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Abstract: The volume of material required for the construction of new and expansion of existing 
beach sites is an important parameter for coastal management. This information may play a crucial 
role when deciding which beach sites to develop. This work examines whether artificial neural net-
works (ANNs) can predict the spatial variability of nourishment requirements on the Croatian coast. 
We use survey data of the nourishment volume requirements and gravel diameter from 2016 to 
2020, fetch length, beach area and orientation derived from national maps which vary from location 
to location due to a complex coastal configuration on the East Adriatic coast, and wind, tide, and 
rainfall data from nearby meteorological/oceanographic stations to train and test ANNs. The results 
reported here confirm that an ANN can adequately predict the spatial variability of observed nour-
ishment volumes (R and MSE for the test set equal 0.87 and 2.24 × 104, respectively). The contribu-
tions of different parameters to the ANN’s predictive ability were examined. Apart from the most 
obvious parameters like the beach length and the beach areas, the fetch length proved to be the most 
important input contribution to ANN’s predictive ability, followed by the beach orientation. Fetch 
length and beach orientation are parameters governing the wind wave height and direction and 
hence are proxies for forcing. 
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1. Introduction 
Beaches greatly interest coastal managers because of their touristic value. Coastal 

managers in Croatia are interested in expanding existing beaches and building new arti-
ficial beaches to accommodate the growing number of tourists. The Mediterranean is pro-
jected to accommodate 350 million tourists yearly by the year 2050 [1]. Most beaches on 
the Croatian Adriatic East Coast (CEAC) are naturally gravel pocket beaches formed from 
gravelly alluvial fans, supplied by relict or recent torrential surface flows and also by ma-
terial derived from rockfalls, rock debris, and rock weathering [2]. Croatian beaches are 
relatively small in comparison to other European beaches, with a mean length of 370 m 
and a maximal length of 4200 m. The average portion of material used for nourishment is 
small and equals approximately 0.35 m3/m of the beach length per year. The current prac-
tice along the Croatian coast is to maintain and enlarge these beaches using beach nour-
ishment with gravel taken from nearby rivers and rock quarries. In Croatia, beach nour-
ishment takes place usually in spring after the material is lost due to winter storms. Ma-
terial is mostly transported by trucks, unloaded on the beach, and spread out with dozers. 
The volume needed for nourishment is estimated by local authorities based on previous 
experience related to erosion on some specific location and visual observation of the beach 
geometry. Nourishment is done commonly once per year or every second year. 
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Prediction of beach nourishment, in terms of type, amount of material needed and 
timing, is important for coastal managers, policy makers, other stakeholders as well as for 
coastal communities who are using these beaches [3]. It could be an important factor in 
deciding which beach sites the coastal managers should develop. There are different tech-
niques and approaches used for predicting beach changes and beach nourishment re-
quirements; from simpler techniques such as linear least squares to more sophisticated 
models such as stochastic approaches, and finally machine learning techniques [4–7]. 
Many models include on longshore and cross shore transport for beach change prediction, 
as well as equilibrium beach profile expressions [8–11]. Some notable numerical models 
(e.g., one-line type) have shown a more favorable practical capability in predicting shore-
line change and in assessing the longevity of beach nourishment projects [12,13]. Simple 
analytical models are easily explainable, but they often cannot accurately model complex 
and nonlinear interactions—which are common in coastal studies. 

As more data is becoming available from regular surveys, coastal managers could 
use machine learning (ML) models as tools to estimate future beach erosion, inform the 
coastal communities, and prepare for beach nourishment works [3]. Data-driven predic-
tive models can reproduce the observed variability and be physically meaningful, regard-
less of the model complexity [14]. ML has a critical role in modeling complex data and 
fitting unknown functions. 

One of the approaches is artificial neural networks (ANNs), which can successfully 
model highly nonlinear functions, because of the large number of free parameters 
(weights and biases) [15]. ANNs are often described as a black-box predictor where the 
commonly large number of free parameters conceals the significance of individual varia-
bles [16]. Cross-validation is critical to avoid overfitting of the ANNs to the training set 
[15]. ML models are often not skillful when extrapolating to cases not observed in the 
training set [17] while the ability of the predictive modes to generalize and predict beyond 
the existing data is desirable [7]. Results are commonly based on interpolation of the train-
ing data. When input variables for ANNs differ from the parameter space for which the 
ANN is trained, predictions can be unphysical and so meaningless [14]. 

