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Abstract: How to improve the power generation of wave energy converters (WEC) has become one 
of the main research objectives in wave energy field. This paper illustrates a framework on the use 
of back propagation (BP) neural network in predicting capture power of the frustum of a cone 
shaped floating body. Mathematical model of single floating body is derived, and radius, semi-ver-
tical angle, mass, submergence depth, power take-off (PTO) damping coefficient, and stiffness coef-
ficient are identified as key variables. Commercial software ANSYS-AQWA is used for numerical 
simulations to obtain hydrodynamic parameters, and then capture power is calculated by these pa-
rameters. A database containing 100 samples is established by Latin hypercube sampling (LHS) 
method, and a simple feature study is conducted. A BP neural network model with high accuracy 
is designed and trained for predictions based on built database. The results show that forecasting 
results and desired outputs are in great agreement with error percentage not greater than 4%, cor-
relation coefficient (CC) greater than 0.9, P value close to 1, and root mean square error (RMSE) less 
than 139 W. The proposed method provides a guideline for designers to identify basic parameters 
of the floating body and system damping coefficient. 

Keywords: structure parameters; ANSYS-AQWA simulations; feature study; BP neural network; 
power predictions 
 

1. Introduction 
Wave energy converters (WEC), a new type of energy extractor with little pollution, 

are expected to be a reliable alternative to the current generation method. There are two 
stages for an oscillating body WEC transforming wave energy into other forms of energy 
like electricity. A floating body is firstly required to capture the wave energy induced by 
a wave’s motion. Then the moving floating body drives a generator to generate power. 
An intact oscillating body WEC system is generally composed of a moving floating body, 
a power take-off (PTO) system, and an anchor chain, etc. At present, the conversion effi-
ciency of WECs is relatively low, so the main research objective is to improve the power 
generation of a specific device. 

One method is to design a different floating body’s shape, and the shape is usually 
irregular curved surface. McCabe [1] researched the optimization of the shape of a wave 
energy collector to improve energy extraction by genetic algorithms, and a benchmark 
collector shape was identified. Colby [2] used evolutionary algorithms to optimize the 
ballast geometry and achieved 84% improvement in power output. Fang [3] designed a 
mass-adjustable float, and a new optimization calculation method was proposed. Multi-
freedom buoys have been also proposed in [4–6]. They can translate or rotate in more than 
one freedom, so more wave energy can be captured. Another means is to design an 
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innovative PTO system. Reabroy [7] proposed a novel floating device integrated with a 
fixed breakwater. The simulations and experiments proved that installing a breakwater 
can greatly improve the conversion efficiency. Liang [8] designed a novel PTO system 
which is inside the buoy with a mechanical motion rectifier (MMR). This mechanism can 
convert the bidirectional wave motion into unidirectional rotation of the generator by two 
one-way bearings. Li [9] improved this device by substituting one-way bearings for two 
one-way clutches. Chen [10] proposed a new point-absorber WEC with an outer-floater 
and a built-in power take-off mechanism. Besides, array-type WECs, integrated with 
many buoys and PTO systems, are also researched to achieve large scale power genera-
tion. The typical one is WaveNET [11], developed by Albatern in Scotland. Sun [12] pro-
posed an array-type energy-capturing mechanism integrated with marine structures. Liu 
[13] proposed an array-type WEC combined with oscillating buoy. 

The factors that affect the power generation have also been studied recently. Zou [14] 
analyzed the effects of spring force, mass force, and damping force on energy conversion 
efficiency based on a 3D wave tank model. Yu [15] and Wu [16] discussed the influence of 
the floating body’s shape, PTO damping coefficient, system stiffness coefficient, and ge-
ometry parameters on power generation. Zheng [17] established an optimization model 
of energy conversion performance via genetic algorithm. Ma [18] researched the two-body 
floating point absorber and the results showed that stiffness coefficient had less effect on 
the power generation than damping coefficient. Ji [19] proved that PTO damping coeffi-
cient and submerged body volume were the most important parameters that affect the 
output power, and that the significant wave height had little influence on conversion ef-
ficiency. Tongphong [20] analyzed the effects of wave frequency, PTO damping coeffi-
cient, and structure form (floating or fixed) on capture factors. 

