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Abstract: Internal waves in a stratified fluid with a constant buoyancy frequency were studied, with
special attention given to rogue modes, extreme waves, dynamical evolution, and Fermi–Pasta–
Ulam–Tsingou type recurrence phenomena. Rogue waves for triads in a general physical setting
have recently been derived analytically, but the implications in a fluid mechanics context have not
yet been fully assessed. Numerical simulations were conducted for cases of coupled triads where
the common member is a daughter wave mode. In sharp contrast with previous studies, rogue
modes instead of plane waves were used as the initial condition. Furthermore, spatial dependence
was incorporated. Rogue or extreme waves in one set of triads provided a possible mechanism for
significant energy transfer among modes of the internal wave spectrum, in addition to the other
known theories, e.g., weak turbulence. Remarkably, Fermi–Pasta–Ulam–Tsingou recurrence types of
growth and decay cycles arose, similar to those observed for surface gravity wave groups governed
by the cubic nonlinear Schrödinger equation. These mechanisms will enhance our understanding of
transport processes in oceans.

Keywords: coupled triads; rogue waves; energy transfer

1. Introduction

Wave interactions are ubiquitous phenomena in the physical world, and constitute
important mechanisms of energy transfer and for conveying information. Triad resonance,
also commonly named three-wave resonance, can occur when special constraints in wave
numbers and angular frequencies are satisfied. Pioneering studies of such interactions in
hydrodynamic waves started in the 1960s [1,2]. Triad resonance cannot exist for inviscid
gravity waves. However, three capillary-gravity wave trains may interact resonantly, which
can be readily illustrated by graphical constructions on the dispersion curves [3]. For a
two-layer fluid with a free surface and an interface, resonance exists among surface gravity
waves and interfacial waves [4,5].

Triad resonances consisting entirely of internal waves of stratified fluids have been
investigated from different perspectives in the literature. The stabilities of one isolated
triad and two coupled triads were analyzed in a uniformly stratified shear flow [6,7]. In
physical oceanography, triad resonance has also been suggested as a possible mechanism
for internal wave dissipation [8,9]. More precisely, the cascade of energy from large scale
internal tides to small scale motions is related to the occurrence of parametric subharmonic
instability (PSI), in which the energy of the high-frequency wave, further called the parent
wave, is transferred to two sibling waves with a lower frequency [10–12]. Work on this
topic has been extended by incorporating the effect of mean flow, rotation, and factors of
particular relevance in a geophysical fluid dynamics context [12,13].

Coupled triads in the context of general physics have been investigated theoretically
from different viewpoints. For a cluster formed by two pairs of triads with one common
member, the various combinations of the phase angles of the participating modes can
affect the evolution of the dynamics dramatically [14]. From a practical perspective, these
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coupled triads can exist in continuously stratified fluids. The evolution equations can be
derived, and the dependence of the interaction coefficients on the precise fluid properties
can be demonstrated explicitly. Furthermore, coupling can enhance the growth rates of the
instabilities compared to those exhibited by an isolated triad [7].

Rogue waves are unexpectedly large displacements from an otherwise tranquil sea
surface and have captured the attention of sailors and scientists for over a century [15,16].
Although rogue waves on the sea surface have been studied intensively, surprisingly,
large motions in the interior of the oceans associated with internal waves have not been
thoroughly considered. The Gardner equation, basically an extended Korteweg-de Vries
with both quadratic and cubic nonlinearities, has been applied as an analytical model in
long wave regimes for transient, large amplitude displacements [17–19].

On the other hand, triad resonance also occurs in many other physical contexts,
e.g., optics and plasma physics. Rogue wave solutions have been derived in a general
mathematical physics setting for an isolated triad recently [20]. However, the fluid dynamic
significance still remains to be examined. We intended to scrutinize the relevance of
rogue events in internal waves, the numerical robustness of triad rogue modes, as well
as the connection with the classical problem of Fermi–Pasta–Ulam–Tsingou recurrence
(FPUT) [21,22]. FPUT refers to the property or a tendency of a multi-mode nonlinear
system to return to the initial states after complex stages of evolution. This recurrence
has been confirmed both experimentally and computationally for slowly varying, narrow
banded surface gravity wave trains governed by the nonlinear Schrödinger equation [23].
Our contribution is to also demonstrate this FPUT phenomenon for these coupled triad
resonance systems.

The outline of our presentation is as follows. The evolution equations are derived
by multiple-scale perturbation theory (Section 2 and Appendix A). The detailed expres-
sions of the interaction coefficients are then related to the density profile and buoyancy
frequency. Numerical simulations for coupled triads with the common member being
the low-frequency wave, further called a daughter wave, are performed to investigate the
energy flow among all five components. Further remarks on naming triads and participat-
ing waves via this parent/daughter scheme are made in Section 2. Different combinations
of plane waves and rogue modes as initial conditions are utilized, and the occurrence of
FPUT is observed to be quite universal (Sections 3 and 4). Finally, conclusions are drawn
(Section 5).

2. Formulation of the Triad Resonance

The governing principles of motion involving mass and momentum of an inviscid,
incompressible, continuously stratified fluid are

ux + vy = 0, ρt + uρx + vρy = 0,
ρ
(
ut + uux + vuy

)
= −px, ρ

(
vt + uvx + vvy

)
= −py − ρg,

(1)

where u, v are the velocity components in the x, y directions, g is the gravitational accel-
eration, and ρ and p are the density and pressure, respectively. ‘Non-dimensionalization’
is performed using a typical wavelength, a reference velocity (typically square root of the
product of gravity and length scale), (length scale)/(reference velocity) as benchmarks for
length, velocity, and time, respectively. The effective gravity is then unity. The reference
length scale is one relevant to internal waves of one to a few kilometer(s).

