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Abstract: In this study we investigated the performance of NACA 0012 hydrofoils aligned in tandem
using parametric method and Neural Networks. We use the 2D viscous numerical model (STAR-
CCM+) to simulate the hydrofoil system. To validate the numerical model, we modeled a single
NACA 0012 configuration and compared it to experimental results. Results are found in concordance
with the published experimental results. Then two NACA 0012 hydrofoils in tandem configuration
were studied in relation to 788 combinations of the following parameters: spacing between two
hydrofoils, angle of attack (AOA) of upstream hydrofoil and AOA of downstream hydrofoil. The
effects exerted by these three parameters on the hydrodynamic coefficients Lift coefficient (CL),
Drag Coefficient (CD) and Lift-Drag Ratio (LDR), are consistent with the behavior of the system.
To establish a control system for the hydrofoil craft, a timely analysis of the hydrodynamic system
is needed due to the computational resource constraints, analysis of a large combination and time
consuming of the three parameters established. To provide a broader and faster way to predict the
hydrodynamic performance of two hydrofoils in tandem configuration, an optimal artificial neural
network (ANN) was trained using the large combination of three parameters generated from the
numerical simulations. Regression analysis of the output of ANN was performed, and the results
are consistent with numerical simulation with a correlation coefficient greater than 99.99%. The
optimized spacing of 6.6c are suggested where the system has the lowest CD while obtaining the
highest CL and LDR. The formula of the ANN was then presented, providing a reliable predicting
method of hydrofoils in tandem configuration.

Keywords: hydrofoil; tandem configuration; artificial neural network; wake interaction; hydrody-
namic performance

1. Introduction

Hydrofoils are of great interest in designing efficient and high-speed crafts. They
can generate enough lift force to raise the main body of the craft when operating in
the optimal operation conditions at high speed, decreasing the wetted surface of the
craft, and hence reducing a decent amount of resistance or drag. For instance, in [1], a
planning craft with a fixed hydrofoil in regular waves was investigated to understand
the effects of hydrofoil parameters, such as angle of attack and installation height, on
the seakeeping performance. Several hydrofoils under various wavelength and speed
conditions were simulated and results of RAOs, resistance and time curve of motion
response were predicted and compared. The influence of the speed on the effect of the
hydrofoil and the flow field around the planning craft was also investigated and the result
showed that with the appropriate arrangement of the hydrofoils, the amplitude of motion
response can be significantly reduced.

Analyzing hydrofoils’ performance under different circumstances is one of the cru-
cial subjects in hydrodynamics and has been extensively studied. However, a relatively
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low number of studies have been performed focusing on analyzing and predicting the
hydrodynamic performance of a pair in tandem of hydrofoils.

To better understand the properties of airfoils and hydrofoils, many physical ex-
periments have been done to facilitate numerical modeler to validate their models. For
example, a two-dimensional NACA 0012 test program was conducted in the Langley
Low-Turbulence Pressure Tunnel, [2] to characterize the airfoil behavior. The lift and drag
coefficients of the airfoil were obtained at different angles of attack, Reynold number, and
Mach number. The study shows that changes in Mach number affect lift-curve slope and
maximum lift coefficient, and changing of these parameters have little effect on either
minimum drag or maximum lift-drag ratio. Other well-known 2D lab experiments avail-
able for validating numerical models on hydrodynamic parameters such as lift coefficient,
drag coefficient, and pressure distribution are The Abbott and von Doenhoff data [3], The
Gregory and O’Reilly data [4] and The Ladson tripped data [5]. It is very important for
validation of numerical models to consider the experimental range of parameters. Specifi-
cally, a collection of NACA 0012 experimental results were discussed by W. J. McCroskey,
1988 [6], observing that experimental drag coefficient levels are greatly affected by tripping
the boundary layer at Reynolds numbers in the experimental range. For comparing with
“fully turbulent” CFD drag results, tripped experimental data is more appropriate than
un-tripped data. In addition, numerical modeling applications have shown that using the
turbulent model capability in the commercial CFD software FLUENT 6.0 for hydrofoil
turbulent boundary layer separation flow at high Reynold Number, the realizable κ − ε
model predicts the most precise flow characteristics around the hydrofoils among all the
turbulence models. [7].