Wave load and hydrodynamic parameters are vital factors in the analysis process of 
floating body’s motions. Numerical simulations are widely used in hydrodynamic perfor-
mance analysis to obtain these parameters. Ma [21] used ANSYS-AQWA software to as-
sess the hydrodynamic performance and energy conversion of a pitching float WEC and 
analyzed key factors’ influences on the performance. Amiri [22] presented a numerical 
simulation scheme for a point wave absorber and analyzed its performance. Yu [23] ap-
plied Reynolds-Averaged Navier-Stokes (RANS) computational method for analyzing the 
hydrodynamic heave response of a specific WEC device. 

In addition to the traditional physical model [24,25], novel methods and models 
based on big data and machine learning have also been presented. Law [26] carried out 
wave prediction over a large distance downstream using artificial neural network, intro-
ducing machine learning algorithm into ocean engineering. Desouky [27] utilized non-
linear autoregressive with exogenous input network to predict the surface elevation with 
the help of an ahead located sensor. Kumar [28] used the Minimal Resource Allocation 
Network (MRAN) and the Growing and Pruning Radial Basis Function (GAP-RBF) net-
work to predict the daily wave heights based on real marine data. Some elevating meas-
urements are also proposed to assess the performance of predictions in [29]. Avila [30] 
combined Fuzzy Inference Systems (FIS) and Artificial Neural Networks (ANN) to fore-
cast wave energy in Canary Islands. Wang [31] predicted power outputs of a WEC in 
shallow water, taking bottom effects into accounts. Halliday [32] utilized Fast Fourier 
Transform (FFT) to predict wave behavior in short term based on real marine data. Davis 
[33] used a nonlinear Extended Kalman Filter to estimate the wave excitation force based 
on experimental wave tank data. Ni [34] combined the Long Short-Term Memory (LSTM) 
algorithm and the principal component analysis (PCA) together to predict the power gen-
eration of a WEC. 

Different from traditional mathematical model, this paper presents an agent model 
using BP neural network to determine the complex non-linear reflection between design 
variables and power generation. Power predictions are the foundation of multi-objective 
optimizations of a floating body. Accurate power prediction can provide a guide for the 
electricity consumption, allocation, and distribution in power grid. Through the 
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prediction, the unknown generation power becomes measurable, so reasonable manners 
can be arranged to increase the grid capacity. 

The remainder of this paper is organized as follows: Section 2 develops the mathe-
matical model of the oscillating float-type WEC. In Section 3, a sample database is estab-
lished by LHS method, and a simple feature study is conducted. The geometric model and 
simulations of each sample are done in ANSYS-AQWA (developed by ANSYS company, 
based in Canonsburg, Pennsylvania, USA) in Section 4. Section 5 designs a BP neural net-
work model and it is used to predict the capture power. Results and discussion are given 
in Section 6 and conclusions are presented in Section 7. 

2. Mathematical Model 
A schematic diagram of the oscillating body WEC is shown in Figure 1. To simplify 

the study, some assumptions are made as below: 
1. linear wave theory and potential flow theory are suitable for this model, and they are 

used to describe wave motion; 
2. only the heave motion of the floating body is considered; 
3. the viscous force and mooring force acting on the floating body are ignored [10]; 
4. the PTO system is linear. 

 
Figure 1. Mechanical model. 

Under three assumptions, the following forces act on the floating body: hydrody-
namic forces (excitation and radiation force); hydrostatic buoyancy; PTO damping force; 
rigid restoring force. According to the theory of fluid mechanics and Newton’s law, the 
governing equation of the floating body can be expressed as follows: 

0 ( ) E R S PTO KM z t f f f f f= − − − −  (1) 

where M0 represents mass; z(t) represents the heave displacement; fE represents excitation 
force; fR represents radiation force; fS represents hydrostatic buoyancy; fPTO represents PTO 
damping force; fK represents rigid restoring force. 

