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Abstract: Nowadays, container terminals are subject to extensive technological changes and specific
transformations. Changes applied to terminals tend to increase their ability to offer high- end
personalized services to the customers and finally affect the competitiveness. The estimation of
efficiency corresponds to terminals’ ability to increase the production with a specific level of inputs
and has been the topic of many studies, especially those conducted on a wider regional or global
level. The main objectives of our research are to evaluate the model, conduct sensitivity analysis, and
estimate technical efficiencies on a sample of North Adriatic Ports Association (NAPA) interconnected
medium-sized terminals, located in the narrow geographic area, on the same transport corridor
thus representing each other’s competition. For that purpose, we have implemented a stochastic
frontier approach on a balanced panel dataset of first-order and additionally introduced control input
variables with Cobb-Douglas and trans-logarithmic functional forms. The stochastic production
frontier estimation shows the range of NAPA terminals’ technical efficiencies from 65.24% to 93.92%,
with a global average of 78.49% and a positive trend of 1.28% over the observed period of time. Our
findings also indicate that NAPA terminals with the highest estimated technical efficiencies do not
necessarily need to be the most productive ones, and vice versa.

Keywords: interconnected container terminals; transport corridor; stochastic frontier analysis; tech-
nical efficiency estimation; direct and indirect effects

1. Introduction

In recent years, most countries base their growth on export development with an emphasis
on effective logistics, the quantity and quality of infrastructure required for goods trans-
portation, as well as the efficient management of such infrastructure and related services [1].
Since around 80% of the international trade volume in goods is carried by sea in con-
tainers, ports/container terminals (hereinafter called ‘terminals’) are playing a crucial
role in global logistics trade imposing a constant need for improvement in their overall
performance [2–4]. Due to the increasing demand in maritime freight transport, the devel-
opment of logistics, as well as stronger land transport connections and global competition,
have encouraged the modernization of cargo handling technologies [1,5,6]. Accordingly, the
increasing demand has imposed the emergence of building modern container ships, result-
ing in transformations of port infrastructure and superstructure becoming a key factor in
achieving efficiency [7,8]. Consequently, berth depth is also becoming an important factor,
imposing the need for adapting berth depth to accommodate such vessels [9]. Therefore, to
remain competitive, terminals must constantly comply with market requests while aiming
to achieve efficient utilization of the available resources and taking into account numerous
internal and external impacts [10–12]. Moreover, if terminals are not operating efficiently
enough the opportunities in maritime transport will be lost [13,14]. In addition to adapting
to market demands, port/terminal operators strive to improve port productivity by min-
imizing container handling time and vessel turnaround time as these are crucial factors
causing excessive costs to carriers and directly affect port competitiveness [9,15]. Following
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that, the efficiency level will depend on the duration of container handling and vessel
turnaround time in a particular port. Ultimately, increasing terminal efficiency level will
encourage an increase in transport demand, giving the terminal a higher market share [12].

There is already a significant amount of research dealing with the issue of techni-
cal efficiency analysis of terminals, aiming to identify (in)efficiency sources influencing
overall and/or individual productivity levels. Such research is ultimately focused on
ports/terminals situated in wider geographical regions i.e., North-Europe, Mediterranean,
Atlantic, etc. The perceived gap in the existing literature is a lack of significant evidence on
conducting such technical efficiency estimations on a set of extremely competitive terminals
located in the narrow geographical area i.e., on the same transport corridor.

In this paper, we target a specific testing area of the Northern Adriatic where we
investigate technical efficiency levels of five North Adriatic ports/terminals organized into
North Adriatic Port Association (NAPA). At the end of the former century investments in
the port infrastructure of NAPA terminals were insufficient to compete with other ports in
the Mediterranean and North Europe. Hence, they changed development strategies aiming
to increase competitiveness with North-European ports and to increase the share of transit
cargo-demand from far-east markets. Within those strategies, they boosted investments in
port infrastructure and port facilities in the last 10 years.

We developed the base model for estimation of technical efficiency levels consider-
ing interdependencies between NAPA interconnected terminals. For that purpose, the
stochastic method i.e., Stochastic Frontier Analysis (SFA) based on Battese and Coelli 1992
(BC1992) model specification is used. Through sensitivity analysis, proposed specifications
with different functional forms and combinations of input variables are tested to achieve
the best representation of the persistent situation in the testing area. Based on the selected
model, we provided further analysis of technical efficiency levels.

Briefly, this paper is structured in five mutually dependent sections. Section 2 gives
a brief overview of the current state of studies conducted applying technical efficiency
levels estimation approaches. Section 3 describes the theoretical and econometrical model
specification for the defined sample, as well as the input variables and related output.
Section 4 relates to the analysis and discussion of the obtained results. Conclusions on
conducted research are drawn in the final, Section 5.

2. Literature Review

When determining port performance, efficiency is often considered as productivity
since these two measures are directly related. In other words, a port will improve its
performance by increasing productivity and efficiency. Namely, there are three basic
concepts associated with efficiency and productivity: input, process, and output. Input
data usually refers to resources such as capital, labor, or land, further processed to obtain a
certain output—product or service [16]. Hence, port/terminal efficiency will depend on
its ability to combine inputs and technology to produce an output. However, efficiency
and productivity are not synonymous [13,17]. Efficiency can be described as quality and
successful task performance without wasting energy or time, thus showing how well
resources are used [18,19]. Furthermore, there are two basic concepts of efficiency analysis:
minimization and maximization, where minimization refers to inputs and maximization to
outputs [12,20]. This claim was confirmed in [21], finding that firms efficient in minimizing
inputs are inefficient in maximizing outputs. Likewise, terminal efficiency can be obtained
by comparing the actual, observed performance against its optimal performance where the
optimum is determined based on the comparison among the performance of competing
terminals [22,23].

In contrast to efficiency, port/terminal productivity is a measure primarily observed
with an emphasis on changes over time (for instance, how fast cargo is handled), ex-
pressed by the amount of output obtained for input used [24]. Productivity levels dif-
fer for each port due to their infrastructure, service quality and the ability to attract
demand [25]. Consequently, efficiency indicates the need for technical improvement, while
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productivity refers to increasing efficiency in the industry. If a port/terminal is unable
to produce the maximum possible output, it is considered inefficient. The reasons for
inefficiencies may be insufficiently motivated employees, adverse weather conditions,
lack of information, etc. [26]. Although a port or terminal may maximize profits, it cannot
achieve its optimal performance due to the above-stated reasons. Therefore, a difficult
task for port/terminal operators is to build a terminal that will not be inefficient due to
overcapacity, i.e., where congestion will not occur due to its under-capacity. In other words,
producing the maximum output using the least possible amount of input is the main
goal of each terminal operator [18]. The above statement defines the concept of technical
efficiency that will be presented in this research. Since the concepts of productivity and
efficiency are similar but different, technical efficiency can be defined as the ability to obtain
the maximum amount of output/input using specific inputs/outputs, depending on the
orientation of the model [27,28]. Based on previous definitions, it can be concluded that
technical efficiency is one of the decisive factors of productivity.