Recent studies on hydrofoil performance under different working conditions and
configuration have been addressed numerically. The free surface wave (wake) generated
by the NACA 0015 hydrofoil located close to the free surface was simulated numerically
in [8]. The results show that the Volume of Fluid (VOF) method along with realizable κ − ε
turbulence model can satisfactorily predict wave generated by the flow around a hydrofoil
moving near free surface. In addition, when the submergence depth ration goes more
than four, the wake is no longer noticeable. In a different study [9], the hydrodynamic
performance of a fully passive hydrofoil was analyzed with a 2D fluid-structure interaction
model based on the commercial CFD software ANSYS-Fluent. The pitching motion of the
hydrofoil was fully induced by the resultant moment caused by the incident water flow.
The result shows that with a linear load input acting as a power take-off (PTO) system, the
variations in the resultant moment, angular velocity and angle of attack show periodic
characteristics. A more complicated flow-separation and vortex-shedding pattern was
also observed under the linear load condition. In addition, flow characterization of the
wake behind the vortex generator to evaluate the performance of three vortex generator
geometries, namely Rectangular VG, Triangular VG, and Symmetrical VG NACA 0012 were
analyzed by Gutierrez-Amo, R [10]. Zhen Liu [11] modified the hydrofoil by introducing a
custom-designed internal slot, suggesting a significant improvement in performance in lift
coefficients, drag coefficients, and lift-drag ratios at high angles of attack.

Presently, hydrofoils are mostly constructed in pairs for craft stability, see Figure 1,
where the downstream hydrofoil moves in the wake flow of the upstream, causing a
flow-field perturbation around the downstream hydrofoils. Therefore, understanding the
interaction between hydrofoils is crucial for craft stability and performance. A numerical
parametric study on the interaction between hydrofoils in tandem was provided by Omer
Kemal Kinaci [12]. The effects of six different parameters (distance, thickness, chord
length, angle of attack, aspect ratio, and tapered wings) were discussed. Kinaci claims
that when there is a small distance between the hydrofoils, the flow gets stuck in the gap
region to increase the pressure at the trailing edge of the upstream and the leading edge of
the downstream hydrofoils. The effect on the interaction vanishes with greater distance.
Moreover, the hydrodynamics of two-dimensional tandem hydrofoils travelling below the
water surface has been investigated numerically through potential flow theory by G.D.
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Xu [13], who states that in the design of the hydrofoils boat, the downstream hydrofoils
shall be arranged at the zero crossing with an upwash flow. In terms of energy, the “lift
augment mode” can be used to save energy. In addition, the wake interactions between
two tandem hydrofoils was reviewed by Penglei Ma [14] using numerical investigations
to analyze the response of two tandem oscillating hydrofoils. Ma concludes that there is
an obvious difference residing in the response of two tandem hydrofoils, owing to the
existence of wake interactions. Furthermore, the velocity deficit tends to lower the heaving
amplitude and energy harvesting performance of the downstream hydrofoil. In addition,
the upstream hydrofoil has a greater time-averaged performance. However, the differences
between the responses of two tandem hydrofoils have not a consistent pattern with respect
to the spacing of the hydrofoils.