The excitation force imparts on the floating body by the incoming wave. It is the sum-
mation of the Froude-Krylov force fFK and the diffraction force fD, so it can be written as 
follows: 

E FK Df f f= +  (2) 

The radiation force is induced by the floating body’s motion and can be decomposed 
into an added mass term and a radiation damping term [25], so it can be expressed as 
follows: 

( ) ( )R M Cf A z t B z t= +   (3) 

where AM and BC are the added mass and radiation damping in the vertical direction, 
respectively. 
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The hydrostatic buoyancy, induced by seawater static pressure, is the resultant force 
of gravity and buoyancy. It is a force that restores the structure to hydrostatic equilibrium 
and is linear with the heave displacement of the floating body. It can be written as: 

( )S Wf gA z tρ=  (4) 

where ρ is seawater density; g is acceleration of gravity; AW is water cross area of the float-
ing body. In this paper, the value of PTO damping is relatively large, and the heave dis-
placement of the floating body is small. As a result, it is assumed that the water cross area 
of the floating body does not change. It is the section where the water line is located when 
the floating body is in still water. Therefore, the hydrostatic buoyancy can be expressed 
as: 

21 ( )
4Sf gD z tπρ=  (5) 

where D is the diameter of the floating body. 
The energy conversion system can be simplified to a linear spring damping system, 

so the PTO damping force is 

( )PTOf cz t=   (6) 

where c is the damping coefficient of the PTO system. 
The rigid restoring force is proportional to the heave displacement, and it can be 

written as follows: 

( )kf kz t=  (7) 

where k is stiffness coefficient. 
Reformulate Equation (1)Error! Reference source not found. through Equations (2), 

(3), (5), (6) and (7): 

0 ( ) ( ) ( ) ( ) ( ) ( )M C W EM A z t B c z t gA k z t f tρ +  + + + + =     (8) 

Apply Fourier transform to Equation (8) and obtain another governing equation in 
the frequency domain. It is 

( )2
0( ) ( ) ( ) ( )W C M EgA k j B c M A Z Fρ ω ω ω ω + + + − + =   (9) 

where ω is the wave frequency; j is imaginary unit; Z(ω) and FE(ω) are functions of dis-
placement and excitation force in the frequency domain, respectively. 

In the frequency domain, the excitation force can be expressed by the product of the 
unit excitation force and the incident wave amplitude [35]. It is 

( ) ( ) ( )E unitF F Aω ω ω=  (10) 

Equation Error! Reference source not found. can be rewritten as follows: 

( )2
0( ) ( ) ( ) ( ) ( )W C M unitgA k j B c M A Z F Aρ ω ω ω ω ω + + + − + =   (11) 

Formula Error! Reference source not found. is a typical damped and forced vibration 
equation, so the natural frequency and damping factor can be expressed as below: 

0

W
n

M

gA k
M A
ρ

ω
+

=
+

 (12) 

02( )
C

n
M

B c
M A

β
+

=
+

 (13) 
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From Equations (12) and (13), the natural frequency and damping factor of a given 
WEC change over added mass and added damping. 

According to Equation (11), the heave response in the frequency domain is 

( )2
0

( ) ( )
( )

( ) ( )
unit

W C M

F A
Z

gA k j B c M A
ω ω

ω
ρ ω ω

=
+ + + − +

 (14) 

The average power in one wave period, captured by the floating body with heave 
motion, can be written as the product of damping force and vertical velocity. The work 
done by damping force is the energy absorbed by the floating body, so the mean capture 
power is 

mean 0

2

0

22

22

2 2 2 2
0

2

2
2 20

1 ( )

1 ( )

1 ( )
2

1
2 [ ( ) ] ( )

1
2 ( )

[ ] ( )

T

PTO

T

E

M W C

E

M W
C

P f z t dt
T

cz t dt
T

c Z

F
c

M A k gA B c

F
c

M A k gA
B c

ω ω

ω
ω ρ ω

ω ρ
ω

=

=

=

=
− + + + + +

=
− + + +

+ +









 
(15) 

The mean capture power reaches the maximum when the following conditions are 
met. 