Within the framework of technical efficiency estimation, frontier approaches have
been established and specially developed. For that purpose, the most commonly used
ones are Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). Both
methods allow derivation of relative efficiency ratios within a group of analyzed units. The
major difference between those two approaches is in their classification. DEA approach
is classified as non-parametric while SFA is classified as a parametric method. A detailed
comparison of the fundamental differences between mentioned approaches is given in [29].

There are certain advantages and disadvantages of both approaches. Major conclu-
sions on that topic are drawn out in [30], conducting a performance analysis using the
identical datasets for both approaches. Due to high sensitivity to the number of variables,
the existence of statistical inconsistency and biased results, as well as a debatable inference
procedure, DEA is a less desirable solution. Contrarily, SFA, especially by using a panel
data structure, is more reliable for conducting efficiency analysis of terminals i.e., for un-
derstanding the dynamics between input/output variables and for port technical efficiency
determinants [31]. Another remarkable feature of the SFA approach is the possibility to
calculate statistical noise, control exogenous factors, deal with measurement errors and test
hypotheses [16,32]. Regardless of all the above-mentioned, opinions are divided, and both
of the approaches are very often used in port/terminal technical efficiency estimations.

Once the basic features of estimating frontier and measuring technical efficiency on
port/terminal levels have been defined, more recent studies have complemented and ex-
panded the knowledge in that field. Namely, DEA-CCR (Charnes, Cooper and Rhodes) and
DEA-BCC (Banker, Charnes and Cooper) input and/or output-oriented models have been
widely used to estimate terminals’ technical efficiencies, situated in various geographical
regions. In order to compare the obtained results and draw out specific conclusions, some
authors have applied both approaches (DEA and SFA) in analyzing technical efficiency
levels. Table 1 shows the comparison of researches conducted using DEA or DEA and SFA
method, specifying the approach/model used, sample/testing area and the objective of
each research.

Table 1. Comparison of researches conducted using DEA or DEA and SFA method.

Reference Approach Testing Area/Sample Objective

[33] DEA-CCR 19 terminals; 12 Middle
East Region countries

To measure technical efficiency and to identify potential
areas of improvement for inefficient terminals

[34] DEA-CCR Window Analysis 8 ports; East and West
African countries

To measure, analyze and compare the efficiency over
time in order to provide port development strategies

[35]
Bi-objective multiple-criteria
data envelopment analysis

(BiO-MCDEA)
20 ports; Brazil

To examine the correlation between port efficiency and
turnaround time, quay length, yard area and cargo

throughput
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Table 1. Cont.

Reference Approach Testing Area/Sample Objective

[11] DEA and Free Disposal Hull
(FDH)

38 terminals; Asian
countries

To examine whether investing in
infrastructure/equipment influences efficiency and

service level

[36] DEA-Bootstrapping analysis 28 port authorities;
Spain

To investigate whether operational and financial
efficiency is improved by grouping the ports based on

their proximity or seafronts

[37]

DEA-CCR/BCC; SFA-BC1992
model specification,
Cobb-Douglas and

trans-logarithmic functional
form

10 ports; European
countries

To determine port activity boundaries and ports’ area
spatial scope, in order to investigate whether managers’

decisions affect ports’ performance

[38]
DEA-CCR/ BCC; SFA-BC1992

model specification,
Cobb-Douglas functional form

7 ports; Tunisia To measure the efficiency scores

Contrarily, many authors have assessed port efficiency issues and mainly focused on
identifying important factors affecting port efficiency using exclusively SFA with various
model specifications and functional forms. Furthermore, most studies typically attempted
to compare differences in port productivity in a country or internationally. Moreover, some
authors have examined how differences in productivity are related to certain policies or
port characteristics such as privatization, port size, the degree of competition, etc. For
instance, with a panel dataset of 40 terminals in Latin America and the Caribbean for
the 2000–2010 period, a Battese and Coelli 1995 (BC1995) model with trans-logarithmic
functional form has been estimated and efficiency analysis has been performed in [14],
showing that transshipment ports are less efficient than the others. In [23], a container port
performance analysis is carried out on a sample of 203 ports in 70 developing countries
with a panel dataset between 2000 and 2010, applying the BC1995 model with both, Cobb-
Douglas and trans-logarithmic functional form. The analysis indicates that the level of port
efficiency in developing regions is increased by private sector participation, the reduction
of corruption in the public sector, as well as by the improvements in liner connectivity and
multimodal links. Technical efficiency analysis of container ports in Latin America and
the Caribbean has also been conducted in [32] using an input-oriented, BC1995 stochastic
frontier model specification with both Cobb-Douglas and trans-logarithmic functional
forms, employing a 10-year panel data. The authors have revealed a significant positive
correlation between technical efficiency and private port operations. The technical efficiency
of 43 Vietnamese ports has been examined in [39] using SFA with Cobb-Douglas functional
form, considering cross-sectional data. The results show that the most significant factors
influencing efficiency are cargo handling technologies, information technology, land and
cargo storage capacity. In [40], the authors have applied the BC1995 model with a trans-
logarithmic functional form to analyze the efficiency and productivity of 20 Brazilian
terminals using panel data for the 2008–2017 period, concluding that private terminal
operators are more efficient than public ones. To conclude, both methods, DEA and SFA,
have certain advantages and drawbacks but both of them have been frequently used
for technical efficiency levels estimation. Taking into account all the above-mentioned
approaches, it is reasonable that the parametric approach i.e., SFA, will be applied in this
paper due to its adaptability to characteristics of the defined problem.

3. Materials and Methods
3.1. Theoretical Specification of the Stochastic Frontier Model

As stated above, to estimate the frontier and to measure terminals efficiency, numer-
ous powerful approaches (deterministic and/or stochastic) have been introduced and
adopted retaining the same ultimate objective: to acquire the estimated results accurately
and as efficiently as possible. In that sense, the SFA approach is the most commonly
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implemented. The stochastic frontier analysis presents a parametric method based on
econometric techniques for estimating technical efficiency, where the production func-
tion must be specified [20,40]. The production frontier shows the maximum quantity
of output that can be obtained for a given combination of inputs [22]. Specifically, the
efficiency of a given port/terminal corresponds to the distance between its observed and
theoretical behavior [14]. However, the deviations from the frontier may not be fully
under the control of terminals. In that case, SFA is used to calculate the inefficiencies of
terminals based on different distribution assumptions, so that different terminals may have
different efficiencies [17].