The application of CFD provides a less expensive way to investigate the hydrody-
namic performance of a physical model, compared to the elevated construction cost of
the model prototype and laboratory test. However, application of CFD needs massive
computational resources and some numerical model simulations still are prohibitive. On
the other hand, other more simplistic methods based on published data such as analytical
data, experimental data, and numerical data can be used to predict the behavior of the
physical model or natural phenomenon. For example, there are already several studies in
the Ocean Engineering field where Artificial Intelligence tools Neural Networks can be
applied to tackle the behavior of the physical model or natural phenomenon reasonably.
An example of such application of artificial neural networks (ANN) was presented by
Krzysztof Kosowski [15] to investigate the flows parameters in steam turbine cascades. The
results proved that ANN could predict the flow parameters reasonably well, and ANN can
reduce by several orders of magnitude the time for optimizing these flow parameters. ANN
was also coupled with a genetic algorithm by Kamari [16] to optimize the Selig–Donovan
7003 (SD7003) airfoil aerodynamic performance by finding optimum parameters of blow-
ing/suction. Optimization results showed that a significant reduction of the separation
zone was achievable. Consequently, perceptible improvements in lift, drag, and aerody-
namic performance were achieved. In addition, convolution neural networks (CNNs) were
used to combine with Generative adversarial networks (GANs) to directly establish a one-
to-one mapping from a parameterized supercritical airfoil to its corresponding transonic
flow-field profile over the parametric space [17]. The results showed that this method is
a promising tool for the rapid evaluation of detailed aerodynamic performance, which is
superior in efficiently and accurately predicting high-dimensional flow field other than
low-dimensional aerodynamic characteristics. In other study, Shuyue Wang [18] used ANN
to generate new airfoils departing as little as possible from the initial one in the database,
which has some aerodynamic features borrowed from other airfoils that constituted the
database. The results show that the aerodynamic performance of the new airfoil can be
improved to that of the starting points. Moreover, Neural networks were also used to
determine the airfoil geometry from a given Cp-distribution by Athar Kharal and Ayman
Saleem [19]. ANN was adopted in the active Gurney flap (AGF) flow control technique to
enhance the aerodynamic adaption capability of the wind turbine and, thus, achieve an
optimal operation in response to fast variations in the incoming wind [20]. Feed-forward
back-propagation, generalized regression, and radial basis neural nets were compared
in terms of performance and regression statistics, and feed-forward back-propagation
neural nets was proven to be more promising in the study. Notably, Hai Chen [21] used
convolution neural networks (CNN) to predict the aerodynamic coefficients (pitch-moment,
drag, and lift) of NACA 0012 foil. The results showed that the proposed method based
on CNN could simultaneously predict all the aerodynamic coefficients listed above of
the foil in a very short time and with high accuracy. Similarly, Hashem Nowruzi [22]
trained an ANN with the robust databases extracted from CFD simulations of NACA 0012
hydrofoil’s hydrodynamic performance. Based on weight sensitivity analysis in ANN, the
Reynolds Number was confirmed to be the most effective factor on the response variable
of lift-to-drag ratio (LDR).
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In this study, we aim to generate a set of 2D CFD hydrodynamic simulation to obtain
the hydrodynamic performance/behavior of a pair of hydrofoil (NACA0012) arranged
in tandem and fully submerged under different spacings and AOAs, and thus generate a
database of the system performance parameters to train an ANN. NACA 0012 hydrofoil
section was selected for its simplified symmetric profile and by the extensive published
material allowing us to better understand the underlying physics for further development
and investigation. First, the RANS-based CFD approach is used to validate a single
hydrofoil model by comparing it with the published experimental data. Numerical model
convergence is analyzed, and model resolution is established. Then, the hydrodynamics
coefficients and flow regime are obtained numerically for the pair of hydrofoils arranged
in tandem for each sample of the set. An optimal artificial neural network (ANN) is
obtained using the sample sets generated from the numerical simulation. Additionally,
regression analysis of the output of ANN is performed, and the results are compared with
the numerical simulation. Furthermore, the formula of the ANN is presented, providing a
reliable predicting method of the hydrofoils in tandem configuration.

2. Numerical Simulation

The incompressible viscous flow field around a pair of fully submerged two-dimensional
hydrofoils in the tandem configuration is simulated with the STAR-CCM+ based on
the Reynolds Averaged Navier–Stokes (RANS). The flow field is assumed to be two-
dimensional, incompressible with an infinite water depth and without free surface. The
realizable κ − ε turbulence model is used for the incompressible viscous flow.

The geometry of the hydrofoils and the incoming velocity of the fluid are set to be Non-
dimensional in this study to facilitate comprehension about flow and hydrofoil behavior.
The 2D NACA 0012 hydrofoil profile (chord = 1 m) is used in our numerical study.

In this paper, the main objective is to optimize the hydrodynamic performance of
the hydrofoil tandem system. In other words, to maximize the lift-to-drag ratio based on
hydrofoil spacing and AOAs. It is important to mention that the cavitation effect on the
hydrofoils is not considered in this study.

The most important non-dimensional parameter characterizing the flow regimes is
the Reynolds number, given by Equation (1).

Re =
ρwaterUc

µwater
(1)

where c is the foil chord length. Also, other of equal importance is the non-dimensional
lift-to-drag ratio (LDR) parameter given by Equation (2).