2
0( )M Wk M A gAω ρ= + −  (16) 

,   0
,   0

C C

C C

B B
c

B B
 >= − <

 (17) 

This stiffness and damping are called the best stiffness and the best damping, respec-
tively. When Bc > 0, the natural frequency, damping factor, and displacement are 

nω ω=  (18) 

0

C
n

M

B
M A

β =
+

 (19) 

( ) ( )
( )

2
unit

C

jF A
Z

B
ω ω

ω
ω

= −  (20) 

The max capture power is 
2

max 8
E

C

F
P

B
=  (21) 

3. Design of Experiments (DOE) Method 
3.1. Latin Hypercube Sampling 

The sampling method is of great importance in experimental design. A good sam-
pling method can result in more reasonable sample distribution, leading to a better model 
with higher accuracy. In this paper, a Latin hypercube sampling (LHS) method is utilized 
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to generate sample points. Different from random sampling, LHS has a high efficiency of 
space filling by maximizing the stratification of each edge distribution, which improves 
the uniformity.  

According to Equation (15), the factors that determine the capture power under given 
wave conditions are PTO damping coefficient c, system stiffness coefficient k, wave excit-
ing force FE, float mass m, added mass AM, and added damping BC. Added mass, added 
damping, and wave exciting force are related to the geometry and submergence depth of 
the floating body. The geometric features of the floating body depend on radius R, semi-
vertical angle α, and mass m. As a result, four main geometric parameters, including ra-
dius R, semi-vertical angle α, mass m, and submergence depth d, plus two system param-
eters, PTO damping coefficient c and stiffness coefficient k, are selected as key variables 
that affect the capture power. 

The sample space of six key variables are defined as follows: 

[2,3]
[1.5,3]
[7000,8000]
[5,25]
[10000,30000]
[3000,6000]

d
R
m

c
k

α

 ∈
 ∈
 ∈
 ∈
 ∈


∈

 (22) 

A database covering 100 sample points is established (see in Appendix A) and scatter 
diagrams of these samples are shown in Figure 2. 
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Figure 2. Sample scatter diagrams. (a) semi-vertical angle; (b) radius; (c) submergence depth; (d) mass; (e) damping; (f) 
stiffness. 

In Figure 2, each variable fills the whole sample space and the standard deviation of 
the value is small. It can reflect the relationship between the factor and the response in the 
six spaces. 

3.2. Feature Study 
Suitable feature study on the data set can give an insight to the correlation between 

the inputs and output. Pearson correlation analysis is conducted in this section to identify 
the correlation between six key variables and the capture power. Figure 3 shows the cor-
relation coefficients in different wave situations. In this heatmap, a negative value means 
a negative correlation, and a positive value means a positive correlation. A large absolute 
value means a strong correlation. 

 
Figure 3. The correlation coefficients between the inputs and output. 

In general, radius, submergence depth, and damping show a strong correlation, 
while semi-vertical angle, mass, and stiffness behave a weak correlation. Besides, the cor-
relation is different at different wave frequency. When the wave frequency is 0.53 and 0.81 
rad/s, semi-vertical angle shows a negative correlation, while a positive correlation comes 
up at other frequencies. The similar situation happens on stiffness. Mass and damping 
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behave a positive correlation, while radius and submergence depth show a negative cor-
relation all the time. 

4. Numerical Simulations 
4.1. Simulation Scheme 

The structural schematic of the cone shaped floating body investigated in this study 
is shown in Figure 4. 

 
Figure 4. Schematic of the floating body’s structure. 

The height of the cylinder part above the waterline is a constant, 0.5 m. In ANSYS 
Design Modeler, the 3D geometry with given parameters is created. 

In this paper, ANSYS-AQWA, a commercial computation software based on poten-
tial flow theory, is utilized to calculate hydrodynamic parameters. The simulation process, 
including numerical modeling, parameters setting, mesh generation, and data post-pro-
cessing, can be conducted in the graphical interface directly. The basic simulation steps 
for each sample are as follows: 
1. The moment of inertia and center of mass of the floating body are calculated in Static 

Structural module; 
2. Set solution environment in hydrodynamic diffusion module. The water line is at z = 

0, the seawater depth is 200 m, and the surface area are 100 m × 100 m. Details of the 
point mass, additional damping, and additional hydrostatic stiffness are set accord-
ing to the results obtained in Static Structural module and parameters in Table A1. In 
this study, the considered wave range is from 0 to 0.4 Hz, meaning that the wave 
circular frequency within 2.5 rad/s needs to be simulated. Therefore, the defeaturing 
tolerance and maximum element size are 0.5 m and 1 m, respectively. The maximum 
allowed wave frequency is 0.61 Hz in this scheme; 

3. Solve the model in the frequency domain and obtain Diffraction and Froude-Krylov 
force Fe, added mass AM, and radiation damping BC. 
For each simulation, the given frequency range is divided into 52 frequency points. 