The stochastic frontier model was originally introduced in [41], but a more reasonable
error structure than a purely one-sided one has been simultaneously constructed and
presented in [42,43]. The proposed error structure consists of two error terms: random error
term, defined as statistical error and inefficiency term i.e., inefficient behavior. Inefficiency,
in that case, reduces the maximum feasible output due to circumstances or occurrences
beyond the control of the port/terminal operator [5,16]. Furthermore, the expanded
stochastic frontier model BC1992 was found to be the most suitable and will be applied
in this paper [44]. Stochastic frontier model BC1992 presents the groundwork for the
application on (un)balanced panel datasets (t = 1, 2, 3, . . . , T), taking into account time-
varying effects assumed to be distributed as a truncated normal random variable. The
specification of proposed model can be written as follows [44]:

Yit = βxit + (vit − uit); i = 1, 2, 3, . . . , N; t = 1, 2, 3, . . . , T, (1)

where Yit represents the production of the ith port/terminal at the tth time period; xit: refers
to a kx1 input vectors of the ith port/terminal at the tth time period; β is an unknown
parameters vector that has to be estimated. The main feature of the BC1992 model is the
assumption imposed over the random error term i.e., statistical noise vit, that helps to
disentangle statistical noise from the residual term representing inefficiency uit. In that case,
vit is assumed to be independent and two-sided identically distributed such as N

(
0, σv

2)
and is independent of uit, a term associated with the inefficiency that measures the shortfall
of production Yit from its maximum frontier [18,30]. Inefficiency term uit is assumed to be
independent and one-sided identically distributed as truncations at zero of the N

(
µ, σu

2)
distribution and it can be specified as:

uit = ui exp(−η(t− T)), (2)

where η is an unknown scalar parameter [44]. The method of maximum likelihood esti-
mation is proposed for simultaneous calculation of the stochastic frontier model parame-
ters. The likelihood function is expressed in terms of variance parameters. In that order,
parametrization proposed in [45] was used to replace σv

2 and σu
2 with σ2 = σv

2 + σu
2

indicating that γ = σu
2/σ2. In that case, σv

2 is the variance of the random noise term, σu
2

is the variance of the inefficiency term, and σ2 is the variance of the total error term. The γ
parameter varies between 0 and 1. If γ is closer to 1 the deviations from the frontier are
caused by the inefficiency and if γ is close to 0 then the deviations from the frontier are
mostly due to the random error i.e., statistical noise.

Furthermore, when the assumptions are established, the technical efficiency levels of
the ith port/terminal in the tth time period, relative to the potential output, defined by the
frontier function for a given input vector, can be estimated. These estimates are determined
using the following equation:

TEit = exp(−uit). (3)

Presenting the stochastic frontier for determining the level of terminals’ technical effi-
ciency, it is necessary to specify the functional form of the production function. The selection
of the most appropriate functional form has been the subject of numerous studies [46–49].
Accordingly, we have chosen the Cobb-Douglas and the trans-logarithmic functional forms
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since they turn out to be the most appropriate. These two functional forms introduced
in [50,51], are respectively shown in (4) and (5):

lnYit = α0 +
N

∑
i=1

βitlnxit + vit − uit, (4)

lnYit = α0 +
k

∑
i=1

βitlnxit +
k

∑
i=1

k

∑
j=1

βijtlnxitlnxjt + vit − uit. (5)

The main difference between these two functional forms is that the trans-logarithmic
functional form is more flexible than the Cobb-Douglas, as it does not require assumptions
regarding production constant elasticities or elasticities of substitution between inputs and
allows the data to indicate the real curve of the function rather than imposing a priori
assumptions [40,48,52].

Finally, the method of the one-sided generalized likelihood ratio-test was used to test
model specifications i.e., the presence of technical inefficiency effects uit under both, the
null and alternative hypotheses. The generalized likelihood ratio-test can be expressed
as follows:

LR = −2{ln[L(H0)]− ln[L(H1)]}, (6)

where L(H0) and L(H1) are the values of the likelihood function under the null hypothesis
H0 and the alternative H1, respectively. In this case, if H0 is true, this LR statistics has an
asymptotic distribution which is a mixture of χ2 distribution.

3.2. Definition of Output/Input Variables

An acceptable stochastic frontier model specification for port/terminal time-varying
technical efficiency estimation must be based on a reasonable relationship between output
and the right combination of statistically significant input variables. The main limitation of
each parametric, and consequently of implemented approach, is the availability, accuracy
and veracity of input and output data, especially when time-varying efficiency analysis
is considered.

According to numerous studies conducted on productive output variable determina-
tion, it is reasonable that container throughput Y proved to be the most relevant and widely
used one in technical efficiency levels estimation [16,32,39,47,53,54]. Container throughput,
expressed in a twenty-foot equivalent unit (TEU), in the best way, represents the total
amount of containers handled on terminals i.e., container handling activity, considering the
handling of imports, exports, empty containers and trans-shipments. Moreover, container
throughput is closely related to the need for cargo-related facilities and services since it is
the main indicator for comparing and ranking terminals among themselves, in particular
when assessing their relative size, level of investment and/or activity [19,55].

Determining the appropriate combination of input variables that in the best way
describes dependencies with the respect to the container throughput is covered in numerous
studies, wherein [30,56] authors’ summarized discussion is presented. In general, the main
idea is to define such a combination of input variables that will reflect actual terminal
production as accurately as possible [56]. With this in mind, it was decided that basic
economic inputs, such as capital and labor, could satisfy the requirements for conducting
a quality analysis at the port/terminal level. However, it was found that the availability
and quality of these data is a very sensitive question, especially from a stakeholder’s
perspective. To avoid usage of assumed and questionable quality data and to reduce
potential errors, an alternative approach was introduced in [57] where authors concluded
that port/terminal output depends on the efficient use of three data categories: land,
equipment and labor. These data categories are a reliable substitute for basic economic
data and in the best way describe the dependencies with output variable and, on the other
hand, represent physical characteristics of terminals.
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Therefore, we have introduced five first-order input variables in our model. The
variables presenting the main indexes and reflecting the land data category are quay length
QL and container stacking area SA. QL represents the total length of the quay in meters
where vessels can be berthed to perform loading/unloading operations, while SA repre-
sents the gross yard size of port/terminal where containers can be stacked, expressed in
square meters [23,32,53,54,58,59]. Alongside mentioned variables, we have also considered
another input variable—berth water depth WDb, closely related to quay length, that repre-
sents the average depth along the port/terminal quay in meters, indirectly determining the
size of the vessel that can be berthed alongside the quay [11,13,33,40,60]. The introduced
variable, which is the most appropriate proxy for the aforementioned equipment data
category, is quay cranes QC, representing the number of units used for container handling
in ship-to-shore and shore-to-ship relations [16,32,37]. The final first-order input variable
associated with both, the equipment and labor data categories, is yard equipment YE. YE
presents a number of equipment used to handle containers in the container stacking area
such as RTG cranes (rubber tier gantry crane), RMG cranes (rail mounted gantry crane),
straddle carriers, reach stackers, forklifts, etc. In [18,19,54,55,58,61,62] the authors have
declared that the yard equipment is the best substitute for labor data category, in cases
when data is not accessible from the available sources since there is a fairly firm correlation
between those two variables.