A number of studies have found ANNs to be applicable for modeling shoreline po-
sition, shore profile, and shore volume change [18–22]. Most studies utilize data collected 
at one or a few beach sites in a small region [7]. This is approach is often not appropriate 
when generalizing the model to several hundred kilometers of coastline and searching for 
suitable new beach locations. Tsekouras et al. and Rigos et al. trained ANNs to predict 
shoreline features and erosion through time (event-based) as a function of bathymetry 
and storm characteristics [19,20]. Profile evolution prediction with ANN on a beach (from 
dunes to mean sea level) has also been successfully conducted [18]. 

Only a few studies have focused on using machine learning techniques to predict 
beach change on a longer coastline and the spatial variability of beach stability. To our 
knowledge, no one has so far used ANNs to predict the spatial variability of beach nour-
ishment requirements along a coast. However, other methods have been used. Wilson et 
al., based upon [23], used a Bayesian network to predict beach volume change probabili-
ties in a specific coastal region (Fire Island, NY, USA) based on storm event. The Bayesian 
network is a probabilistic machine learning model where percentages are given for each 
occurrence/category (erosion, accretion, etc.), as opposed to ANNs which give a specific 
value in the output layer. The model’s hindcast accuracy was assessed at 65.0–81.9%, de-
pending on the observed event. They have shown that including wave runup in addition 
to the wave impact duration in hours resulted in higher model skill. However, this study 
examined one specific region (50 km long barrier), which raises uncertainties when the 
unmodified model would be applied elsewhere. The study by Yates et al. has shed more 
light on key factors influencing decadal-scale shoreline stability of European coasts by 
using a Bayesian network [22]. They used a large data set with over 17,000 observations, 
but the Croatian coast was not included. The Bayesian network models require data to be 
divided into classes. For example, Yates et al. used the following classes; geomorphology 
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(four classes): rocky cliffs and platforms, erodible cliffs, beaches, and wetlands; geology 
(two classes): hard and soft sediments (depending on the erosion potential); significant 
wave height, tide range and sea level rise (four classes): based upon quantiles. The shore-
line evolution data were classified as eroding, stable, or accreting. It was shown that geo-
morphology was the most important parameter in the model and significantly raised the 
skill of the model. Accuracy was best for stable coasts (90% correct prediction) followed 
by accreting (68%) and eroding (47%). Erosion was correctly predicted less than half the 
time, which indicates that more variables are needed for an accurate prediction (shoreline 
orientation, longshore transport, etc.). Although this model gives a broad overview of the 
shore trends in Europe with acceptable accuracy, it does not provide specific values for 
beach nourishment requirements, which interests coastal management. 

While the results of these models provide valuable information for coastal managers, 
there is still a need to predict beach nourishment volumes for operational beach manage-
ment, for which ANNs are more suitable and are therefore chosen for this study. 

The aim of this paper is to apply an ANN approach that can predict the spatial vari-
ability of gravel nourishment requirements on the Croatian coast. ANNs can model highly 
non-linear phenomena and are therefore suitable for beach nourishment predictions. We 
aim to provide a tool for predicting nourishment requirements and development of new 
beaches based on an extensive database of beaches and nourishment data in Croatia. The 
tool here will focus on beach nourishment requirements in a spatial sense and does not 
consider nourishment requirements through time as function of changing environmental 
parameters. In this study, we use a survey of beach nourishment volumes, map data, and 
statistical data from nearby meteorological/oceanographic stations to train ANNs and 
show that, for the present dataset, ANNs can accurately predict the spatial variability of 
beach nourishment requirements at the country level. 

2. Materials and Methods 
2.1. Data Set 

To establish a database, data was collected from three sources—local authorities, 
maps and meteorological/oceanographic stations (Table 1). A survey of beach nourish-
ment volumes was conducted with local authorities along the coast. The received data is 
evenly spread out throughout the Croatian coast. Beaches that are not nourished are not 
included in the survey. The surveyed data contains the beach name, county name, region 
name, yearly beach nourishment by volume, yearly expenses for beach nourishment in 
Croatian kuna, and gravel diameter. The local authorities were asked to report any other 
factors that could affect beach nourishment volumes such as governmental incentives. 
However, we will assume that the surveyed beach nourishment volumes are exclusively 
used to counteract beach erosion. Data extracted from the maps are fetch lengths (calcu-
lated using a Python script), beach location coordinates, beach length, beach area, beach 
orientation, and beach slope. The fetch lengths are defined for the SE, SW and NE direc-
tions corresponding to the most dominant wind directions at the Croatian coast. The slope 
was calculated from the MSL to the 2 m depth. Tide range and wind statistical data were 
taken from tables in the national navigation handbook for the eastern Adriatic coast [24]. 
Yearly mean precipitation data were obtained from the Croatian Meteorological society.  

