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Abstract: The setting of initial values is one of the key problems in ocean numerical prediction,
with the accuracy of sea water temperature (SWT) simulation and prediction greatly affected by the
initial field quality. In this paper, we describe the development of an adjoint assimilation model of
temperature transport used to invert the initial temperature field by assimilating the observed data
of sea surface temperature (SST) and vertical temperature. Two ideal experiments were conducted
to verify the feasibility and validity of this method. By assimilating the “observed data”, the mean
absolute error (MAE) between the simulated temperature data and the “observed data” decreased
from 1.74 ◦C and 1.87 ◦C to 0.13 ◦C and 0.14 ◦C, respectively. The spatial distribution of SST difference
and the comparison of vertical data also indicate that the regional error of vertical data assimilation
is smaller. In the practical experiment, the monthly average temperature field provided by World
Ocean Atlas 2018 was selected as background filed and optimized by assimilating the SST data and
Argo vertical temperature observation data, to invert the temperature field at 0 a.m. on 1 December
2014 in the South China Sea. Through data assimilation, MAE was reduced from 1.29 ◦C to 0.65 ◦C.
In terms of vertical observations data comparison and SST spatial distribution, the temperature field
obtained by inversion is in good agreement with SST and Argo observations.

Keywords: initial field; sea water temperature; The South China Sea; adjoint assimilation; sea surface
temperature; vertical temperature observation

1. Introduction

As one of the few semi-closed deep-sea basins, the South China Sea (SCS) which
is located in the southeast of Asia, is a sensitive area of air-sea interaction. Sea water
temperature (SWT) is an important parameter of the state of ocean thermodynamic, which
plays a key role in ocean circulation, atmospheric circulation, and air-sea interaction. Sea
surface temperature (SST) is a key indicator of global climate change [1,2], as a major driving
force of global climate, the response of tropical SST to global warming is important [3,4]. It
directly affects the exchange of heat, momentum, and water vapor between the atmosphere
and the ocean, and is an important parameter driving the global circulation, which is related
to the global energy equilibrium [5–8]. The importance of SWT research and prediction is
self-evident; many scholars have performed numerous studies on the numerical simulation
and prediction of SST in offshore China [7–11].

With the improvement of the model and computer technology, the resolution and
accuracy of global ocean numerical simulation are also optimized [12–14], but there are
still some errors in the forecast results induced by the following issues. On the one hand,
models have the problem of initial field uncertainty [15,16]. Unlike the prediction of
storm surges and waves, the prediction of sea temperature seriously depends on the initial
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values. Thus, the improvement of the quality of the initial values is increasingly important.
As early as the 1940s, Kolmogorov [17] pointed out that small initial errors can cause
significant differences in fluid states. In order to improve the accuracy of SST prediction,
the quality of the initial SST field should first be improved [18]. Peng and Xie [15] pointed
out that initial conditions is one of the main sources of model error or uncertainties. Zhang
et al. [19] also attributed some model deficiencies to errors in model initial conditions. How
to obtain a more reasonable and accurate initial field is a key issue in ocean numerical
simulation and forecast. On the other hand, numerical models cannot fully describe various
physical processes in the ocean [20,21]. SWT variation is not only affected by convection
and diffusion factors, but also highly correlated with sensible heat flux (SHF), latent heat
flux (LHF) and solar radiation. In order to accurately simulate and forecast the SWT, the
influence of the sea surface solar radiation and penetration radiation should be applied in
the models [22].

With the development of remote sensing technology, various remote sensing instru-
ments provide data with wide coverage and high spatial-temporal resolution for ocean
monitoring. However, the information obtained is merely limited to the sea surface. The
Argo (Array for Real-time Geostrophic Oceanography) project, launched in the 1990s,
established a global real-time ocean observation data system to sample the ocean from
surface down to 2000 dbar, and provided three-dimensional (3D) thermohaline data with
global coverage [23]. Hosoda et al. [24] used the optimal interpolation (OI) method to con-
struct a dataset of global monthly average temperature based on Argo float data and other
observation data. Through distribution of observed points and interpolation error, it was
proved to work well for global mapping. Zhou et al. [25] used Argo float data and SST data
to reconstruct the 3D ocean temperature field, and an experiment was performed for the
Pacific Ocean south of Japan. The reconstructed field achieved a satisfactory accuracy with
a higher resolution, and more mesoscale information was found in the reconstructed field.