Multiple-scale perturbation theory is applied to elucidate the interplay of dispersive
and nonlinear effects of slowly varying wave trains. The horizontal velocity (u) of this
five-wave system is expanded as

u = ε∑
m

u(m)
1 E(m) + ε2∑

m
u(m)

2 E(m), E(m) = exp(i(kmx−ωmt)), m = 1, 2, 3, 4, 5, (2)
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where ε stands for the small-amplitude parameter (typically wave amplitude divided
by depth). Similar expansion schemes are applied to the vertical velocity, density, and
pressure.

By substituting Equation (2) into the governing Equation (1) and adopting the Boussi-
nesq approximation, the linearized version of motion is described by the Taylor–Goldstein
equation,

d2ψ

dy2 − k2ψ+
N2

c2 ψ = 0, (3)

where ψ represents a measure of the vertical velocity structure. The quantity N2 is the
square of the buoyancy frequency for the background density profile (ρ = ρ(y)) defined
by:

N2 = − g
ρ

dρ(y)
dy

. (4)

The effective gravity is actually unity, but it is still kept in Equation (4) to conform with the
usual forms. The corresponding fluid dynamics quantities of velocities and densities of
O(ε) are:

v(m)
1 = Smψm(y), u(m)

1 =
iSm

km
[ψm(y)]y, ρ(m)

1 = i[ρ(y)]y
Smψm(y)
−kmcm

, Sm = Sm(x1, t1), (5)

where x1 = εx, t1 = εt are the slow space and time variables, and Sm is the slowly varying
amplitude of the wave packet.

A remark on the definition of parent and daughter modes is in order. We first define the
resonance condition as E(n) as given in Equation (2)

E(4) = E(5) + E(2), E(3) = E(5) + E(1). (6)

Consider coupled triads with one set involving modes m = 1, 3, 5, and the other set
involving modes m = 2, 4, 5. Modes 1, 2, 5 will be daughter waves, with mode 5 being the
common daughter wave. Modes 3 and 4 are parent waves. Alternative schemes on naming
the participating modes exist in the literature. Early studies on the stability criteria for 3-
wave and 4-wave interactions started in the 1960s [24]. This mother–daughter terminology is
used frequently in the field of plasma physics. A different and more illuminating scheme is
to adopt the names of active (for parent wave) and passive (for daughter wave) to characterize
the dynamical properties of associations with clusters of triads. This terminology was
first introduced for the cluster dynamics of planetary waves [25], with the advantage of
enhancing the qualitative description of interaction scenarios. A cluster of two triads
connected by a common member may be named a ‘butterfly’. The situation described by
Equation (6), where the common member is a passive mode in both triads, can be termed a
‘PP-butterfly’.

By employing the resonance conditions and the Fredholm alternative theorem, the
evolution equations in the slow scales, x1, t1 are derived:

∂S1
∂t1

+ cg1
∂S1
∂x1

= γ1S3S∗5 , ∂S3
∂t1

+ cg3
∂S3
∂x1

= γ3S1S5,
∂S2
∂t1

+ cg2
∂S2
∂x1

= γ2S4S∗5 , ∂S4
∂t1

+ cg4
∂S4
∂x1

= γ4S2S5,
∂S5
∂t1

+ cg5
∂S5
∂x1

= γ5aS3S∗1 + γ5bS4S∗2 ,

(7)

where cgm is the group velocity of the m-th mode. The interaction coefficients γm can be
computed by the lengthy formulations given in the Appendix A.

For waves propagating in a uniformly stratified fluid (N = N0, a constant), which is
confined in a rigid-wall channel of depth H, the eigenfunctions ψwill take the form of

ψ(y) = sin
(mπy

H

)
, ψ(0) = ψ(H) = 0. (8)
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Equations (3) and (8) generate the dispersion relation as

ω2 =
k2N2

0
k2 + m2π2/H2 , m = mode number, (9)

and there are mathematically infinitely many internal modes satisfying the Taylor–Goldstein
equation. The mode number is defined by the integer m, which determines the vertical ve-
locity and the eigenfunction profile. Here we construct coupled triads graphically through
dispersion curves, as illustrated in the diagram below (Figure 1).

Figure 1. Schematic diagram of coupled triads with all five participating waves traveling in the same
direction. A solid dot on the m = 5 branch represents the common member, with modes 1, 3, and 5
forming one triad and modes 2, 4, and 5 the other triad. As an illustrative example, the numerical
values of the corresponding wave numbers and wave frequencies are: (k1 = 0.5153, ω1 = 0.1619),
(k2 = 0.5160,ω2 = 0.0819), (k3 = 3.5153,ω3 = 0.3495), (k4 = 3.5160,ω4 = 0.2694), (k5 = 3,ω5 = 0.1876).

The wave number k is defined as usual by the number of waves in a length of 2π.
However, as the reference length scale is a wavelength of, for example, 1 km of the internal
wave, the actual wavelength for k = 3 will be (2π/3) (1 km). The angular frequency ω,
as shown in Figure 1, is ‘non-dimensionalized’ by the buoyancy frequency defined from
Equation (4). For a typical ocean, this frequency will be of an order of magnitude of around
0.001 to 0.01 s−1.