LDR =
L
D

(2)

where L and D are the lift and drag forces respectively, and CL and CD are the lift and drag
coefficients as shown in Equation (3) and Equation (4),

CL =
L

1
2 ρwater U2l

(3)

CD =
D

1
2 ρwater U2l

(4)

Here, l is the characteristic length corresponding to the chord length for the submerged
hydrofoil and U is the flow velocity surrounding the hydrofoil system.

For our numerical simulation the STAR-CCM+ computational fluid dynamics program
was used under the set of equations and assumptions described above. The second-order
implicit stepping in time numerical scheme was used and the results of the unsteady flow
were compared to the steady-state results, where the time-averaged flow properties are



J. Mar. Sci. Eng. 2021, 9, 462 5 of 16

no longer evolving. The results of both state flow conditions showed a good agreement,
therefore, the steady-state condition was adopted in this study.

At first, only one hydrofoil was used in the computational model to compare against
published experimental data and to validate our numerical setup. The general layout of
the computational domain is shown in Figure 1, depicting the inlet and outlet boundaries.

Figure 1. General layout of the computational domain. Arrows indicate location of the inlet and
outlet of the computational domain.

The inlet and outlet boundary conditions are selected to ensure a velocity with a
uniform speed at the inlet and a pressure of zero at the outlet. A non-slip wall boundary
condition is set at the surface of the NACA0012 hydrofoil. The boundary conditions for the
other two surfaces of the computational domain (the upper bound and the lower bound)
are set to be symmetric, as shown in Table 1.

Table 1. Boundary types of computational domain.

Boundary Boundary Condition

Inlet Velocity inlet
Outlet Pressure outlet

Upper boundary symmetric
Lower boundary symmetric

Hydrofoil wall

Using the build in generator in the Star-CCM+, the computation domain mesh for this
single NACA0012 hydrofoil is generated. As shown in the Figure 2a, a 3D rectangle with
a half-sphere inlet was first built as the mesh domain and converted into 2D mesh. The
advantage of this mesh compared to the 2D meshing method is that it needs fewer grid
faces while still achieving the same computational accuracy. The length and width of the
computational domain are set to be 27c and 16c, respectively, where c is the chord length
of the hydrofoil. A finer mesh is used around the hydrofoil and the wake zone, while a
relatively coarse mesh is used elsewhere. The overset grid technology is used to change the
AOA of the hydrofoil as shown in Figure 2b because it can be more convenient to change
the hydrofoil’s AOA without regenerating the mesh domain. The length, and the width
of the overset grid are 2.7c and 1.6c, respectively. To better analyze the flow field around
the NACA 0012, prism layer is adopted closed to the hydrofoil as shown in Figure 2c.
The realizable κ − ε turbulence model is used in the numerical simulation, and the near-wall
flow field is solved by the two-layer all y+ wall treatment. Second-order upwind scheme
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was adopted for the momentum equation discretization. Second-order upwind scheme was
used for the turbulence equation discretization while Gauss-LSQ cell-based scheme was
applied for the gradient pressure terms. The pressure-velocity coupling method was set as
SIMPLE algorithm. A prism of 25 layers are used around the surface of the hydrofoil with a
total thickness of 0.04 m are used around the surface of the hydrofoil. By varying the basic
mesh size, three sets of grids (fine, medium, and coarse) are generated for the Verification &
Validation procedure. The three density grid sizes are 150 K, 85 K, and 48 K, respectively, and
the average refinement ratio rG is 1.33.

Figure 2. Computational domain and mesh structures. (a) Grid of the computational domain with
boundaries. (b) Close-up view of Grid around overset mesh. (c) Close-up view of grid around the
hydrofoil.

2.1. Mesh Independence Check

To validate mesh independence, three different grid sizes (fine, medium, coarse) were
set up and the CD and CL are investigated and compared with the experiment results. The
numbers of each grid density and their lift and drag coefficients at AOA of 8.1◦ are shown
in Table 2 as an example.

Table 2. Grid numbers and lift, drag coefficients of each grid Mesh.