The mean power for each sample at each frequency is calculated. The results of sample 1 
and sample 2 are shown in Figure 5. 



J. Mar. Sci. Eng. 2021, 9, 656 9 of 18 
 

 

 
Figure 5. Mean capture power of sample 1 and sample 2. 

With the increase in wave frequency, the capture power rises firstly and then drops 
steadily. For each sample, there is a unique optimal frequency in which the capture power 
can reach the maximum. The 100 samples’ capture power are calculated so that they can 
be used as training set and test set for BP neutral network. Only two samples’ results are 
presented in this figure. 

4.2. Theoretical Verification of Simulations 
Falnes [36] illustrated that the maximum power that a heaving axisymmetric body 

can absorb is 

max 2
JP λ
π

=  (23) 

where J is the wave energy flux; λ is the wavelength. For deep-water waves, λ = g/2π. J is 
2 2

32
g TH

J
ρ

π
=  (24) 

where T and H are wave period and height, respectively. Budal’s upper bound [36] gave 
another upper limit power that a submerged body with given volume V can absorb. It is 

4u

gVH
P

T
πρ

<  (25) 

where V is the volume of the submerged part. The point of intersection of two theoretical 
curves can be defined as (Tc, Pc). Pc is 

2
32

32c

g
P VH

ρ
π

=  (26) 

In this study, Equations (23) and (25) are used to verify the validity of simulations. 
To make comparisons, the results are normalized by dividing Pc. The three curves are 
shown in Figure 6. 
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Figure 6. Power curves from simulations and theories. (a) results of sample 1; (b) results of sample 2. 

It can be found that the capture power curves of two samples are in the area enclosed 
by curve Pmax, curve Pu, and coordinate axes, which means the simulation scheme is accu-
rate and reliable. All the samples are verified successfully and only two of them are 
demonstrated in this section. 

5. BP Neural Network 
The back propagation (BP) neural network is a kind of feedforward neural network 

trained by error back propagation algorithm. It is a most widely used form, and is com-
posed of many nonlinear transformation units. This algorithm has a strong non-linear 
mapping ability and can simulate any nonlinear continuous functions with much higher 
accuracy theoretically. After the network is trained, the reflection between the inputs and 
outputs can be obtained and memorized. They are shown on the weights of each layer. BP 
neural network’s structure is flexible, which means the number of layers and neurons can 
be changed according to research objectives. A BP neural network generally includes an 
input layer, one or two hidden layers, and an output layer. Full connections are applied 
between layers. More details about BP neural network can be seen in [Error! Reference 
source not found.]. 

5.1. Neural Network Design 
The first step to design a good neural network is to identify the number of hidden 

layers. A three layers neural network, which contains only one hidden layer, can simulate 
any reflection from n-dimensional inputs to m-dimensional outputs. Hence, a three-layer 
neural network with one hidden layer is selected in this study. Next, the nodes of each 
layer need to be identified. In this study, six key variables are selected, so the number of 
nodes in input layer is six. Only one parameter, capture power, needs to be predicted, so 
the number of nodes in output layer is one. Finally, the number of nodes in hidden layer 
needs to be identified. There is an empirical formula [38] that can be referred to identify 
the number of hidden nodes. 

l n m a= + +  (27) 

where l, n, and m are the number of nodes in hidden layer, input layer, and output layer, 
respectively; a is an adjustment constant ranging from 1 to 10. 

In this paper, the number of hidden nodes is tested from 3 to 12 to identify the most 
suitable value. MSE is used to elevate the performance, and the results are shown in Table 
1. 
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Table 1. The number of hidden nodes and the values of MSE. 

