow for a desirable degree
of accuracy in the results. When implemented with other dissipation schemes, a value of
α = 0.00001 can help achieve more accurate results.

The coefficient β plays an important role in achieving numerical stability and accuracy,
especially when pressure measurement is concerned. For the dam break simulations,
a value of β = 2.0 helps achieve numerical stability, even when values of α lower than
0.1 are used. Values of β in the range of 3.0–4.0 can help achieve accurate results for the
WC4 and the WC6 kernels as far as the dam break simulations are concerned, while a value
in the range of 6.0–7.0 leads to sufficiently accurate results for the WC2 kernel. In general,
for larger values of β, the result is larger repulsive forces, and this can help prevent particles
from penetrating the domain boundaries, aiding in achieving numerical stability. For the
sloshing simulations, values of β lying between 4.0 and 6.0 help in realizing accurate results.
The effect of β is less profound in large simulation domains like the wave tank simulations.
However, this parameter can still be quite effective in imparting stability to schemes at
lower values of α and δ, thus reducing excessive damping, thereby helping to achieve
realistic results. A value of β in the range 2.0–4.0 can help achieve stability when the density
reinitialization scheme is implemented in the wave tank simulations.

The δ—SPH coefficient has been varied between 0.02 and 0.1 for the different sim-
ulations carried out as part of the current work. Values of δ greater than 0.2 result in
excessive damping as was observed with the coefficient α. Accurate results for the dam
break simulations were obtained for δ values between 0.02 and 0.08 when used with the
other artificial viscosity parameters. On the other hand, for the sloshing simulations, the δ
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values were observed to be between 0.08 and 0.1. For the wave tank simulations with a
large domain size, a value of δ = 0.05 helped obtain satisfactory results with respect to the
wave surface elevation when used alone or along with the other parameters.

The parameter vmax is found to influence the computational speed of sound through
the coefficient of the speed of sound. The speed of sound was chosen between 10vmax and
20vmax for the different simulations carried out in this work. A larger coefficient of the
speed of sound was used for simulations with a lower number of particles as the higher
repulsive forces helped in numerical stability. Wave tank simulations were carried out with
speed of sound of 10vmax.

6. Conclusions

A numerical wave tank was constructed to validate WCSPH for wave generation and
propagation with different Wendland kernel functions and numerical dissipation schemes.
A qualitative investigation was carried out with the different kernels and dissipation
schemes to compare their suitability for use in medium and long propagation distances for
large periods of time. The observations from these numerical experiments can be utilized
in the future for devising numerical wave tank experiments to study extreme waves and
extreme energy localizations in hydrodynamic environments. Such studies are expected to
help better understand the underlying mechanisms behind extreme wave formations in
oceanic environments.

For the validation experiments occurring over a short period of time in small sim-
ulation domains, the different Wendland kernels were found to provide similar results
with the implementation of any chosen dissipation scheme. For the dissipation schemes,
it was found out that when the density reinitialization procedure is implemented along
with the standard δ-SPH scheme with proper tuning of the viscosity parameters α and β,
the numerical results were found to have the best agreement with the theoretical values.
The coefficient β was found to play a significant role both in helping achieve numerical
stability as well during the tuning process to get better agreement with theoretical pressure
observations. The WC2 kernel implementations, in general, provided lower estimates
of the pressure values but resulted in more stable fluid surface profiles in comparison
to the implementation of the other kernels. For the long-duration numerical wave tank
experiments, the density reinitialization scheme was not found to be a suitable choice,
as one is not able to conserve volume throughout the simulation, resulting in unphysical
surface elevation readings. When the artificial viscosity scheme was implemented alone,
the result was high viscous forces leading to underestimated elevation readings. With the
δ-SPH scheme, the authors obtained better estimates, and the simulations were found to
remain numerically stable throughout a chosen duration. In general, with the WC2 kernel,
the authors obtained better results when the surface elevation was measured compared
to those obtained with the WC4 and WC6 kernels. However, the pressure distributions
determined with the WC4 and WC6 implementations had better agreements with the
analytical results. Finally, the effect of numerical dissipation for the different kernel imple-
mentations was studied. Through the energy analysis carried out for this purpose, it was
found out that the potential energy, as well as the kinetic energy, decreased much more
slowly in the case of a WC2 kernel than that for the WC4 and WC6 implementations, thus
signifying more dissipation with the higher-order kernels. Hence, compared to the other
two kernels, it is ascertained that the choice of the WC2 kernel is better for simulations to
be carried over long distances in numerical wave tanks. In addition, a δ-SPH numerical
diffusion implementation is found to work well for wave propagation over long distances
in a numerical tank.

The numerical wave tank efforts in this work were used to validate the chosen nu-
merical model using different kernels and dissipation schemes. For realistic situations
involving much larger scales, like a harbor, the same computational model can still be
used by a suitable variation and scaling of the inter-particle distance and the smoothing
length, since the simulation itself is independent of the scale of the simulation. However,
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for more realistic simulations, the simulation domain can be extended to 3D with a greater
number of particles. To handle the high computational costs and efforts involved in such
scenarios, improved parallelization techniques, utilizing both the GPU and CPU, have to be
implemented for practical simulation durations. Utilizing such techniques, numerical wave
tank efforts will be pursued further to understand energy localization and mechanisms
underlying extreme waves.
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