In order to obtain more reliable estimations, suggestions provided by numerous stud-
ies on port/terminal efficiency analysis indicate that, besides first-order input variables,
it is necessary to determine control variables in the model. Control variables should in
the best way represent universal or specific external influences, exogenously affecting
port/terminal throughput and ultimately, efficiency [23,32,63]. Introducing control vari-
ables into the model is also important to explain a significant share of port throughput
independent of input allocation. In that sense, we have defined variables that best repre-
sent demand proxies such as Gross Domestic Product GDP, International Trade IT, and
Port Liner Shipping Connectivity Index PLSCI. GDP (in constant EUR) was collected
via United Nations Conference on Trade and Development (UNCTAD) and measures the
size of the economy of a country where the port/terminal is located [64]. IT (in constant
EUR) was also collected via UNCTAD, and represents the degree to which countries where
terminals are located export/import merchandise from the rest of the world [65]. PLSCI,
provided by EUROSTAT, measures how well countries are connected to the global shipping
network by taking into account the number of scheduled ship calls per week, the annual
capacity deployed in TEUs, the number of regular liner shipping services, the average
size of vessels in TEUs, etc. [65]. Final control variable is the public/private participation
in ownership structure PPo. The values of this dummy variable can range from 0 to 1.
The specific variable values are determined according to Table 2, where the relationships
between the functions and the sectors are presented.

Table 2. Public/private sector participation in terminal ownership.

NAPA Terminal Regulator Landowner Operator Value/Function

Rijeka Public Public Private 0.33
Koper Public Public Public 0.00
Trieste Public Public Private 0.33
Venice Public Private Private 0.66

Ravenna Public Public Private 0.33

Source: Adapted by authors according to [9].

Since we perform a time-varying technical efficiency level estimation based on panel
data with very short time resolution, it is important to set time trend Tt variable that in the
best manner captures the overall changes in productivity over the observed periods of time.
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3.3. Testing Area Description and Econometric Models Specification

Testing of the proposed model, based on defined output and the combination of input
variables, is conducted on the sample of terminals situated in a narrow geographic region
representing the main connections of a transport corridor as a gateway for a particular
container traffic region. Defined criteria for selecting testing area is very interesting since
these terminals present each other competition. In some cases, this can impose negative
effects for specific gravitational regions that are unique for some terminals and consequently
cause absolute changes in the existing logistic services.

The described scenario occurred very often between terminals situated in the Mediter-
ranean region. Therefore, we have singled out an example of terminals situated in narrow
North-Adriatic geographical region. Furthermore, we took a sample of medium-sized
terminals that constitute a significant component of the main national ports of border
countries such as Croatia (Rijeka), Slovenia (Koper) and Italy (Trieste, Venice, Ravenna).
It is also important to note that selected terminals are not multi-purpose but specially
equipped for handling exclusively containerized cargo.

Total quantities of containerized cargo associated with selected terminals presenting
main connections of the North-Adriatic transport corridor are irregularly distributed. This
fact can be confirmed by the evidence that selected ports i.e., terminals are organized into a
North Adriatic Port Association (NAPA) whose basic function is to prevent or decrease
the overall influence of individual ports on the North-Adriatic transport corridor. Due
to the high significance of the North-Adriatic transport corridor, as the main European
Gateway for Far-East container traffic with destinations in Central and Eastern Europe, it is
very important to estimate the technical efficiency levels and compare differences within
selected NAPA terminals [66].

The locations and intermediate distances between NAPA terminals are shown in
Figure 1a,b, respectively.

For the selected sample of NAPA terminals, we have defined an observation dataset
for the 2010 to 2019 time period with a quarterly time resolution. Decision on short time
resolution is vital to get a detailed insight into the technical efficiency levels because of
the fluctuations in overall production caused by influences of external events during the
yearly period. Based on the defined observation period, we have collected, validated, and
prepared a dataset related to each combination of output and relevant input variables. Re-
search datasets were collected based on the official reports provided by terminal operators
and/or port authorities, statistical yearbooks, etc. Descriptive statistics on a balanced panel
dataset of output and input variables associated with the NAPA terminals (quarterly time
resolution) are presented in Table 3.

Considering the idea presented in [19], we have introduced an additional sample of
larger terminals located in a broader Mediterranean region. In that case, the introduction
of an additional dataset for terminals has important implications for further model devel-
opment, particularly in ensuring the robustness of the overall estimation. Subsequently
added terminals are situated in the ports of the Western (Port of Barcelona and Valencia),
Central (Port of Genoa and Gioia Tauro), and Eastern (Port of Piraeus and Thessaloniki) the
Mediterranean and possess extensive outputs (greater than 1,000,000 TEU/quarter) as well
as associated inputs compared to the NAPA terminals. Descriptive statistics on a balanced
panel dataset of output and input variables for the basic and additionally introduced
terminals that will be used for further analysis procedures are shown in Table 4.

Furthermore, we have conducted sensitivity analysis to determine the most relevant
stochastic frontier model specification based on a particular combination of input variables
according to several interconnected sequences showed in Figure 2.
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Table 3. Descriptive statistics of NAPA terminals dataset.

Variable
Classification Variables Unit Mean Median Std.

Deviation Minimum Maximum

Output CTCont. Throughput TEU 104,153.51 85,254.50 66,050.95 17,798.00 280,637.00

Input

QLQuay Length Meters 722.92 649.00 203.66 300.00 1,072.00
SAStacking Area Sq. meters 120,472.00 104,450.00 49,730.42 60,400.00 208,000.00
WDbWater Depth Meters 13.58 14.04 2.72 10.00 18.00
QCQuay Cranes No. 6.12 7.00 2.20 2.00 10.00

YEYard Equipment No. 74.38 64.00 28.69 37.00 131.00
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Table 4. Descriptive statistics of NAPA and additionally introduced terminals dataset.