To investigate the dependence of the interaction coefficients on the channel depth H,
we compute the numerical values of a sequence of coupled triads with the common daughter
member fixed. The magnitude of the interaction coefficients may change substantially with
depth H, but the variations tend to level off for the limits of small and large values of H, as
illustrated in Figure 2. Compared with the situation of coupled triads with the common
member being a parent wave (or active mode) in the literature, the signs of the interaction
coefficients are similar [7]. More precisely, two daughter waves (or passive modes) are always
of the same sign in one isolated triad, while the sign of the parent wave (or active mode)
is opposite. Whether the common member is a daughter or a parent wave (passive or active
mode) will not affect the sign patterns in the coupled triad. However, the magnitude of the
interaction coefficients will affect the rate of energy transfer drastically. These scenarios are
elucidated in the numerical simulations in subsequent sections.
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Figure 2. Variation of the interaction coefficients with the channel depth H.

Here the water depth H has been nondimensionalized by a reference length scale
(which is a wavelength with an internal wave of 1 km). Hence H = 2 will correspond to an
ocean depth of 2 km.

3. Numerical Simulations of Energy Transfer in Coupled Triads

Computational and experimental investigations on recurrence phenomena in water
waves started in the 1970s. For surface gravity wave packets governed by the nonlinear
Schrödinger equation (NLS), disturbances and perturbed modes grow initially for suf-
ficiently deep water due to the Benjamin–Feir (or modulation) instability. Energy does
not ‘thermalize’ and the system goes back to the initial states, with the precise character
depending on the number of harmonics present initially [23].

In fact, a similar scenario occurs for the resonance between long and short waves,
where the evolution of a slightly modulated short wave exhibits recurrence and chaotic
motions [26]. A similar picture has recently arisen in optical physics. Wave pulses in an
optical fiber are still governed by a NLS. The difference is that the propagation variable is
now the distance along the fiber, and the transverse variable is the retarded time. Numerical
simulations with the initial condition being the fundamental frequency or the fundamental
frequency plus the second harmonic also demonstrate a FPUT type behavior [27]. Exper-
imentally, four FPUT cycles were observed for wave pulses governed by the nonlinear
Schrödinger equation in an ultra-low loss optical fiber [28].

To enhance the physical insight into the energy exchange among members of the
coupled triads, numerical simulations were also conducted by split-step method for the
present triad systems. For each triad within this coupled pair setting, the initial condition
is assigned to be either a rogue wave (RW) or plane wave (PW) configuration. Hence there
are four possible initial states to be considered, i.e., (RW, RW), (PW, RW), (RW, PW), and
(PW, PW). The energy flows and exchanges among the five wave components through the
common member can then be elucidated.

For a normalized isolated triad, e.g.,

S2 = S4 = 0, S1 =
A1√
|γ3||γ5a|

, S3 =
A2√
|γ1||γ5a|

, S5 =
A3√
|γ1||γ3|

, (10)
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the normalized evolution equations take the form of

∂A1
∂t1

+ cg1
∂A1
∂x1

= A2 A∗3 ,
∂A2
∂t1

+ cg2
∂A2
∂x1

= −A1 A3,
∂A3
∂t1

+ cg3
∂A3
∂x1

= A2 A∗1 ,

(11)

the rogue wave solution has been established in the literature as [20]

A1 = 2qδ1

[
1 + 3

√
3u∗0θ

∗u1

|u0|2+|u1|2+|u2|2

]
exp[i(K1x1 + qt1)],

A2 = 2qδ2

[
1 + 3

√
3u∗0θu2

|u0|2+|u1|2+|u2|2

]
exp[i(K2x1 − qt1)],

A3 = 2iqδ3

[
1 + 3

√
3u∗1θ

∗u2

|u0|2+|u1|2+|u2|2

]
exp[i(K2 − K1)x1 − 2iqt1],

(12)

with the parameters given in Appendix B.
The plane wave solutions of the coupled triads (Equation (7)) take the form of

S1,p(x1, t1) = ρ1 exp[i(a1x1 − b1t1)],
S2,p(x1, t1) = ρ2 exp[i(a2x1 − b2t1)],
S3,p(x1, t1) = ρ3 exp[i(a3x1 − b3t1)],
S4,p(x1, t1) = ρ4 exp[i(a4x1 − b4t1)],
S5,p(x1, t1) = iρ5 exp[i(a5x1 − b5t1)],

(13)

with the parameters given in Appendix C.

3.1. Components (3, 5, 1) being the Rogue Waves, and Modes 2 and 4 being the Plane Waves

We first study the case where one triad, e.g., (3, 5, 1) (Equation (6)), exhibits rogue
modes, while members of the other triad, e.g., (4, 5, 2), i.e., mode 4 and mode 2, are in
plane wave configurations (mode 5 is the common member of the two triads). The initial
conditions for the coupled triads are then expressed analytically as

S1(x1, t1) = A1(x1, t1), S3(x1, t1) = A2(x1, t1), S5(x1, t1) = A3(x1, t1),
S2(x1, t1) = S2,p(x1, t1), S4(x1, t1) = S4,p(x1, t1).

(14)

Numerical simulations were performed according to standard split-step schemes
(Figure 3). Comparisons of the maximum displacements of the wave profiles between the
analytical approach and numerical results are displayed (Table 1).

Table 1. Maxima of numerical and analytical results with a starting time of t1,0 = −3. (Amplitude Sn

as solutions of Equation (7)).