Number 
of Nodes 3 4 5 6 7 8 9 10 11 12 

MSE 0.0215 0.0160 0.0236 0.0238 0.0274 0.0263 0.0371 0.0338 0.0364 0.0341 

MSE reaches a minimum when the number of hidden nodes is 4, which is the optimal 
value for this case. The final BP neural network structure designed in this paper is shown 
in Figure 7. 

 
Figure 7. Structure of the designed BP neural network. 

According to the structure, the output bj of input layer can be expressed as follows:  
6

1
1

( ),  1,2,3,4j ij i j
i

b f w x jθ
=

= + =  (28) 

where wij is the weight from the input layer to the hidden layer; xi is the input variable; θj 
is the threshold value of the hidden layer. The output y of the BP neural network is 

4

2
1

( '),  1, 2, 3, 4j j
j

y f w b jθ
=

= + =  (29) 

where wj is the weight from the hidden layer to the output layer; θ’ is the threshold value 
of the output layer. 

5.2. Data Standardization and Neural Network Training 
Before training, data standardization for individual features needs to be conducted 

to improve training speed. The standardization formula used in this paper is 

min

max min

ix x
x

x x
−

=
−

 (30) 

where x is the standardized result; xmax and xmin are the maximum and minimum values in 
the dataset, respectively. The standardized data have a distribution range between 0 and 
1.  

The network training process is to adjust the weights and thresholds so that the value 
of loss function reduces to a minimum. The training parameters for this model are shown 
in Table 2. 

Table 2. Training parameters. 

Weight 
Change Rate 

Learning 
Rate 

Training 
Epochs 

Performance (Judged by 
Mean Square Error) 

Minimum 
Gradient 

Validation 
Checks 

0.01 0.05 1000 10−5 10−7 6 
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Tangent sigmoid function (tansig) is adopted for the hidden layer, and the linear func-
tion (purelin) is adopted for the output layer. In the training process, mean squared error 
is used as loss function. It is defined as 

2

1

1 ˆ( )
m

i
MSE y y

m =

= −  (31) 

where m is the number of samples;	y	is the observed value; y is the real value. In this paper, 
the top 80 samples are defined as training set. This model is trained in MATLAB R2019a, 
and the trendline of MSE for training set is shown as Figure 8. 

 
Figure 8. The trendline of training loss versus epochs. 

The training process is terminated at 234 epochs because the gradient reaches the 
minimum (10−7). The rest 20 samples are used to test, and the forecasting results after being 
de-standardized are shown in the next section. 

6. Results and Discussion 
In this section, six groups’ forecasting data (ω = 0.53 rad/s, ω = 0.81 rad/s, ω = 1.14 

rad/s, ω = 1.42 rad/s, ω = 1.76 rad/s, and ω = 2.09 rad/s) is given because they are the most 
common wave frequency. The desired outputs and forecasting results are presented in 
Figure 9 under different frequency. For each sample, the output power at 52 frequency 
points can be predicted. 
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Figure 9. Comparisons between desired outputs and forecasting results. (a) ω = 0.53 rad/s; (b) ω = 0.81 rad/s; (c) ω = 1.14 
rad/s; (d) ω = 1.42 rad/s; (e) ω = 1.76 rad/s; (f) ω = 2.09 rad/s. 

In Figure 9a, the deviation of five samples (85, 90, 94, 99, and 100), which are at the 
lowest position of the graph, are relatively large, with mean error about 60 W. In Figure 
9c, the error of sample 81 is the largest, with approximately 500 W. The forecasting results 
of sample 95 and 96 are rather larger than desired outputs in Figure 9d,f, and the error of 
sample 89 is around 200 W in Figure 9f. The highest accuracy is at ω = 0.81 rad/s and 
almost all the forecasting points fit the desired points. In contrast, the worst result is at ω 
= 2.09 rad/s and there are five forecasting results deviating the desired outputs. 

To further verify the accuracy of the BP model, correlation coefficient (CC), root mean 
square error (RMSE), and error percentage are introduced in this section. They are defined 
as follows [29] 
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where m is the number of forecasting results; ti is the desired value; yi is the output of the 
network;	t	and	y	are average values of desired and forecasting results, respectively. The 
significance analysis of ANOVA is also conducted in MATLAB R2019a, and the statistical 
parameters (after de-standardization) are listed in Table 3. 