In order to maximize the use of observed data and reduce the error between the
simulation and observation, the adjoint assimilation method is a suitable choice. The adjoint
assimilation method takes the real problems to be solved as the conditional minimum
problems. It is a method used to minimize the cost function which represents the error
between simulation and observation data by taking equations, initial conditions, and
boundary conditions as constraints [26]. Andreu-Burillo et al. [27] examined the ability of
a one-dimensional SST assimilation scheme to improve the 3D structure of the temperature
field in a shelf model, and proved that assimilation improved the error statistics of the
modelled SST. Peng et al. [28] evaluated the role of a 4D-Var algorithm based on POM
(Princeton Ocean Model) and its adjoint for storm surge simulation, by adjusting both
the initial conditions and the upper boundary conditions, the storm surge simulation was
improved. South China Sea Operational Oceanography Forecasting System (SCSOFS) was
built to provide daily updated hydrodynamic forecasting in SCS for the future 5 days since
2013, and it also had been improved through comprehensive updates of the configurations
of the physical model and data assimilation scheme [29].

In this paper, to achieve a better combination of data and model and make the simula-
tion results more consistent with the actual temperature distribution, an adjoint assimilation
model of temperature transport is established to invert the 3D initial temperature field by
assimilating the satellite SST observation and the Argo observation, which provides higher
quality initial value for temperature simulation and prediction.

2. Models and Method
2.1. Forward Model

According to the convection and diffusion process of and taking solar radiation and
sea surface heat fluxes factors into consideration, the temperature transport equation can
be expressed as:

∂T
∂t + u ∂T

∂x + v ∂T
∂y + w ∂T

∂z =

∂
∂x

(
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where T represents the SWT; u, v and w are the flow velocity in x, y and z directions; AH
and KH are the temperature diffusion coefficients in horizontal and vertical directions
respectively; θc represents the heat fluxes term, which can be specifically expressed as:

θc =


(1−r)Qz−Ql

ρ0Cp
, z = 0

rQze
− z

hr
ρ0Cpz , z > 0

(2)

Qz is the net solar shortwave radiation reaching the sea surface; Ql is the heat loss from
the sea surface due to long-wave radiation, SHF, and LHF. R is the separation coefficient,
which represents the ratio of solar shortwave radiation energy into the deep ocean without
being absorbed by the sea surface to the total solar radiation energy; Hr is the e-fold scale
of penetrating shortwave radiation attenuated with the depth of sea water [30,31]; Cp is
the specific heat capacity of seawater and ρ0 is the density of sea water.

The open boundary condition is described as:

∂T
∂t = 0, Vn ≤ 0

∂T
∂n = 0, Vn > 0

(3)

2.2. Adjoint Model

Adjoint assimilation method has been widely used in atmospheric and oceanic studies.
Fan and Lv [32] used adjoint method to assimilate chlorophyll-a data from SeaWiFs through
a simple NPZD model, which reproduced regional features of distribution, and the error
was also smaller than that of traditional methods. Zhang et al. [33] used the adjoint method
to optimize the bottom friction coefficient, which effectively improved the accuracy of
regional tidal numerical simulation. Based on the marine ecological dynamics model,
Wang et al. [34] studied the initial pollution filed in the Bohai Sea by adopting the adjoint
method to assimilate monitoring data. Wang et al. [35] established a three-dimensional
viscous sediment transport model with the adjoint assimilation method, and obtained good
numerical simulation results. In addition, the adjoint assimilation method has also been
applied in numerous other ecosystem dynamics and pollutant simulation studies [36–39].

The adjoint assimilation method based on Lagrange multiplier method is used to
invert the temperature field in the SCS, and the cost function representing the difference
between the observation and the simulation results was constructed:

J =
1
2 ∑ KC(Ti,j,k,t − Ti,j,k,t)

2 (4)

where Ti,j,k,t and Ti,j,k,t are the simulated and the observed temperature data, respectively.
Kc is the weight matrix of the observation data matrix T. Kc is 1 where observations are
available, and 0 otherwise.