Components Numerical Amplitude Analytical Amplitude

S1 1.7730 2.8284
S3 2.2225 4
S5 1.6093 2.8284
S2 1.3844 1
S4 1.5193 1
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The magnitude of the wave envelopes, |Sk| (k = 1, 2, 3, 4, 5) display periodic growth
and decay cycles, which constitute the hallmark of FPUT. This is triggered by the rogue
waves of the (3, 5, 1) triad (Figure 3a–e)). The evolution of mode 3 (|S3|) is especially
remarkable, as it combines both the features of FPUT and a rogue wave. To a certain
extent, this pattern also appears in |S1|. The periodic energy transfer among the various
modes can be vividly observed (Figure 3a–e) and Table 1). Maxima of some |Sk| profiles
correspond to minima of the other triad modes (Figure 3f). For this particular example,
|S3| and |S5| are roughly in phase, with wave profiles increasing and decreasing at the
same time. The other member of the (3, 5, 1) triad, |S1|, is out of phase. The analytical
reason comes from the signs of the interaction coefficients, namely, γ1 < 0, γ3 = γ5a > 0. More
precisely, when |S3| and |S5| reach the maximum (minimum), |S1| attains the minimum
(maximum), a clear demonstration of energy exchange for these triads. Furthermore, |S2|
and |S4|, members of the other triad excited due to coupling, also exchange energy among
themselves. Indeed energy transfer occurs among |S1|, |S3|, |S5|, |S2|, and |S4|. This
is especially clear for t1 > 10 for the present choice of parameters. We observe that energy
of |S1| and |S4| is transferred to |S5| and |S2|. This decrease in energy of |S1| is again
due to the sign of the interaction coefficient, γ1 < 0.

Figure 3. Cont.
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Figure 3. (a–e) Evolution of the five wave components; (f) time history of the moduli of the envelopes, |Sk|. Parameters used were cg1

= 2, cg3 = 1, cg5 = 0.5, cg2 = 0.1, cg4 = 0.1, γ1 = −0.1, γ3 = 0.1, γ5a = 0.1, γ2 = −0.1, γ4 = 0.1, γ5b = −0.01, r1 = 1, r2 = 1, r3 = 0, q = 1, a2 = 1,
ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 1.

To clarify the energy transfer mechanisms among modes of the (3, 5, 1) and (4, 5, 2)
triads, control experiments were conducted with some interaction coefficients set to be
zero:

• On setting the coefficients γ2, γ4 and γ5b to be 0, energy only flows among members
of the isolated triad (3, 5, 1). The other modes S2 and S4 just oscillate independently,
as they are governed by the evolution equations

∂S2

∂t1
+ cg2

∂S2

∂x1
= 0;

∂S4

∂t1
+ cg4

∂S4

∂x1
= 0. (15)

On examining Figures 3 and 4, one can observe that energy transfer not only exists
among |S1|, |S3|, |S5| (|S1| and |S3|→ |S5|), but can also flow from triad (3, 5,
1) to triad (4, 5, 2) via the common member.

• On the other hand, one can also set the parameters γ1, γ3, and γ5a to be zero (Figure 5),
but maintain nonzero interaction coefficients in the other triad. Simulations can also
be conducted. Qualitatively similar conclusions can be drawn, i.e., a rogue wave can
trigger FPUT. Energy transfer also appears among |S2|, |S4|, |S5| (|S2| and |S4|
→ |S5|).

Figure 4. Cont.
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Figure 4. (a–e) Control experiment (only |S1|, |S3| and |S5| oscillate, |S2|, |S4| mostly unchanged); (f) time history of the moduli
of the envelopes, |Sk|. Parameters used were cg1 = 2, cg3 = 1, cg5 = 0.5, cg2 = 0.1, cg4 = 0.1, γ1 = −0.1, γ3 = 0.1, γ5a = 0.1, γ2 = 0, γ4 = 0,
γ5b = 0, r1 = 1, r2 = 1, r3 = 0, q = 1, a2 = 1, ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 1.

Figure 5. Cont.
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Figure 5. (a–e) Control experiment (only |S2|, |S4| and |S5| oscillate, |S1|, |S3| move as plane wave); (f) time history of the
moduli of the envelopes, |Sk|. Parameters used were cg1 = 2, cg3 = 1, cg5 = 0.5, cg2 = cg4 = 0.1, γ1 = γ3 = γ5a = 0, γ2 = −0.1, γ4 = 0.1,
γ5b = −0.01, r1 = 1, r2 = 1, r3 = 0, q = 1, a2 = 1, ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 1.

3.2. Components (3, 5, 1) as Plane Waves, Modes 2, 4 as Plane Waves with Perturbations

Next we consider the scenario where all modes start with a plane wave configuration.
The initial conditions for the coupled triad are

S1(x1, t1) = S1,p(x1, t1), S3(x1, t1) = S3,p(x1, t1), S5(x1, t1) = S5,p(x1, t1),
S2(x1, t1) = S2,p(x1, t1) + δ cos(x), S4(x1, t1) = S4,p(x1, t1) + δ cos(x).

(16)

A small perturbation, measured by the parameter δ, is introduced to initiate the
motion. Numerical simulations with split-step schemes are conducted (Figure 6). The
maximum values of the wave profiles from the numerical and analytical approaches are
displayed in Table 2.

Table 2. Maxima of numerical and analytical rogue waves with time starting at t1,0 = −3.

Components Numerical Amplitude Analytical Amplitude

S1 1.1060 1
S3 1.7826 1
S5 2.4633 1
S2 0.6634 0.1
S4 0.7256 0.1

Growth and decay cycles, i.e., FPUT, can still be triggered in |Sk| (k = 1, 2, 3, 4, 5)
with the initial conditions of perturbed plane waves (Equation (15)). Phenomena similar to
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those of the previous section can still be observed (Figure 6), i.e., the variations of |S3| and
|S5| are roughly in phase: increasing and decreasing at the same time, while |S1| is out
of phase with these two modes. More precisely, when |S3| and |S5| reach the maximum
(minimum), |S1| attains the minimum (maximum), as the signs of γ1, γ3, and γ5a are the
same as those in Figure 3. In addition, the fluctuations of the maximum amplitudes of |S2|
and |S4| are very small. For a sufficiently small time (t1 < 5 for parameters chosen here),
energy transfer occurs between |S2| and |S4| only, arising from the small perturbations
in the linear stage of modulation instability. For a larger time (t1 > 5 in the present case),
energy transfer occurs among |S1|, |S3|, |S5|, |S2|, and |S4| in the nonlinear stage of
modulation instability. Furthermore, we note these features:

(a) if ρ2, ρ4 are small, exchange and oscillations of S1, S3, S5 can be maintained;
(b) if at least one of ρ2 or ρ4 is order one, then the oscillations exhibited by S1, S3, S5 are

distorted.