Table 3. The statistical parameters between desired and forecasting results. 

Wave Frequency (rad/s) CC RMSE (W) Error Percentage p Value 
0.53 0.95931 37.5 2.03% 0.9588 
0.81 0.90129 60.5 1.79% 0.9769 
1.14 0.92105 138.7 2.45% 0.9206 
1.42 0.91295 78.8 2.22% 0.9691 
1.76 0.92558 61.6 2.7% 0.9789 
2.09 0.94852 69.3 4% 0.9362 

The values of CC are greater than 0.9, meaning that the correlations with each group 
are well fitted. The values of RMSE do not exceed 140 W, and the error percentage is no 
more than 4%, indicating that desired outputs and forecasting results are reasonably fit-
ted. All P values are close to 1, which means there is no significant difference between 
desired and forecasting outputs. These validation factors indicate that this model has a 
good prediction accuracy and meets the engineering requirement. 

7. Conclusions 
In this paper, capture power predictions of a specific shape floating body are at-

tempted based on mathematical model, ANSYS-AQWA simulations, and BP neural net-
work. The key variables are identified and the simulation scheme is proposed. A sample 
database is built by LHS and the corresponding power of each sample is calculated. In the 
end, a BP neural network, of which training set is from simulation results, is designed to 
predict the capture power at different wave frequency. Its performance and accuracy are 
also evaluated through statistical parameters. 

According to the results, the conclusions can be given as follows: 
1. A mathematical model is constructed to identify the most important factors that af-

fect the capture power. Four geometric parameters (radius, semi-vertical angle, mass, 
and submergence depth) and two system parameters (PTO damping coefficient and 
stiffness coefficient) are identified as key variables; 

2. A BP neural network with high accuracy is designed and it is used to predict the 
capture power. The error percentage of top five groups is less than 2.5%, and that of 
the last group is 4%. The values of CC are greater than 0.9 and that of RMSE are less 
than 80 W except for the third group, of which the value of RMSE is 138.7 W. The P 
values are close to 1. However, due to the error of simulations caused by commercial 
software, this method needs experimental data to support. 
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Appendix A 

Table A1. Details of 100 sample points. 

No. α R d m c k 
1 21.3 2.775 2.96 7190 21500 3990 
2 22.4 1.955 2.80 7970 13700 3570 
3 20.6 2.540 2.94 7930 25700 4960 
4 23.1 2.395 2.47 7840 24000 3680 
5 14.8 1.975 2.75 7460 20900 5520 
6 22.3 2.780 2.66 7490 22500 3790 
7 18.5 2.650 2.43 7760 29400 4500 
8 24.8 2.870 2.17 7440 10500 4000 
9 12.2 2.745 2.69 7020 18000 5390 