Variable
Classification Variables (Unit) Unit Mean Median Std.

Deviation Minimum Maximum

Output CTCont.
Throughput TEU 270,172.95 161,644.50 276,494.73 17,798.00 1,342,400.00

Input

QLQuay Length Meters 1063.16 921.00 523.38 300.00 2847.00
SAStacking Area Sq. meters 224,819.41 172,000.00 148,093.66 60,400.00 496,100.00
WDbWater Depth Meters 14.40 14.94 2.66 10.00 19.50
QCQuay Cranes No. 9.72 8.00 6.23 2.00 31.00

YEYard Equipment No. 106.36 100.00 53.42 37.00 233.00
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The idea behind the conducting of sensitivity analysis is to determine the model speci-
fication consisting of the appropriate combination of input variables based on the specific
functional form that describes relationships between selected input variables and output
variable. Evaluation of the proposed model is conducted by goodness-of-fit parameter
calculation, representing the log-likelihood and/or coefficient of determination. In the
second sequence of conducting sensitivity analysis, a Cobb-Douglas or trans-logarithmic
functional form was selected. The third sequence relates to testing different combinations of
proposed input variables. For such model specifications, in further sequence, the unknown
coefficients are estimated using the three-step maximum likelihood estimation method
incorporated with version 4.1 of the ‘FRONTIER’ software [67]. In the first step, the ordi-
nary least squares (OLS) method was used to estimate the initial values of the unknown
coefficients. Then, a two-step grid search of γ is performed using the OLS estimates over
the parameter space of γ. In the third and final step, the values selected by the grid search
are used as initial values in an iterative procedure using the David-Fletcher-Powell Quasi-
Newton algorithm to obtain the final values of the unknown coefficients. Finally, if the
goodness-of-fit parameter value is not the highest, the procedure sequences are repeated
all over again with different combinations of input variables and with different functional
forms. This iterative procedure is repeated until the model with a particular combination
of input variables and with the highest log-likelihood value is obtained.

The performed sensitivity analysis has resulted in selecting the final stochastic frontier
model specifications for which the highest goodness-of-fit values are obtained. Model
specifications by Cobb-Douglas and trans-logarithmic functional forms based on presented
first-order and control input variables are given in (7) and (8), respectively:

ln(CTit) = α0 + β1ln(QLit) + β2ln(SAit) + β3ln(WDbit) + β4ln(QCit)+
+ β5ln(YEit) + β6Ttt + θ1ln(GDPit) + θ2ln(ITit) + θ3ln(PLSCIit)+
+ θ4PPoit + vit − uit; i = 1, 2, . . . , N; t = 1, 2, . . . , T,

(7)
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ln(CTit) = α0 + β1ln(QLit) + β2ln(SAit) + β3ln(WDbit) + β4ln(QCit)+

+ β5ln(YEit) + β6Ttt + β7
[
ln(QLit)]

2 + β8[ ln(SAit)]
2 + β9[ln(WDbit)]

2+
+ β10

[
ln(QCit)]

2 + β11[ ln(YEit)]
2 + β12ln(QLit)ln(SAit)+

+β13ln(QLit)ln(WDbit) + β14ln(QLit)ln(QCit) + β15ln(QL1it)ln(YEit)+
+β16ln(SAit)ln(WDbit) + β17ln(SAit)ln(QCit) + β18ln(SAit)ln(YEit)+
+β19ln(WDbit)ln(QCit) + β20ln(WDbit)ln(YEit)+
+β21ln(QCit)ln(YEit) + θ1ln(GDPit) + θ2ln(ITit) + θ3ln(PLSCIit)+
+θ4ln(PPoit) + vit − uit; i = 1, 2, 3, . . . , N; t = 1, 2, 3, . . . , T,

(8)

where:

• CTit: container throughput of the ith terminal in tth time period,
• QLit : quay length of the ith terminal in tth time period,
• SAit : stacking area of the ith terminal in tth time period,
• WDbit : water depth of the ith terminal in tth time period,
• QCit : quay cranes of the ith terminal in tth time period,
• YEit : yard equipment of the ith terminal in tth time period,
• Ttt: time trend,
• GDPit: country output in tth time period in which ith terminal is situated,
• ITit: quantity of traded merchandises (import and export) of the country in period tth

in which ith terminal is situated,
• PPOit: dummy variable which quantifies public/private participation in the owner-

ship structure of the ith terminal in the tth time period,
• α0; β0, . . . , β21; θ1, . . . , θ3: vector of unknown parameters,
• i : each analyzed terminal,
• t : each analyzed time period,
• vit: random error term which is identically distributed N

(
0, σv

2) and independent
from uit,

• uit: the technical inefficiency term which is identically distributed as truncations at
zero of the N

(
µ, σu

2).

Finally, regarding the orientation of the model, we could choose between output and
input-oriented ones. The main difference between these two approaches is that in an input-
oriented model, the main objective is to minimize the defined inputs to achieve a given
level of output, while in output-oriented models, the main objective is to maximize the
level of output for a given set of inputs [46]. Both approaches are widely used in the studies.
For example, in [13,56,60,68] authors have implemented an output-oriented model where
the main argument was that terminals can affect output by using different trade policies
and market strategies, but infrastructure changes are very difficult to implement over short
periods of time. Contrariwise, in [9,10,16,32] authors have used an input-oriented approach
where they found that terminals are usually able to approximately predict the container
throughput in the short and medium-term due to the relatively stable customer base of
shipping lines. Ultimately, input-oriented models are closely related and more relevant
to operational, i.e., short-term planning issues, whereas output-oriented models are more
related to long-term planning issues and strategy for an increase of the demand. Given the
specific situation in the selected testing area and our interest to investigate how efficiently
NAPA terminal inputs are used, we chose an output-oriented model as more convenient in
this particular case to investigate efficiency levels of development. Particularly, whether the
inputs of the NAPA terminals are fully utilized and whether production at these terminals
is maximized by using the available inputs.

4. Results

Table 5 shows the maximum-likelihood estimates for the two selected stochastic
frontier model specifications based on NAPA and additionally introduced terminals over
the time period from 2010 to 2019 with a quarterly time resolution. Along with the
estimated coefficients, the standard errors are presented in parentheses representing the
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robustness of the estimation. Thus, the Model 1 (CDSpec.) and Model 2 (TLSpec.) columns
show the estimates with the Cobb-Douglas and trans-logarithmic model specifications
presented in (7) and (8), respectively, where control variables, i.e., demand proxies and
public-private ownership participation dummy are included.