The construction of the Lagrange function is as follows:

L(T∗, T) =
∫

Ω T∗[ ∂T
∂t + u ∂T
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(5)

where T* represents the adjoint variable of T, according to the Lagrange multiplier method:

∂L
∂T∗ = 0 (6)

∂L
∂T

= 0 (7)
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The adjoint equation can be obtained from (6):

− ∂T∗
∂t − ∂T

∂z

(
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)
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(
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) (8)

The gradient expression of the cost function regarding the initial temperature field
can be derived from (7):

∂J
∂C = ∂T∗

∂t + ∂(uT∗)
∂x + ∂(vT∗)

∂y + ∂(wT∗)
∂z
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(
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(
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)
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∂z

(
KH

∂T∗
∂y

) (9)

3. Materials and Parameters
3.1. Data

The hydrodynamic background field (Figure 1) was provided by the Ocean General
Circulation Model for the Earth Simulator (OFES), which is based on the modular ocean
model (MOM3), developed at the Geophysical Fluid Dynamics Laboratory/the National
Oceanic and Atmospheric Administration (GFDL/NOAA) [40].
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Figure 1. Monthly mean surface flow field in December (unit: cm/s).

The radiation flux data used are from a third-generation data set developed by the
Japanese Ocean Flux Data Sets with Use of Remote-Sensing Observations (J-OFURO3) re-
search project, which represents a significant improvement from older data sets (J-OFURO1,
J-OFURO2) as the result of research and development conducted from several perspectives.
J-OFURO3 offers data sets for surface heat, momentum, freshwater fluxes, and related
parameters over the global oceans (except regions of sea ice) from 1988 to 2013. The surface
flux data, based on a 0.25 grid system, have a higher spatial resolution than the 1.0◦ grid
used in the previous studies. This data set is more accurate than the previous ones through
increases in quantity of data available, improvements in quality, and improvements in
analytical methods. The system provides LHF and SHF with high-resolution observations
at many surface buoys [41].

The initial temperature field used in the practical experiment is obtained from the
World Ocean Atlas 2018 (WOA18), which is provided by the Marine Climate Laboratory
under the National Center for Environmental Information (NCEI) of the National Oceanic
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and Atmospheric Administration (NOAA). WOA18 is an updated reanalysis dataset of
NCEL on the World Ocean Database 2018 (WOD18) and the Global Oceanographic Data
Archaeology and Rescue (GODAR) project [42].

The sea surface observation data are the daily mean SST of the SCS provided by
remote sensing data of the Group for High Resolution Sea Surface Temperature (GHRSST)
satellite. GHRSST is daily mean SST data provided by the Global Ocean Data Assimilation
Experiment (GODAE) project. Argo temperature profiles were obtained from the Argo
Real Time Data Center of China.

3.2. Model Setting

The numerical computational domain was the South China Sea as shown in Figure 2,
and the specific latitude and longitude range is 104◦ E–121.5◦ E, 5◦ N–22.5◦ N with a
horizontal resolution of 1/4◦ × 1/4◦ and 23 vertical layers, namely 0 m, 10 m, 20 m, 30 m,
50 m, 75 m, 100 m, 150 m, 200 m, 250 m, 300 m, 400 m, 500 m, 600 m, 800 m, 1000 m, 1200 m,
1500 m, 2000 m, 2500 m, 3000 m, 4000 m, and 5000 m respectively. The simulation time was
30 days with a time step of 6 h.
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Figure 2. Given SST distribution I (a) and II (b) (unit: ◦C).

If the temperature of each grid point is adjusted independently, there will be too many
variables involved in the calculation, and discontinuity of temperature distribution may
occur. In this work, the “independent point scheme” was used to make the simulation
results more in accordance with the physical significance and the actual situation. Several
points were selected as independent points, the values at which are independently adjusted,
and then Cressman interpolation was used to calculate the values of other grid points [32].