Comparing Figure 6f with Figure 3f, we conclude that:

• Energy transfer can arise immediately among |S1|, |S3|, and |S5|, with the initial
conditions being rogue wave modes (Figure 3f);

• Energy transfer occurs among |S1|, |S3|, |S5|, |S2|, and |S4| in the nonlinear stage
of modulation instability.

Figure 6. Cont.
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Figure 6. (a–e) The evolution of five wave components; (f) time history of the moduli of the envelopes, |Sk|. Parameters used were
cg1 = 2, cg3 = 1, cg5 = 0.5, cg2 = −0.1, cg4 = 0.1, γ1 = 1, γ3 = −1, γ5a = −1, γ2 = −0.5, γ4 = 0.5, γ5b = −0.01, a2 = 1, ρ1 = ρ3 = ρ5 = 1,
ρ2 = ρ4 = 0.1, δ = 0.4.

To highlight the energy exchange between the (3, 5, 1) and (4, 5, 2) triads, con-
trol experiments similar to previous sections (Figure 6) were performed for comparison
(Figures 7 and 8):

• We first consider the energy flow in an isolated triad (3, 5, 1) with γ2 = γ4 = 0 (Figure 7).
The parameter γ5b is critical for the movement of energy because |S2| and |S4| are
perturbed by the noise. Comparing Figure 6 with Figure 7, the results show that the
energy of perturbations flows to |S1|, |S3| and |S5|. Furthermore, energy transfer
occurs among |S1|, |S3|, |S5| (|S1|→ |S3| and |S5|), as well as triads (3, 5, 1)
and (4, 5, 2) ((4, 5, 2)→ (3, 5, 1)), simultaneously.

• Setting γ1 = γ3 = γ5a = 0 and comparing Figure 6 with Figure 8, energy exchange can
be observed between |S2| and |S4|. The energy transfer among |S2|, |S4|, |S5|
is insignificant due to the small magnitude of the parameter γ5b. However, energy
movement among |S2|, |S4|, |S5| (|S2| and |S4| to |S5|) will still take place if the
simulation is continued for a sufficiently long time.

Figure 7. Cont.
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Figure 7. (a–e) Control experiment (only |S1|, |S3| and |S5| oscillate, |S2|, |S4| move as plane wave); (f) time history of the
moduli of the envelopes, |Sk|. Parameters used were cg1 = 2, cg3 = 1, cg5 = 0.5, cg2 = −0.1, cg4 = 0.1, γ1 = 1, γ3 = γ5a = −1, γ2 = γ4 = 0,
γ5b = −0.01, a2 = 1, ρ1 = ρ3 = ρ5 = 1, ρ2 = ρ4 = 0.1, δ = 0.4.

Figure 8. Cont.
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Figure 8. (a–c) Control experiment (only |S2|, |S4| and |S5| oscillate, |S1|, |S3| mostly unchanged); (d) time history of the moduli
of the envelopes, |Sk|. Parameters used were cg1 = 2, cg3 = 1, cg5 = 0.5, cg2 = −0.1, cg4 = 0.1, γ1 = γ3 = γ5a = 0, γ2 = −0.5, γ4 = 0.5,
γ5b = −0.01, a2 = 1, ρ1 = ρ3 = ρ5 = 1, ρ2 = ρ4 = 0.1, δ = 0.4.

4. Simulations with Other Choices of Input Parameters

Theoretically, five out of the six interaction coefficients of the coupled triad system
(Equation (7)) can in principle be normalized to unity. For convenience, we shall nominally
take γ5b as a free parameter. In the previous section, we took all the other ‘γ’ as small
integers (±1) or fractions (±1/2). In practice, these interactions are calculated from density
profilesand velocity eigenfunctions of stratified fluids (Appendix A). Hence it would be
instructive to perform computer simulations with realistic or fluid mechanics-inspired
values of ‘γ’. First, we note that signs of the interaction coefficients generally proceed such
as:

γ1 > 0, γ3 < 0, γ5a > 0; γ2 < 0, γ4 > 0, γ5b < 0. (17)

4.1. Components (3, 5, 1) Being Rogue Waves, Modes 2 and 4 Being Plane Waves

The initial conditions for the coupled triad are chosen as

S1(x1, t1) = A1(x1, t1), S3(x1, t1) = A2(x1, t1), S5(x1, t1) = A3(x1, t1),
S2(x1, t1) = S2,p(x1, t1), S4(x1, t1) = S4,p(x1, t1).

(18)

The properties established in the previous section remain valid. More precisely, |S1|,
|S3|, and |S5| exhibit a mixture of FPUT growth/decay cycles and rogue wave type
outburst (Figure 9). With cg1 < 0, cg3 > 0 and cg5 > 0, the wave profiles of |S3| and |S5|
are going forward, while |S1| travels backward. Movement of energy can be traced by the
locations of maxima of |Sk| (Figure 9). With γ1 = γ5a > 0, γ3 < 0, the wave profiles of |S1|
and |S5| are in phase, while |S3| is 180 degrees out of phase with these two.
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Figure 9. (a–c) Evolution of the wave components; (d) time history of the moduli of the envelopes, |Sk|. Parameters used
were cg1 = −0.5, cg3 = 1, cg5 = 0.5, cg2 = −0.1, cg4 = 0.6, γ1 = 0.1, γ3 = −0.1, γ5a = 0.1, γ2 = −0.1, γ4 = 0.1, γ5b = −0.01, r1 = 1,
r2 = 1, r3 = 0, q = 1, a2 = 1, ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 1.