Table 5. Maximum likelihood estimates of the selected stochastic frontier model specifications.

Variables Model 1 (CDSpec.) Model 2 (TLSpec.)

α0 Constant 3.7335 ***
(1.2465)

4.8314
(4.3176)

β1 ln(QL)
0.4240 *** 0.5823 ***

(0.1361) (0.1002)

β2 ln(SA)
0.7849 ***
(0.0829)

0.8467 ***
(0.1267)

β3 ln(WDb) 0.5288 ***
(0.1600)

0.2830 **
(0.1279)

β4 ln(QC) 0.1506
(0.1045)

0.3249 *
(0.1957)

β5 ln(YE)
0.6735* * 0.4713 ***

(0.2618) (0.1073)

β6 Tt
0.1841 *** 0.2113 *

(0.0461) (0.1091)

β7 ln(QL)2 0.2520 ***
(0.0579)

β8 ln(SA)2 −0.0019
(0.0208)

β9 ln(WDb)2 0.1918 ***
(0.03386)

β10 ln(QC)2 −0.1995* **
(0.03663)

β11 ln(YE)2 −0.2971 ***
(0.1034)

β12 ln(QL) ln(SA)
0.1050 *
(0.0613)

β13 ln(QL) ln(WDb) −0.6294 ***
(0.0554)

β14 ln(QL) ln(QC) 0.3138 ***
(0.0423)

β15 ln(QL) ln(YE) 0.0758
(0.0767)

β16 ln(SA) ln(WDb) −0.0128
(0.0362)

β17 ln(SA) ln(QC) −0.0916 **
(0.0363)

β18 ln(SA) ln(YE) −0.4069 ***
(0.0587)

β19 ln(WDb) ln(QC) 0.1003 *
(0.0546)

β20 ln(WDb) ln(YE) 0.1217
(0.0797)
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Table 5. Cont.

Variables Model 1 (CDSpec.) Model 2 (TLSpec.)

β21 ln(QC) ln(YE) 0.3234 ***
(0.0732)

θ1 ln(IT) −0.0077
(0.0312)

−0.0069
(0.0127)

θ2 ln(GDP) 0.2763 ***
(0.1332)

0.2981 ***
(0.1086)

θ3 ln(PLSCI) 0.3340 ***
(0.1400)

0.3471***
(0.1212)

θ4 PPo 0.4465 **
(0.2199)

0.4559 **
(0.2271)

σ2 0.8549 0.9463

γ 0.8025 0.7411

R2 0.6525 0.8699

Log-likelihood 53.3940 118.5438

LR value 132.3914 134.1543
*** Significant at 1%; ** Significant at 5%, * Significant at 10%.

For brevity, we will discuss only the estimates obtained with a trans-logarithmic
specification. The reason, as mentioned in Section 2, is that the trans-logarithmic functional
form has been proved by many studies, as a more flexible structure than the Cobb-Douglas,
easy to calculate and to allow the imposition of the homogeneity condition. However, the
main reason is that Model 2 (TLSpec.) shows higher values of the goodness-of-fit parameters.
Therefore, the goodness of fit for this model, evaluated by R2, is very high. This means the
selected inputs satisfactorily explain approximately 86.99% of the variations in the model
output thus representing the most appropriate model for further analysis and efficiency
levels estimation.

The observed likelihood ratio test value (134.15) is greater than the critical value of the
mixed chi-squared distribution implying the rejection of the null hypothesis
H0 : β1 = · · · = β21 = θ1 = · · · = θ4 = 0 and acceptance of the alternative hypothesis
H1 : β1 = · · · = β21 = θ1 = · · · = θ4 6= 0. This test also indicates the selected model can
be considered as a good model to represent the production technology and to estimate
the technical efficiency levels. Therefore, we can also accept the alternative hypothesis
H1 : σ2 6= 0, which implies the existence of technical inefficiency effects. Thus, in terms of
the parameter value associated with the disturbance term, the model shows a desirably
higher variance of the inefficiency uit. than the random error term vit. This can be evalu-
ated through γ, which is significantly different from zero (H1 : γ 6= 0) and represents the
ratio of the variance of the inefficiency term σu

2 of the total disturbance in the model σ2.
γ value implies that 74.11% of the variability of production in NAPA terminals is caused
by technical inefficiency and the rest of 25.89% is associated with the random error term,
i.e., statistical noise. Therefore, we can conclude there are inefficiencies in the production of
NAPA terminals and the inefficiency component must be included in a model. Estimated
coefficients of first-order input variables, related to the production effects, present the
expected signs showing that the increase in any productive factor will lead to an increase in
the value of production. Moreover, they are statistically significant with a reliability level
of at least 95% (see Table 5).

Further analysis shows that the size of the container stacking area SA has the greatest
impact on the production levels of NAPA terminals, indicating a 1% increase in the size of
the stacking area leads to a 0.84% increase in container throughput during the observed
period of time. Contrarily, the value of yard equipment YE is almost half smaller than the
value of container stacking area, revealing that a 1% increase in yard equipment could lead
to a 0.47% increase in terminal throughput level. The quay length QL and the number of
quay cranes QC positioned along the quay also have a significant, but smaller impact on the
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throughput levels. This means that a 1% increase in quay length QL and number of quay
cranes QC leads to a 0.58% and 0.33% increase in throughput level, respectively—providing
important evidence for ensuring the right amount of space and equipment necessary for
berthing and adequate loading/unloading of larger vessels. The final variable, which also
has a positive impact on throughput levels, is quayside water depth WDb of terminals
implying a negligible impact on the throughput level.

Moreover, the estimated coefficient of the time trend Tt is significant and has a positive
value, indicating the technological progress of NAPA terminals is increasing over the
observed time periods. Concerning the additionally introduced variables into the model
specification, the international trade IT of a country where a particular NAPA terminal
is located shows a negative sign and is not significantly different from zero. On the other
hand, Gross Domestic Product GDP and Port Liner Shipping Connectivity Index PLSCI
are significantly different from zero and have a positive impact on throughput levels. The
interpretation of these results can be related to the assertion that NAPA terminals, located
in smaller economies, concentrate all their container traffic in one or few national ports.
This consequently affects the number of regular liner services, the size and number of
scheduled vessels, average size of transport units of NAPA terminals, etc. The dummy
variable, indicating the participation of the public/private ownership structure PPo, in
NAPA terminals has the highest positive impact on the throughput levels and globally
implies that terminals with higher private sector participation tend to be more efficient.
This is particularly evident in cases where terminals are owned and operated by liner
shipping companies that can influence demand and, ultimately, throughput levels more
easily by offering better conditions and higher privileges to their customers.