The specific method is as follows: set the parameter value of independent grid point
(ii, jj) as E(i, j), then the parameter value T(i, j) of the rest grid points (i, j) can be obtained
through Cressman interpolation method [43,44]. The distance between any grid point (i, j)
and independent grid point (ii, jj) is ri,j,ii,jj, and the influence radius is R, then the weight
coefficient of independent grid point (ii, jj) to any grid point (i, j) is:

wi,j,ii,jj =


R2−r2

i,j,ii,jj

R2+r2
i,j,ii,jj

(r < R)

0 (r ≥ R)
(10)
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The interpolation coefficient is:

Fi,j,ii,jj =
wi,j,ii,jj

∑ii,jj wi,j,ii,jj
(11)

Then Ti,j and Eii,jj satisfy:

Ti,j = ∑
ii,jj

Fi,j,ii,jj·Eii,jj (12)

3.3. The Process of Inversion

(1) Set a temperature background temperature distribution according to the computa-
tional domain and time;

(2) Input the background temperature field into the forward model to obtain the numeri-
cal simulation results;

(3) Calculate the cost function by the difference between simulation and observations;
(4) Run the adjoint model by the difference between simulation and observations;
(5) The gradient of the cost function with respect to the control variable is calculated by

the adjoint equation;
(6) The values are adjusted to get a new temperature field;
(7) Repeat steps (2) to (6) until the error reduces to a steady state or reaches the preset

maximum number of inversion steps, and the inversion ends.

4. Numerical Experiments
4.1. Ideal Experiment

In this section, we describe the two ideal experiments which were performed to
invert two different given initial temperature fields. Feasibility and validity of the adjoint
assimilation model were verified by analyzing the temperature of the inversion and the
given temperature field.

The initial field I was constructed according to the spatial distribution characteristics
of the annual mean temperature which decreases from southeast to northwest of the South
China Sea. In addition, the annual mean temperature field was directly used to construct
the initial field II (Figure 2).

The two given initial temperature fields were put into the forward model to generate
“observations”. The selection method was to take SST at 0:00 a.m. every day except the
initial moment as the “surface observations”, and 50 groups of “vertical observations” were
selected at different time near the Argo observation in the practical experiment (Figure 3).
The corresponding “observations” wwere assimilated respectively, and a distribution of
SST temperature decrease from south to north was given as the estimated temperature
background distribution (Figure 4). Inversion of the initial field I and II were carried out
according to the steps described in Section 3.3.
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Figure 4. The estimated background SST distribution (unit: ◦C).

In the two ideal experiments, the mean absolute error (MAE) between the simulations
and the “observations” was reduced from 1.74 ◦C and 1.87 ◦C without data assimilation
to 0.13 ◦C and 0.14 ◦C, respectively, by applying the adjoint assimilation model. Due
to the large number of observation data and high resolution of SST, spatial distribution
characteristics could be observed more obviously. The initial SST obtained by inversion is
shown in Figure 5. The MAE and root mean square error (RMSE) between the inverted
SST and the given initial temperature field SST were also calculated (Table 1). To depict
the error decline process more clearly, the relative value of cost functions was used to
describe the change of cost function is shown in Figures 6a and 7a, which can be expressed
as: J(i)/J(1) (i is the iteration step), and the MAE change related to the iteration steps are
represented in Figures 6b and 7b.
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Table 1. Quantitative metrics of ideal experiment results.

Experiment
MAE (◦C) RMSE (◦C)

Initial Final Initial Final

I 1.83 0.19 2.20 0.22
II 1.94 0.24 2.33 0.37
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Comparing Figures 3 and 5, it can be seen that the SST obtained by the inversion well
reflects the spatial distribution characteristics of the given initial SST. Figure 5a shows that
the temperature decreases significantly from southeast to northwest, and Figure 5b also
shows a similar phenomenon.

The MAE of the temperature field obtained with assimilation and generated “observed
data” are 0.13 ◦C and 0.14 ◦C, respectively. The MAE between the SST of the inversion
field and the given field are 0.19 ◦C and 0.24 ◦C respectively, and the RMSE are 0.22 ◦C and
0.37 ◦C respectively; all below 16% that before data assimilation. In addition, the spatial
distributions of SST errors of two ideal experiments are analyzed to study the possible
causes of errors (Figure 8).
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As can be seen in Figure 8, the areas with large errors mainly occur near the northeast
land boundary and the south boundary. This may require us to minimize the research area
near the boundary when using this method. The error spatial distribution is approximately
in a strip pattern, which, combined with Figure 4, is closely related to the estimated temper-
ature background distribution. The error is also lower in the cold current region on the east
side of Indo-China Peninsula (yellow box in Figure 8); it can be speculated that the hydro-
dynamic background fields have a certain influence on the results of numerical calculation.
Reasonable selection of background field is also an effective means to reduce errors.