Mesh Total Elements Lift Coefficient Drag Coefficient

M1:Fine 151 K 0.8344 0.0160
M2:Medium 85 K 0.8114 0.0147
M3:Coarse 47 K 0.7392 0.0162

The CFD simulation uncertainty USN is divided in four part as shown in Equation (5)

USN =
√

U2
G + U2

T + U2
I + U2

P (5)

where the grid uncertainty UG, iterative uncertainty UI , time step uncertainty UT , and
another parameter uncertainty UP need to be solved separately. In this study, only the grid
uncertainty UG needs to be analyzed. [23]

The refinement ratio rG for 2D problem is defined in Equation (6)
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rG =

(
Nfine

Ncoarse

)1/2
(6)

The convergence ratio of numerical simulation can be obtained as follows:

RG =
ε21

ε32
=

S2 − S1

S3 − S2
(7)

where S1, S2, and S3 represent numerical simulation results of the fine, medium, and coarse
grid.

The numerical results are in stable state only when |RG| < 1. In addition, there are
two possible situations as follows:

(i) 0 < RG < 1, Monotonic Convergence (MC);
(ii) RG < 0, |RG| < 1, Oscillatory Convergence (OC);

The generalized Richardson extrapolation method is applied to evaluate the numerical
calculation accuracy for case (i), where the final numerical calculation grid uncertainty UG
can be calculated using Equation (8)

UG =

∣∣∣∣∣CG
ε21

rPG
G − 1

∣∣∣∣∣+
∣∣∣∣∣(1− CG)

ε21

rPG
G − 1

∣∣∣∣∣ (8)

The estimated order of accuracy PG and asymmetric measurement distance CG in
Equation (8) can be calculated as shown in Equations (9) and (10)

PG =
ln|1/RG|

ln rG
(9)

CG =
rPG

G − 1

rpEST
G − 1

(10)

where PEST = 2 is the theoretical accuracy.
For the case (ii), the grid uncertainty is calculated by using the maximum value SU

and the minimum value SL of the oscillation based on the numerical calculation results as
shown in Equation (11)

UG =

∣∣∣∣12 (SU − SL)

∣∣∣∣ (11)

The grid uncertainty is shown in Table 3. The Lift coefficient of the hydrofoil under
AOA of 8.1◦ in the 3 grids sets shows a Monotonic Convergence trend while the Drag
coefficient shows an Oscillatory Convergence. The calculated grid uncertainty UG for lift
and drag coefficients are all less than six percent of the experimental results.

Table 3. Grid uncertainty of the CFD model.

rG RG(CL) RG(CD) UG(CL) UG(CD)

1.33 0.3191 (MC) −0.8417 (OC) 5.97% 4.44%

Furthermore, to validate our CFD numerical model, other studies are investigated. As
shown in Table 4, the lift coefficients and drag coefficients of the 2D NACA0012 foil under
different angles of attack are calculated and compared with the experimental data. The
results also have a good agreement with the experiment data.

In addition, the pressure distribution on the surface of the hydrofoil of the three grids
( M1, M2, M3) are also investigated and compared with the experiment data, as shown in
Figure 3.

The results of the pressure distribution in Figure 3 show that the M 1 with total number
of cell Z = 150 K is an appropriate mesh structure. The face validity of the mesh is checked
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and 100% of the faces have a face of 1.0, which means that all face normals are properly
pointing away from the centroid. The pressure distribution around the hydrofoil matches
well with the experiment data.

Table 4. Comparison of the lift and drag coefficients.

Degree CFD − CL CFD − CD EFD − CL EFD − CD Error − CL Error − CD

1.97 0.2003 0.0101 0.197 0.0108 1.68% −6.76%
4.14 0.4331 0.0113 0.4219 0.0115 2.66% −2.18%
5.98 0.6249 0.013 0.6084 0.0134 2.72% −2.86%
8.1 0.8344 0.016 0.8123 0.0163 2.73% −2.19%

10.04 1.0093 0.02 0.9789 0.0209 3.11% −4.66%

Figure 3. Influence of mesh sizing on pressure distribution on the surface of hydrofoil and comparison
on experiment data at Re = 3,000,000 and AOA = 10◦.

2.2. Computational Domain of Two Hydrofoils in Tandem Configuration

Using the same method, a computational model of two hydrofoils with tandem
configuration was built. The grid structure is shown in Figure 4.

The definitions of the three parameters of the configuration of the tandem arranged
hydrofoils ( spacing between two hydrofoils, upstream hydrofoil’s AOA, downstream
hydrofoil’s AOA) are shown in Figure 5.