The estimates of technical efficiency levels, for each NAPA terminal, in quarterly
time periods, evaluated by Model 2 (TLSpec.) are presented in Table 6, where we have
also included the results obtained for some additionally introduced large-size terminals
exclusively for comparison purposes. Estimated values of technical efficiency levels can
vary between 0 and 1. If the technical efficiency level is equal to 0, then the observed
terminal is inefficient, and conversely, if the technical efficiency is equal to 1, then the
observed terminal is efficient.

Table 6. Estimated technical efficiency levels evaluated by Model 2 (TLSpec.).

Time
Period
(Year)

Time Res-
olution

(Quartal)
Rijeka Koper Trieste Venice Ravenna Piraeus Genova Barcelona

2010

Q1 0.4110 0.8724 0.6459 0.3743 0.6680 0.4372 0.5410 0.6551
Q2 0.4280 0.8778 0.6589 0.3916 0.6804 0.4541 0.5565 0.6679
Q3 0.4450 0.8830 0.6716 0.4087 0.6925 0.4708 0.5716 0.6804
Q4 0.4618 0.8880 0.6839 0.4258 0.7042 0.4873 0.5864 0.6925

2011

Q1 0.4784 0.8928 0.6959 0.4428 0.7156 0.5036 0.6009 0.7042
Q2 0.4949 0.8975 0.7076 0.4596 0.7266 0.5197 0.6151 0.7156
Q3 0.5111 0.9019 0.7188 0.4763 0.7373 0.5355 0.6289 0.7266
Q4 0.5270 0.9062 0.7298 0.4927 0.7477 0.5510 0.6424 0.7373

2012

Q1 0.5427 0.9102 0.7404 0.5090 0.7577 0.5663 0.6555 0.7477
Q2 0.5581 0.9141 0.7506 0.5250 0.7674 0.5812 0.6683 0.7577
Q3 0.5732 0.9179 0.7605 0.5407 0.7767 0.5958 0.6808 0.7673
Q4 0.5880 0.9215 0.7701 0.5561 0.7857 0.6101 0.6929 0.7767

2013

Q1 0.6025 0.9249 0.7794 0.5713 0.7945 0.6241 0.7046 0.7857
Q2 0.6166 0.9282 0.7883 0.5861 0.8029 0.6377 0.7160 0.7945
Q3 0.6304 0.9314 0.7970 0.6006 0.8110 0.6510 0.7270 0.8029
Q4 0.6439 0.9344 0.8053 0.6148 0.8188 0.6639 0.7377 0.8110
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Table 6. Cont.

Time
Period
(Year)

Time Res-
olution

(Quartal)
Rijeka Koper Trieste Venice Ravenna Piraeus Genova Barcelona

2014

Q1 0.6570 0.9373 0.8133 0.6287 0.8263 0.6765 0.7481 0.8188
Q2 0.6698 0.9401 0.8210 0.6422 0.8336 0.6887 0.7581 0.8263
Q3 0.6822 0.9427 0.8285 0.6553 0.8405 0.7006 0.7678 0.8336
Q4 0.6942 0.9453 0.8356 0.6682 0.8472 0.7121 0.7771 0.8405

2015

Q1 0.7059 0.9477 0.8425 0.6806 0.8537 0.7232 0.7861 0.8472
Q2 0.7173 0.9500 0.8492 0.6927 0.8599 0.7341 0.7948 0.8537
Q3 0.7283 0.9523 0.8556 0.7045 0.8659 0.7445 0.8032 0.8599
Q4 0.7389 0.9544 0.8617 0.7159 0.8716 0.7547 0.8113 0.8659

2016

Q1 0.7493 0.9564 0.8676 0.7269 0.8771 0.7644 0.8192 0.8716
Q2 0.7592 0.9584 0.8732 0.7376 0.8824 0.7739 0.8267 0.8771
Q3 0.7689 0.9603 0.8787 0.7480 0.8875 0.7831 0.8339 0.8824
Q4 0.7782 0.9620 0.8839 0.7580 0.8923 0.7919 0.8409 0.8875

2017

Q1 0.7872 0.9637 0.8889 0.7677 0.8970 0.8004 0.8476 0.8923
Q2 0.7959 0.9654 0.8937 0.7770 0.9015 0.8086 0.8540 0.8970
Q3 0.8042 0.9669 0.8983 0.7861 0.9058 0.8165 0.8602 0.9015
Q4 0.8123 0.9684 0.9028 0.7948 0.9099 0.8241 0.8662 0.9058

2018

Q1 0.8201 0.9698 0.9070 0.8032 0.9138 0.8315 0.8719 0.9099
Q2 0.8276 0.9712 0.9111 0.8113 0.9176 0.8385 0.8774 0.9138
Q3 0.8348 0.9725 0.9150 0.8191 0.9212 0.8453 0.8827 0.9176
Q4 0.8417 0.9737 0.9187 0.8266 0.9247 0.8518 0.8877 0.9212

2019

Q1 0.8484 0.9749 0.9223 0.8339 0.9280 0.8581 0.8926 0.9247
Q2 0.8548 0.9761 0.9257 0.8408 0.9312 0.8642 0.8972 0.9280
Q3 0.8610 0.9771 0.9290 0.8475 0.9342 0.8700 0.9017 0.9312
Q4 0.8669 0.9782 0.9321 0.8540 0.9372 0.8755 0.9060 0.9342

5. Discussion

The derived global results on average efficiency levels reveal that between the ob-
served time periods from 2010 to 2019, the technical efficiency of NAPA terminals varies
from 65.24% estimated for terminal Venice to 93.92% estimated for terminal Koper. In
decreased order, estimated technical efficiencies of the other NAPA terminals are as follows:
Ravenna (83.37%), Trieste (82.15%), and Rijeka (67.79%). Moreover, the global average
efficiency result for NAPA terminals shows that they operate at a 78.49% efficiency level,
while the gap indicates the efficiency levels can be improved by 21.51% with the same
level of given inputs. The analysis of the quarterly time resolution results presented in
Table 7 shows that the NAPA terminals’ efficiency levels have a stable and positive trend,
indicating quarter-to-quarter performance improvements.

Table 7. Average estimated technical efficiency levels according to quarterly time resolution.