10 12.2 2.050 2.59 7130 20000 5550 
11 22.2 2.375 2.33 7470 14500 4090 
12 14.0 2.200 2.08 7940 17600 4280 
13 10.3 1.670 2.77 7300 28500 5870 
14 16.2 2.850 2.15 7360 27600 3720 
15 17.3 2.240 2.84 7670 21900 5420 
16 5.4 2.820 2.08 7170 10700 4930 
17 7.5 1.880 2.31 7680 14900 3850 
18 20.0 2.010 2.12 7790 23000 4200 
19 6.5 2.470 2.87 7620 26400 3920 
20 13.6 2.085 2.01 7230 24200 5730 
21 12.5 1.575 2.15 7990 26600 4200 
22 23.6 2.660 3.00 7850 23200 5640 
23 19.6 2.495 2.36 7750 25500 3410 
24 7.7 2.355 2.04 7490 24600 5050 
25 11.5 1.600 2.26 7550 10000 4690 
26 10.6 1.930 2.29 7270 14100 3460 
27 13.7 2.330 2.90 7530 16900 5030 
28 14.8 2.915 2.17 7260 17800 3320 
29 21.4 1.865 2.41 7340 10200 5250 
30 7.9 1.795 2.87 7250 18400 4810 
31 8.3 2.120 2.45 7480 13200 5990 
32 10.2 2.150 2.84 7510 19100 3180 
33 6.3 2.325 2.63 7810 16300 4610 
34 17.1 1.635 2.55 7360 22200 3140 
35 21.6 2.895 2.13 7070 13000 5960 
36 13.0 1.830 2.91 7740 12000 4330 
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37 5.9 2.970 2.56 7630 15700 3450 
38 15.9 2.060 2.81 7780 16600 4890 
39 19.3 2.995 2.57 7160 10900 3160 
40 8.6 1.715 2.74 7090 14700 5670 
41 11.2 1.895 2.98 7810 17100 4050 
42 9.8 1.800 2.12 7720 28800 4660 
43 11.6 2.140 2.88 7990 19500 5220 
44 18.7 2.225 2.07 7040 24900 4860 
45 12.8 2.675 2.90 7670 13400 3740 
46 15.3 2.280 2.26 7210 13900 4730 
47 17.8 2.205 2.27 7330 22100 5070 
48 11.0 2.260 2.37 7380 22800 3500 
49 16.8 1.540 2.05 7440 19300 3760 
50 13.3 2.185 2.42 7900 22900 4360 
51 19.7 2.575 2.52 7710 28100 5210 
52 9.1 2.300 2.25 7600 23600 4420 
53 22.8 2.945 2.82 7830 18400 5890 
54 7.0 2.485 2.05 7090 15800 5440 
55 21.0 1.745 2.70 7020 15300 3010 
56 5.3 1.690 2.77 7110 27700 5830 
57 7.4 2.805 2.09 7130 12000 3390 
58 15.1 2.830 2.66 7860 28700 4290 
59 15.6 1.700 2.02 7310 20800 3280 
60 16.2 1.555 2.70 7150 17300 5330 
61 9.4 1.915 2.47 7190 11200 5930 
62 6.7 2.890 2.68 7700 27000 5130 
63 23.7 2.110 2.23 7400 22000 4570 
64 18.3 2.080 2.18 7570 24100 3620 
65 24.1 2.620 2.95 7120 15400 3340 
66 16.6 1.755 2.79 7660 18000 4490 
67 24.6 2.690 2.02 7860 16000 4230 
68 8.9 2.035 2.34 7280 18800 5720 
69 5.0 2.440 2.42 7880 12300 4770 
70 21.9 1.520 2.29 7200 12800 3930 
71 13.1 2.425 2.53 7870 27300 4750 
72 9.6 2.635 2.21 7650 26000 3820 
73 24.8 2.170 2.83 7950 20300 3650 
74 10.5 1.640 2.55 7420 28600 4160 
75 11.9 1.610 2.63 7910 19000 4920 
76 23.9 2.400 2.34 7340 24500 4630 
77 5.8 1.985 2.38 7080 28300 5470 
78 22.7 2.700 2.49 7580 20600 5540 
79 18.9 1.590 2.10 7220 21600 4070 
80 24.3 2.605 2.32 7030 25300 4990 
81 15.5 2.510 2.71 7550 26800 3570 
82 17.7 2.550 2.20 7520 23500 5360 
83 11.3 1.775 2.96 7580 19600 3080 
84 18.2 2.020 2.98 7770 15000 4550 
85 10.0 2.585 2.21 7720 11700 3890 
86 19.2 1.655 2.46 7430 22000 5310 
87 8.7 2.715 2.73 7290 27900 5630 
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88 13.8 2.265 2.65 7590 23100 3240 
89 20.3 2.740 2.85 7530 21100 5120 
90 14.6 2.980 2.23 7060 13000 5180 
91 7.2 2.360 2.39 7630 14400 3110 
92 20.0 1.940 2.50 7280 21300 4460 
93 17.4 1.515 2.40 7390 16800 3530 
94 6.0 2.935 2.62 7750 12400 4390 
95 20.8 2.530 2.60 7920 27500 5770 
96 21.1 1.740 2.93 7390 20100 3060 
97 23.3 2.450 2.52 7960 23900 5800 
98 16.9 1.840 2.50 7140 20000 4120 
99 8.0 2.840 2.60 7900 11500 5600 
100 14.3 1.855 2.73 7010 11100 3270 
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