To investigate the effect of these three parameters on the hydrodynamic performance
and generate enough data for the Artificial Neural Network(ANN), 788 numerical simula-
tions with the input of different combinations of these three parameters are conducted. The
ranges of the three parameters: spacing between two hydrofoils, the upstream hydrofoil’s
AOA, and the downstream hydrofoil’s AOA, are set respectively as shown in Table 5.

The hydrodynamic results obtained by the established computational model can
predict reasonable well expected tandem-hydrofoil performance. However, to have a
better understanding of how the upstream hydrofoil affects the downstream hydrofoil’s
hydrodynamic performance based on an optimal arrangement of the system and thus
obtaining an efficient or maximum LDR, more data are needed to be generated to obtain
accurate prediction of the hydrofoil system. However, even though the application of CFD
simulation provides an inexpensive way to investigate the hydrodynamic performance of
a physical model compared to physical model construction and laboratory test associated
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costs, the application of CFD simulations still need massive computational resources and
some complex numerical simulation cases are still prohibitive. Therefore, in the study,
we aim to apply a more simplistic method using the numerical data obtained from the
hydrofoils performance study that can be used as the basis for the construction of an
Artificial Neural Network tool to predict the behavior of the physical model.

Figure 4. Computational domain and mesh structures of two NACA0012 hydrofoils in tandem
configuration. (a) Grid of the computational domain with boundaries. (b) Close-up view of Grid
around overset mesh. (c) Close-up view of grid around the hydrofoil.

Figure 5. Schematic of the configuration of the tandem arranged hydrofoils.

Table 5. Range of input variables.

Input Variables Range Unites

Spacing between two hydrofoils 2 to 7 chord length
AOA of upstream hydrofoil 0 to 10 Degree
AOA of upstream hydrofoil 0 to 10 Degree

3. Artificial Neural Network (ANN) Structures

ANN technology has been applied extensively in Ocean Engineering area. This is
due to the ability of ANNs to solve discontinuous and non-linear problems, and to predict
the outputs (results) of a complex system based on various selected input parameters
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with robustness, adaptability, and high accuracy [24]. The BP (back-propagation) Neural
Network is used in this study, which is one of the most common type of ANN used for
data analysis is the multi-layer perceptron (MLP) networks based on the BP learning
algorithm [25].

Figure 6 shows the 3-8-6 BP neural network architecture used in this study. The
three input layer neurons perform the function of distributing, scaling (if it is necessary),
and transfer the three inputs to the processing elements of the next layer. The second
layer is the processing or hidden layer, and the eight neurons process the inputs and send
their results to the output layer. Finally, the six output-layer neurons represent the six
hydrodynamic coefficients predicted by the ANN. The Marquardt–Levenberg algorithm
(MLA) was used to optimize of the ANN, stochastic gradient descend method was used
for learning procedure.

Figure 6. Neural network architecture.

In the current study, the linear transfer function is used between hidden layer and
output layer as shown in Equation (12). Output1 to Output6 represents the six outputs
from the neural network ( downstream hydrofoil’s drag coefficient, upstream hydrofoil’s
drag coefficient, total drag coefficient, downstream hydrofoil’s lift coefficient, upstream
hydrofoil’s lift coefficient, and total lift coefficient), respectively as shown in Figure 6. ω2ij
and b2j are the interconnection weights and bias between the hidden layer and output layer,
respectively. In addition, j represents the jth nodes in the hidden layer. Zj are the values
for the eight neurons in the hidden layer. The hyperbolic tangent sigmoid transfer function
is selected for neurons between the input and hidden layers, so the value of Zj can be
calculated using Equation (13). Where α1, α2, and x are the three inputs (AOA of upstream
hydrofoil, AOA of downstream hydrofoil, spacing between two hydrofoils), respectively.
ωα1j , ωα2j , ωxj , and b1j are the interconnection weights for the three inputs listed above and
bias between the input layer and hidden layer, respectively.

Outputi =
8

∑
j=1

w2ij · Zj + b2i, 1 < i < 6, 1 < j < 8 (12)
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Zj =
2

1 + exp
(
−2 ·

(
α1 · wα1j + α2 · wα2j + x · wxj + b1j

)) − 1,

1 < j < 8, 2 < x < 7, 0◦ < α1 < 10◦, 0◦ < α2 < 10◦
(13)

Mean square errors (MSE) and correlation coefficient R are two error evaluation
factors selected to evaluate the quality of the predicted results of the ANN as shown in
Equations (14) and (15). N is the number of evidence data and Ti is the reference data
(target values). In addition, Oi represents the predicted values using the trained Neural
Networks. Ō and T̄ are the average values of the reference data and outputs of the Neural
Network, respectively. Notably, smaller MSE and a proximity of R to 1 implies a more
accurate prediction, referring to a better quality of the Neural Networks.