4.2. Components (3, 5, 1) as Plane Waves, Modes 2, 4 Being Plane Waves with Perturbations

The initial conditions are selected to be

S1(x1, t1) = S1,p(x1, t1), S3(x1, t1) = S3,p(x1, t1), S5(x1, t1) = S5,p(x1, t1),
S2(x1, t1) = S2,p(x1, t1) + δ cos(x), S4(x1, t1) = S4,p(x1, t1) + δ cos(x).

(19)

All components |Sk| (k = 1, 2, 3, 4, 5) display FPUT growth and decay cycles
(Figure 10a–e). The propagation directions of |S2| and |S4| are different owing to the
different signs of the group velocities, cg2 < 0, cg4 > 0. Energy exchange can be tracked by
the locations of maxima of |Sk| (Figure 10f). Wave profiles |S1| and |S5| are roughly in
phase: increasing and decreasing at the same time, while |S3| is out of phase, a manifesta-
tion of the signs of the interaction coefficients, γ1 = γ5a > 0, γ3 < 0. Simultaneously, energy
transfer also exists among |S2|, |S4|, and |S5|. For a reasonably small time (t1 < 5 here),
energy only moves between |S2| and |S4|, resulting from the small perturbations in the
linear stage of modulation instability. For a larger time (t1 > 5), the energy flows among
|S1|, |S3|, |S5|, |S2|, and |S4| in the nonlinear stage of modulation instability.
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Figure 10. (a–e) Evolution of the five wave components; (f) time history of the moduli of the envelopes, |Sk|. Parameters
used were cg1 = −0.5, cg3 = 1, cg5 = 0.5, cg2 = −0.1, cg4 = 0.6, γ1 = 1, γ3 = −1, γ5a = 1, γ2 = −0.5, γ4 = 0.5, γ5b = −0.05, a2 = 1,
ρ1 = ρ3 = ρ5 = 1, ρ2 = ρ4 = 0.1, δ = 0.4.

5. Discussions and Conclusions

A remark on the applications of the present formulation to physical oceanography is
appropriate. The nonlinear Schrödinger equation and the Peregrine breather are widely
used models for describing the dynamics of surface wave packets and surface rogue waves.
One scientifically documented rogue wave was the Draupner Wave of 1 January 1995. If
we compute the coefficients of the Schrödinger equation with the water depth conditions at
the location of the Draupner Wave, the coefficients are generally of order unity, and hence
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no scaling is necessary. Since the Peregrine breather has a maximum displacement of three
times the background plane wave, a background wave train of 8 m will produce a rogue
wave with an amplitude of roughly 25 m, which is consistent with observations.

For internal rogue waves described by the triad equations, the interaction coefficients
may differ drastically from unity, and thus rescaling would be necessary. As an illustrative
example, we can consider an average ocean depth of say 4000 m. The corresponding
interaction coefficients can be obtained from Figure 2 by choosing a non-dimensional water
depth of H = 4, if we choose a reference length scale of 1 km. The numerical values of
the coefficients are γ1 = 7.9946 × 10−4, γ2 = −5.4641 × 10−4, γ3 = −0.0562, γ4 = 0.1823,
γ5a = 0.0244, γ5b = −0.1143.

To estimate the actual amplitude in a realistic oceanic condition, we employ the
formulation

S1 = A1/(|γ3||γ5a|)1/2, S3 = A2 /(|γ1||γ5a|)1/2, S5 = A3 /(|γ1||γ3|)1/2, (20)

where Sn and An are amplitudes in Equations (7) and (11), respectively. As the exact
solutions of Equation (12) exhibit an amplitude of roughly two, the actual maximum
displacements will be of the order of 50 to 200 m in the interior of the oceans. The spatial
size of such internal rogue waves will scale with the wavelength of the packet. The temporal
duration will again follow the ‘non-dimensionalization’ time unit, i.e., the square root of
(length scale/gravity). If the length scale is 1 km and gravity is taken as 10 m s−2, the time
scale is in multiples of 10 s. The typical rogue wave solution of Equation (11) takes about
six time units to go through a growth–decay cycle, and hence this corresponds to 1 min in
real time. For internal waves with a length scale much larger than 1 km, the spatial extent
and time period will be correspondingly larger.

A widely adopted model in a deterministic (as opposed to probabilistic) approach to
water waves is the nonlinear Schrödinger equation (NLS), where the salient features are
the Peregrine breather and modulation instability. Two features associated with NLS have
generated discussion and debate in the literature, namely, time scale and quadratic versus
cubic nonlinearity. For NLS, the asymptotic time scale of evolution is ε2t, where ε is a non-
dimensional, small amplitude parameter. For triad resonance, the time scale is εt, and is
thus much faster. One drawback of the analytical formulation of breathers and rogue waves
of NLS is the assumption of a long crested wave, which might make realization in terms of
field observation difficult. A competing theory, utilizing interference of second order waves,
has been suggested in the literature [29]. Hence systems with quadratic nonlinearities
deserve a penetrating study, and we believe that the triad resonance equations constitute
an appropriate candidate.