Time
Resolution
(Quartal)

Rijeka Koper Trieste Venice Ravenna Piraeus Genova Barcelona

Q1 0.6602 0.9350 0.8103 0.6338 0.8232 0.6785 0.7468 0.8157
Q2 0.6722 0.9379 0.8179 0.6464 0.8303 0.6901 0.7564 0.8232
Q3 0.6839 0.9406 0.8253 0.6587 0.8373 0.7013 0.7658 0.8303
Q4 0.6953 0.9432 0.8324 0.6707 0.8439 0.7122 0.7749 0.8373
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This detected stable and positive trend indicates the average value of global quarterly
efficiency growth of 1.28% in every quartal which can be directly linked to the continuous
investment in the modernization of infrastructure and superstructure of NAPA terminals
that span the North-Adriatic transport corridor. Moreover, it can be linked to the fact that
NAPA terminals and other stakeholders are constantly improving quality management
standards. This leads to their great connectivity with the hinterland areas, i.e., Central and
Eastern European countries, and to an increase in performance levels manifested through
the reduction of the time required for providing terminal activities. In this sense, NAPA
terminals tend to catch up with the rhythm of the new technological tendencies in order to
attract new industries and logistic services. This also implies the above-mentioned problem
of very high competitiveness among each other. It can also be perceived that the highest
growth in efficiency levels is associated with terminal Venice (2.14%) and Rijeka (1.94%),
having the lowest global average levels of estimated efficiency. Conversely, terminals with
the highest estimated efficiency levels have the lowest efficiency growth, e.g., terminal
Koper (0.29%). According to Tables 6 and 7, it is interesting to note that the global average
efficiency of NAPA terminals is about 2% higher than the estimated efficiency levels of an
additional sample of large-size terminals.

In this direction, another intriguing implication can be drawn out considering the rela-
tionship between estimated efficiency and trends in container throughput levels (Figure 3).
The assumption can be reflected in the fact that efficiency levels are very closely correlated
with container throughput growth.

In Figure 3 it is evident that differences between efficiency and productivity levels
are persistent, where terminals with low estimated efficiency levels show high growth in
container throughput during the observation period, indicating an inverse relationship.
For example, terminal Venice with an average estimated efficiency of 65.24% has been
considered with the average quarterly growth of container throughput level of 5.53%.
Contrariwise, terminal Koper with the highest estimated efficiency of 93.92% has an
average quarterly growth of only 0.29%. Therefore, this relationship can be observed
especially in the relationship of NAPA and terminals presented as an additional sample.
Following the presented assumption, the most efficient terminal may not necessarily be the
most productive and vice versa. Therefore, the conducted analysis implies that even the
most efficient NAPA terminal, in terms of throughput levels, has space for improvement
and, on the other hand, terminals with the lowest efficiency have a relatively large gap to
close related to the frontier.
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There are also different methods dealing with port efficiency looking from a logistic
perspective, with a primary focus on quality and reliability of production process. In
those cases, the efficiency may be expressed as a general cost function, aiming to optimize
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the resource allocation over the service time, even in a multiterminal environment [69].
Therefore, the efficiency of the terminal may be extended to observe the efficiency of the port
system (e.g., NAPA port system) or the efficiency of the logistic service, where the whole
logistic network could be constructed as nodes and links between transshipment points [70].
Container terminals operate in a dynamic environment where the daily decision-making
process impacts the efficiency of resource utilization and therefore may impact the reliability
of the service and finally the throughput. In this context, the specific approach of the
simulation-based planning and optimization concept may be considered as being the digital
twin method of the technologies such as the Internet of Things and artificial intelligence,
that are commonly used for dealing with big data, and transforming it into information for
supporting real-time terminal operation and management [71].

6. Conclusions

In this paper, we have conducted technical efficiency estimation, proposing a stochas-
tic frontier approach based on BC1992 model specification with Cobb-Douglas and trans-
logarithmic functional forms. The performance analysis of the proposed model was done
using the example of interconnected terminals associated with NAPA, situated in a narrow
geographical region of the Adriatic Sea thus representing the main connections of the North-
Adriatic transport corridor. To sum up, the estimates obtained applying trans-logarithmic
functional form have shown higher values of the goodness-of-fit parameter, indicating
better, more competitive performance than in most considered cases including various
combinations of first-order and additionally introduced control variables. Our research has
led us to conclude there are inefficiencies in the production of NAPA terminals, therefore
the inefficiency component has had to be included in a model. Likewise, the increase in
any productive factor will lead to an increase in production. Further findings indicate that
the SA has the greatest impact on the production levels followed by YA, QL, QC and WDb,
respectively. Furthermore, we have obtained satisfactory results proving that the techno-
logical progress of NAPA terminals is increasing over the observed periods. Regarding
the control variables, GDP and PLSCI show a positive impact on throughput levels while
IT has a negative impact. Moreover, the dummy variable PPo has the highest impact on
the throughput levels, implying that terminals with higher private sector participation are
more efficient. In general, the global average efficiency level of NAPA is 78.49%, varying
from 65.24%, estimated for terminal Venice to 93.92%, estimated for terminal Koper. We
have noticed that the global average efficiency of NAPA terminals is about 2% higher than
the estimated efficiency levels of an additional sample of large-size terminals. The differ-
ences between efficiency and productivity levels are found to be persistent since terminals
with low estimated efficiency levels show high growth in container throughput during
the observation period, indicating an inverse relationship. Consequently, the following is
concluded: the most efficient terminal may not necessarily be the most productive one and
vice versa.

The main limitation of our research that can also present the base for further research
is a small sample that could be supplemented with additional terminals standing out in the
Mediterranean area as those with significantly larger inputs and outputs. For that sample,
an integrated model should be established, separately observing the sea and landside of ter-
minals because different practices are persistent in those areas. Regarding input variables,
terminal equipment, which in our and many other studies presents labor proxy, should be
separated since labor and terminal equipment variable have significant impacts on over-
all model performance, especially when terminal equipment is differentiated regarding
equipment models and implemented technologies. Other variables that should be included
are ecological and sustainably oriented ones since the inclusion of such components will
certainly, nowadays, make some terminals more competitive (at least in terms of technical
efficiency levels). It would also be necessary to consider an additional combination of
variables (especially external ones) that will better describe the research area. By this, we
mean a special set of external variables should be defined for a particular geographical area,
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i.e., separately for the Mediterranean region (Eastern, Central, and Western Mediterranean)
and separately for traffic routes and countries in contact with the Mediterranean since
different conditions prevail in different countries, although they are located nearby. By
applying the proposed model, the estimated results can present a foundation for terminal
monitoring to compel long-term management to take the proper decisions well before
problems occur and to test the feasibility of new solutions.
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