MSE =
∑N

i=1(Oi − Ti)
2

N
(14)

R =
∑N

i=1(Oi − Ō)(Ti − T̄)√
∑N

i=1(Oi − Ō)
2 ∑N

i=1(Ti − T̄)2
(15)

In the present study, 700 out of the 788 CFD simulation results are randomly selected
and used as the data base to train the ANN, the other 88 are later used to test the trained
ANN. Limited values of considered input-output variables are tabulated in Table 6. More-
over, to avoid over-fitting, early stopping approach presented by Prechelt [26] is applied
in our study by classifying the inputs-outputs of our numerical simulated data in three
randomly groups. 70% of the numerical simulated data are used to train the ANN, 15% are
used to validate the trained ANN to avoid over-fitting, and the other 15% are used to test
the quality of the ANN.

Table 6. Input and output ranges for ANNs.

Variables Range Unites

Input
Spacing between two hydrofoils (x) 2–7 chord-length

AOA of upstream hydrofoil (Alpha 1) 0–10 Degree
AOA of upstream hydrofoil (Alpha 1) 0–10 Degree

output
Total Lift Coefficient (CL) 0–2 Non-dimensional

Total Drag Coefficient (CD) 0.01–0.04 Non-dimensional
Total Lift-to-Drag Ratio (LDR) 0–55 Non-dimensional

The predicted data are validated with the test data using a linear regression model. In
addition, the linear regression analysis are performed for the training sample set, validation
sample set, test sample set, and all sample set, respectively, the results are shown in
Figure 7.

As shown in Figure 7, the output data from the neural network matches quite well
with the targeted data with correlation coefficients R > 99% and MSE < 0.0001 for all
the four sample sets. In addition, the other 88 numerical simulated data are used to test
the trained ANN. In addition, the correlation analysis was performed using the same
method, with a R = 99.88% . Thus, it can be concluded that the selected ANN is able to
accurately predict the hydrodynamic performance of the system under different geometric
and environmental conditions.

Furthermore, all the 788 CFD simulation data are combined as a whole sample set. In
addition, the Neural Network’s prediction for all the 788 cases were compared with the
original CFD simulation data. For instance, the results of the CFD simulation and error of
the predictions of the ANN of the Drag Coefficient are listed in the Figure 8.
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Figure 7. Regression Analysis of the Neural network’s output using (a) training sample set
(b) validating sample set (c) testing sample set (d) all sample set.

Figure 8. Comparison between the prediction from trained ANN and the CFD simulation results.

As can be concluded by looking at Figure 8, the differences for all the 788 cases are
relatively small compared to the actual CFD simulation results. So, we can conclude that



J. Mar. Sci. Eng. 2021, 9, 462 13 of 16

the ANN can be used to substitute the traditional CFD simulation method if the forecast
time is limited and still providing a reasonably good prediction.

In addition, to provide a faster and more convenient way to predict the hydrodynamic
performance of the system in case the trained ANN is not available. The weights (w) and
bias (b) matrix used in the equation according to inputs variables of AOAs and distance
presented in Equations (12) and (13) are extracted and tabulated in Tables 7 and 8,
respectively.

Table 7. Constant values of weights and bias for hidden layer.

i wx wα1 wα2 b1

1 1.140 −0.988 −0.657 2.607
2 −0.361 −0.112 0.085 0.0612
3 0.027 0.483 −0.111 −0.659
4 −0.280 0.214 −0.280 0.211
5 0.018 0.099 0.817 −0.930
6 1.016 −0.474 −0.564 2.200
7 0.061 0.092 0.655 0.436
8 0.050 −0.586 −0.031 −0.560

Table 8. Constant values of weights and bias for output layer.