Coupled triads with one common member can exist in stratified fluids with con-
stant buoyancy frequency, and are important in the general context of mathematical
physics [30,31]. The evolution equations for weakly nonlinear, slowly varying, narrow
banded wave packets are then derived by perturbation theory. We focused on the case
where the common member is a daughter wave (passive mode). This is in sharp contrast
with our previous work [7], where the common member was the parent wave (active mode).
Moreover, rogue modes, instead of plane waves, were used as initial conditions. While
our earlier work included time dependence only [7], spatial dependence is incorporated
here. Generally the signs of the interaction coefficients are critical for the energy transfer
process. If the interaction coefficients of two components in a triad have the same sign, the
evolution of the corresponding amplitudes tends to be in phase. With the common member
being the daughter wave (passive modes), the sign patterns of the interaction coefficients are
not affected drastically in comparison with our previous work on a common parent wave
(active mode). However, the magnitudes are modified. From numerical simulations, if the
common member is the parent wave (active mode), energy can be readily transferred from
one triad to the two daughter waves (passive modes) in the other triad through the common
parent member [7]. However, if the common member is a daughter wave (passive mode), this
catalyst mechanism of moving energy appears to be much less efficient. The underlying
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reason for this is not properly understood. Whether the structure of evolution equations
plays a role will constitute a topic of future research. Hence triad resonance might provide
a feasible mechanism of energy transfer among modes in addition to other theories in the
literature such as weak turbulence [32,33].

In addition to their relevance in a theoretical context, the numerical simulations
performed here will enhance physical insights into extreme waves in the oceans. Although
rogue waves for an isolated triad have been derived in a mathematical physics setting
in the past ten years, here we apply these formulations to oceanic internal waves. More
precisely, we demonstrated the existence of FPUT type growth and decay cycles for the
triad equations. Furthermore, we studied a system of coupled triads, where analytical
solutions are not available. Nevertheless, the nonlinear dynamical interplay between
rogue modes and plane waves is intriguing and was demonstrated through computational
studies. Through these simulations, the computational evidence shows that the FPUT and
immediate energy transfer can be triggered by rogue waves. Moreover, the linear and
nonlinear stages of modulation instability are related to the transfer of energy among the
five waves. Finally, the evolution of wave profiles and energy transfer depends crucially
on the initial conditions and the sign patterns of the interaction coefficients.

While our attention mostly focused on the theoretical aspects, remarks on practical
applications to physical oceanography are in order. One contrast with long wave models of
internal rogue modes [17] is relevant. Assuming an ocean depth of 1000 m, the wavelength
for a Korteweg-de Vries model to be valid must be at an order of magnitude of 10,000 m or
longer. In contrast, the fast oscillations of the wave packets involved in triad resonance do
not need to conform to a long wave scaling and can be comparable to just the water depth.
Indeed there are recorded oceanic data in the literature on trains or packets of internal
wave oscillations within one or a few kilometers [34,35].

There remain many formidable challenges in terms of future research opportunities.
One direction is to relax the assumption of a constant buoyancy frequency (or the squared
value as N2). Indeed taking N2 as the square of the hyperbolic secant will have both
theoretical and physical significance. Theoretically, the eigenfunctions can be obtained in
closed forms using hyperbolic functions. Physically, a sharply peaked profile of N2 is a
realistic approximation of the oceans, as the density can experience a sharp change across a
pycnocline. Another limiting case of sharp density change is modeled by a two-layer fluid,
which has been employed by fluid dynamicists for over a century. Promising results are
awaiting our further efforts.
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Appendix A

Formulations of interaction coefficients:
The interaction coefficients are derived by applying the Fredholm alternative theorem

to the perturbation equations. For convenience, we just take one triad as an example and
give the formulas of interaction coefficients. The remaining coefficients can be deduced in
a similar way. Considering one triad involving k4 = k2 + k5, k4 is the parent mode and k2, k5
are the daughter waves.

The quadratic nonlinearities arising from the incompressible condition and the mo-
mentum equations are named by G0, G1, G2, respectively. The wave pairs are represented
by the superscripts. In this case, (2, 5) stand for the interaction of mode 2 and mode 5 in
generating mode 4. Hence, the expressions of nonlinearity arising from k2, k5 are

G(2,5)
0 = u(5)ρ(2)ik2 + u(2)ρ(5)ik5 + v(5)ρ(2)y + v(2)ρ(5)y ,

G(2,5)
1 = u(5)u(2)ik2 + u(2)u(5)ik5 + v(5)u(2)

y + v(2)u(5)
y ,

G(2,5)
2 = u(5)v(2)ik2 + u(2)v(5)ik5 + v(5)v(2)y + v(2)v(5)y ,

(A1)

where u, v, ρ denote the linear, first order x-velocity, y-velocity, and density.
For nonlinearity arising from a parent wave k4 and a daughter mode k5, the expressions

are
G(4,5)

0 = u(4)
[
ik5ρ

(5)
]∗

+
[
u(5)

]∗[
ik4ρ

(4)
]
+ v(4)

[
ρ
(5)
y

]∗
+
[
v(5)

]∗
ρ
(4)
y ,

G(4,5)
1 = u(4)

[
ik5u(5)

]∗
+
[
u(5)

]∗[
ik4u(4)

]
+ v(4)

[
u(5)

y

]∗
+
[
v(5)

]∗
u(4)

y ,

G(4,5)
2 = u(4)

[
ik5v(5)

]∗
+
[
u(5)

]∗[
ik4v(4)

]
+ v(4)

[
v(5)y

]∗
+
[
v(5)

]∗
v(4)y .