Although the amount of vertical data is relatively small, with discontinuous time
and space distribution, it can be found in the red box in Figure 8 that the regional errors
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with the assimilation of “vertical observations” are significantly reduced compared with
the nearby region. In order to make the analysis more intuitive, comparison of vertical
inversion and observation are present in Figure 9. It can be found that the inversion results
of vertical data correspond well with the observations, since the addition of vertical data
assimilation can indeed optimize the numerical simulation results.
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4.2. Practical Experiment

As a world ocean reanalysis dataset compiled by NOAA, WOA is a database of
basic physical oceanography and related applications, which has been widely used in
oceanographic research and prediction [45,46], and WOA18 is the latest product. The
effective combination of observational data and WOA is of great significance for ocean
survey and research [45]. In this section, the selection of WOA 2018 as the temperature
background field for practical experiment is described.

In the practical experiment, by assimilating the daily SST of the SCS from 2 December
2014 to 30 December 2014 from the GHRSST satellite remote sensing data and 58 groups
of Argo float data in December 2014, the climatology temperature in December provided
by WOA 2018 (Figure 10) were selected as background filed and corrected to invert the
temperature field in the SCS area on 1 December 2014.
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The initial temperature field distribution was obtained by assimilating the observation
data (Figure 11), and the MAE between the numerical simulation results and the observed
data was reduced from 1.29 ◦C to 0.65 ◦C. Relative value of cost functions and MAE change
related to the iteration steps are also shown in Figure 12.
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Combined with previous studies on SST in the SCS [11,47,48], the SST inverted by the
adjoint assimilation (Figure 11) was consistent better with the winter distribution in this
region than that in Figure 10. By analyzing the inversion of SST, it could be found that
the temperature increases generally in the south of 18◦ N, and the cold current along the
Indo-China Peninsula was more obvious. The temperature rise made the isothermal line
show northeast-southwest trend, and there was a slightly protruding shape in the middle,
which is consistent with the flow field distribution.

5. Conclusions and Discussion

SWT is closely related to climate change, and it is an important parameter in driving
the global water cycle. At the same time, it affects the development and utilization of
fishery resources through the marine ecological functions, which is of great significance
to the research and prediction of sea water temperature. The accuracy of SWT numerical
simulation and prediction is heavily dependent on the quality of initial values. Although
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various ocean models are gradually improving, the initial field is still difficult to determine.
In this paper, the SCS is taken as the research area. Based on the temperature transport
adjoint assimilation model, the initial temperature field is inverted by assimilating the
surface temperature and vertical temperature observations.

The two given initial temperature fields were successfully inverted in the ideal experi-
ments. The inversion SST distributions were very close to the given distributions with low
MAE and RMSE. Furthermore, in the area with vertical observation data, the error was
also reduced, indicating that the inversion method is feasible and valid.

In the practical experiment, the monthly average temperature field of WOA18 was
adjusted by assimilating Argo data and GHRSST data, to invert temperature field of
the SCS on 1 December 2014. The inversion results show a good agreement with the
observations. Compared with other studies on SST in the SCS, the inverted distribution
is consistent better with the actual SST distribution than the WOA18. By assimilation,
the error between the simulated and observed data is reduced from 1.29 ◦C to 0.65 ◦C. In
addition, according to the error statistics of vertical observation data, it was also found that
the effect of numerical simulation is ideal.

The results of ideal and practical experiments show that the error between the nu-
merical simulation and the observation is highly reduced by the use of observed data, to a
great extent with the assimilation method. It indicates that adjoint assimilation can provide
a 3D initial field that better reflects the actual distribution for the numerical simulation
of temperature. However, the error distribution shows that the method depends on the
quality and quantity of data to a certain extent, and sufficient data can be better combined
with the model.
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