j w1j w2j w3j w4j w5j w6j

1 0.605 −1.046 −0.350 −0.292 0.653 0.211
2 −1.501 1.757 −0.467 −0.230 −0.653 −0.523
3 −1.112 2.475 1.522 −0.402 0.633 0.133
4 2.289 −2.473 1.038 0.571 0.996 0.929
5 1.029 −0.592 1.295 0.699 0.291 0.589
6 −2.004 2.827 0.145 0.803 −1.128 −0.185
7 0.977 −0.990 0.548 1.401 0.563 1.169
8 0.694 −0.318 1.002 0.563 −0.734 −0.162

b2i 0.527 0.052 1.529 −0.553 0.259 −0.174

To investigate the effect on the downstream hydrofoil exerted by the upstream hydro-
foil at different space between the two hydrofoils. The AOA of downstream hydrofoil is
fixed at 5◦, the predicted lift coefficient and drag coefficient at different spacing between
the two hydrofoils using prediction of the trained Neural network are plotted in Figure 9.
Different color represents different AOA of upstream hydrofoil.

Figure 9. The effect of the space between two hydrofoils on the downstream hydrofoil’s (a) Lift Coefficient (b) Drag
Coefficient.



J. Mar. Sci. Eng. 2021, 9, 462 14 of 16

As shown in the Figure 9a, there is a critical spacing at 6.6 chord length where the CL
has a local maximum value and the CD has a local minimum value no matter how much
the AOA of the upstream hydrofoil is. When the spacing is smaller than 6.6 chord length,
as the downstream hydrofoil gets further away from the upstream hydrofoil, the higher
Lift coefficient and lower Drag coefficient will be found at the downstream hydrofoil.
Therefore, to let the downstream hydrofoil achieve the highest LDR, the downstream
hydrofoil should be arranged at 6.6c away from the upstream hydrofoil.

Similarly, the predicted CL and CD of the trained Neural network at different AOA
of upstream hydrofoil are shown in Figure 10 when the α1 is fixed at 5◦. Different color
represents different spacing between the two hydrofoils. As shown in the Figure 10, as
the α1 gets larger, the CL gets lower and the CD gets higher. In other words, the upstream
hydrofoil have a negative effect on the hydrodynamic performance of the downstream
hydrofoil. The effect gets less as the spacing between the two hydrofoils gets larger.

Figure 10. The effect of the AOA of upstream hydrofoil on the downstream hydrofoil’s (a) Lift Coefficient (b) Drag
Coefficient.

4. Conclusions and Future Works

A 2D viscous numerical model based on STAR-CCM+ is generated to simulate the
hydrodynamic performance of two NACA 0012 hydrofoils aligned in tandem. The grid
independence analysis is validated using the Richardson Extrapolation method. The nu-
merical results are found in concordance with the published experimental results. Then
two NACA 0012 hydrofoils in tandem configuration were studied in relation to 788 combi-
nations of x in range of 2c to 7c, AOAs in range of 0◦ to 10◦. In addition, an optimal artificial
neural network (ANN) was trained using the sample set generated from the numerical
simulation. Regression analysis of the output of ANN was performed, and the results are
consistent with numerical solutions. The formula of the trained ANN was then presented,
providing a reliable and efficient predicting model of hydrofoils in tandem configuration.
The main conclusions are presented below:

1 The computational model using an overset grid technology to change the AOA of the
hydrofoil instead of using the traditional method (by changing the vectors of the inlet)
is found to show a good capability to simulate the hydrodynamic performance of the
system with acceptable accuracy, which could save huge amount of time on the grid
generation.

2 The predicted outputs of the optimized ANN matches well with the numerical re-
sults with a correlation coefficient greater than 99.99%. Showing that the developed
methodology used in this study to establish a fast and reliable predicting model can
be used in the future for similar system.

3 A critical spacing of 6.6c was found to have the lowest CD while have highest CL
and LDR for both the downstream hydrofoil and the system. Therefore, to optimize
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the performance of the system, the downstream hydrofoil should be arranged at 6.6c
away from the upstream hydrofoil.

4 Mathematical formula for the optimized ANN was achieved, presenting a more
efficient way to predict the system’s hydrodynamic performance, which could be
further applied to optimize similar systems. In addition, it can also be used to establish
the control system of autonomous hydrofoil crafts.
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LDR Lift to Drag Ratio
MSE Mean square error
RMSE Root mean square error
CFD Computational fluid dynamics
CL Lift coefficient
CD Drag coefficient
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