(A2)

For a generalized nonlinearity arising from daughter modes, km and kn, the expressions
are

G(m,n)
0 = u(m)

[
iknρ

(n)
]
+
[
u(n)

][
ikmρ

(m)
]
+ v(m)

[
ρ
(n)
y

]
+
[
v(n)

]
ρ
(m)
y ,

G(m,n)
1 = u(m)

[
iknu(n)

]
+
[
u(n)

][
ikmu(m)

]
+ v(m)

[
u(n)

y

]
+
[
v(n)

]
u(m)

y ,

G(m,n)
2 = u(m)

[
iknv(n)

]
+
[
u(n)

][
ikmv(m)

]
+ v(m)

[
v(n)y

]
+
[
v(n)

]
v(m)

y ,

(A3)

where the linear horizontal/vertical velocities, density are

u(m) =
i

km
(ψm)ySm,v(m) = ψmSm,ρ(m) =

i
(
ρy

)
ψm

−cmkm
Sm. (A4)

The eigenfunction ψm satisfies the Taylor–Goldstein equation (Equation (3)).
To evaluate a typical interaction coefficient, such as γ2 given in Equation (7), calcula-

tions involving the Fredholm alternative theorem give

γ2 =
γ2n
γ2d

(A5)

γ2n =
∫ H

0

[
1
i

∂G(4,5)
1

∂y
+

1
i

g
ρ(y)

G(4,5)
0

(−c2)
− k2G(4,5)

2

]
ψ2dy, (A6)

γ2d =
1
k2

∫ H

0

[
2N2

(c2)
2

]
ψ2

2dy. (A7)
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One can easily write down formulas such as

γjn =
∫ H

0

[
1
i

∂G(m,n)
1
∂y

+
1
i

g
ρ(y)

G(m,n)
0(
−cj
) − k jG

(m,n)
2

]
ψjdy, (A8)

γjd =
1
k j

∫ H

0

[
2N2(
cj
)2

]
ψ2

j dy, (A9)

for other types of interactions.

Appendix B

The parameters for the rogue waves solutions are:

u0 = r1 + r2ς1 + r3(η− iθ∗),u1 = r1 + r2(ς1 + θ
∗) + r3

(
η+ θ∗ς1 + i

√
3
)

, (A10)

u2 = r1 + r2(ς1 + θ) + r3(η+ θς1), ς1 = −2q(t1 + iρ1x1), η =
(

ς2
1

)
/2− 2iqρ2x1, (A11)

ρ1 = θ/cg1 − θ∗/cg2,ρ2 = 1/cg1 − 1/cg2,K1 = q
(

1
cg1
− 2

cg2

)
,K2 = q

(
2

cg1
− 1

cg2

)
, (A12)

θ =
(
−
√

3 + i
)

/2,δ1 =

√
1−

cg2

cg1
,δ2 =

√
cg1

cg2
− 1,δ3 =

cg1 − cg2
√cg1cg2

= δ1δ2, (A13)

where the group velocities should satisfy cg1 > cg2 > cg3.

Appendix C

The parameters for the plane wave modes are

b1 =
b11 + b12 + (b13 + b14)ρ

2
5(

cg1 − cg3
)(

cg4 − cg5
)
ρ1ρ2ρ3ρ4ρ5

, b2 = a2cg2 + γ2
ρ4ρ5
ρ2

, (A14)

b3 =
b31 + b32 + (b33 + b34)ρ

2
5(

cg1 − cg3
)(

cg4 − cg5
)
ρ1ρ2ρ3ρ4ρ5

, b5 = b3 − b1, b4 = b2 + b5, (A15)

a1 =
a11 + a12 + (a13 + a14)ρ

2
5(

cg1 − cg3
)(

cg4 − cg5
)
ρ1ρ2ρ3ρ4ρ5

, a3 =
a31 + a32 + (a33 + a34)ρ

2
5(

cg1 − cg3
)(

cg4 − cg5
)
ρ1ρ2ρ3ρ4ρ5

, (A16)

a11 =
(
cg3 − cg4

)
ρ1ρ2ρ3ρ4(γ5aρ1ρ3 + γ5bρ2ρ4), (A17)

a12 = a2
(
cg2 − cg4

)(
cg3 − cg5

)
ρ1ρ2ρ3ρ4ρ5, (A18)

a13 =
(
cg3 − cg5

)
γ4ρ1ρ

2
2ρ3 +

(
−cg4 + cg5

)(
γ3ρ

2
1 + γ1ρ

2
3

)
ρ2ρ4, (A19)

a14 =
(
cg3 − cg5

)
γ2ρ1ρ3ρ

2
4, a31 =

(
cg1 − cg4

)
ρ1ρ2ρ3ρ4(γ5aρ1ρ3 + γ5bρ2ρ4), (A20)

a32 = a2
(
cg2 − cg4

)(
cg1 − cg5

)
ρ1ρ2ρ3ρ4ρ5, (A21)

a33 =
(
cg1 − cg5

)
γ4ρ1ρ

2
2ρ3 +

(
−cg4 + cg5

)(
γ3ρ

2
1 + γ1ρ

2
3

)
ρ2ρ4, (A22)

a34 =
(
cg1 − cg5

)
γ2ρ1ρ3ρ

2
4, b11 = cg1a11, b12 = cg1a12, (A23)

b13 = cg1
(
cg3 − cg5

)
γ4ρ1ρ

2
2ρ3 +

(
−cg4 + cg5

)(
cg1γ3ρ

2
1 + cg3γ1ρ

2
3

)
ρ2ρ4, (A24)

b14 = cg1a14, b31 = cg3a31, b32 = cg3a32, b34 = cg3a34, (A25)

b33 = cg3
(
cg1 − cg5

)
γ4ρ1ρ

2
2ρ3 +

(
−cg4 + cg5

)(
cg1γ3ρ

2
1 + cg3γ1ρ

2
3

)
ρ2ρ4, (A26)

where a2, ρ1, ρ2, ρ3, ρ4 and ρ5 are constants.
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