Eighty nine counties, which manage 1400 beaches from existing 1904 Croatian 
beaches (73.5%) have responded to the survey. This included natural and artificial 
beaches. From these, 255 beaches were nourished in the last five years (2016–2020), which 
is 18.2% of all beaches. They reported annual beach volumes in that period. Once the out-
liers were removed (e.g., sandy beaches), the sample reduced to 228 beaches, for which all 
data from Table 1 were available. For every beach, the data were summed from 2016–2020 
(a 5-year nourishment volume requirement) to represent beach nourishment needs at each 
beach, because temporal variability is not the focus of this paper. Yearly beach expenses 
in the Croatian national currency will not be considered in this paper. 
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Table 1. Data that was collected for every beach. Data inputted into the ANN are shown with numbers (1–15), the ANN 
target value with T, and additional data which were not used in the ANN are shown with lowercase letters (a–d) 

Number Data Source Group 
1 Longitude map data 

Basic 
2 Latitude map data 
3 Beach length map data 
4 Beach area map data 
5 Beach orientation (azimuth) map data 
6 Gravel diameter survey Gravel 
7 Beach slope map data Slope 
8 Fetch length in NE direction map data 

Fetch 9 Fetch length in SE direction map data 
10 Fetch length in SW direction map data 
11 Mean yearly number of days when the wind is stronger than 6 Bf statistical data from a nearby meteorological station 

Wind 
12 Mean yearly number of days when the wind is stronger than 8 Bf statistical data from a nearby meteorological station 
13 Mean tide range statistical data from a nearby oceanographic station 

Tide 
14 Mean extreme tide range statistical data from a nearby oceanographic station 
15 Yearly mean rainfall statistical data from a nearby meteorological station Rainfall 
T Yearly beach nourishment survey Target 
a Name survey  
b County survey  
c Region survey  
d Yearly expenses for nourishment survey  

2.2. Artificial Neural Network Model 
A two-layer feed-forward network was used for data-fitting. An ANN comprises in-

put, hidden, and output nodes arranged in layers. The input layer serves to feed the input 
data to the network. Each input is connected to several neurons, which altogether make 
up the hidden layer. Information propagates from the input nodes forward to nodes in 
the hidden layer:  

1

n

j j i i
i

h f a w x
=

 = + 
 

∑  (1) 

where xi are input variables, hj are hidden layer neuron responses, wi are weights, aj are 
biases, and f is the activation function. A range of neurons (5, 7, 10, 12, 15, and 20 neurons) 
was used in the hidden layer was to examine the model sensitivity to the hidden layer 
width. The sigmoid activation function was used in the hidden layer. The sigmoid activa-
tion function is defined as:  

1( )
1 xf x

e−=
+

 (2) 

Finally, the hidden layer was fully connected with the output layer consisting of 1 
node, which corresponds to the 5-year gravel nourishment volume target data. Bayesian 
regularization backpropagation was implemented as the training procedure [25]. This 
backpropagation technique improves the neural network’s ability to generalize the 
knowledge obtained from the training data. When determining the biases and weights for 
the global minimum of the difference between observations and ANN predictions, local 
minima may be encountered. Local minima halt the optimization process, while their 
presence depend on the initial values assigned to biases and weights. Most studies prefer 
to train ANNs using different random seeds to generate initial weights and then analyze 
the best ANN, as a solution to the local minima problem [26,27]. This approach was used 
in this paper, and 10,000 ANNs with different random seeds were created for each group 
set tested. Preprocessing steps were applied to the input and target data to make the ANN 
more efficient A common approach to normalize inputs and targets to fall in the range [–
1, 1] was applied as when sigmoid activation functions were used in the ANNs. This nor-
malization helped to avoid very small gradients, and thus very long training times. A 
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sensitivity test was performed using different number of nodes in the hidden layer as 
ANNs can be overtrained on the training set if a large number of nodes in the hidden 
layer. This can lead to bad performance for the test sets [26]. 

The complete data is divided into several groups of data (basic, gravel, etc., in Table 
1). Different ANNs were trained and tested to quantify the importance of each group of 
data within the complete data set. First ANN comprised the basic group consisting of the 
beach length, area, azimuth (beach orientation), longitude and latitude (Table 1, 1–5). This 
basic data can be extracted from the maps. In this study, data was collected from local 
authorities and supplemented by data derived from the Google Earth maps. This group 
is called the ‘Basic’. This was followed by combining Basic ANN with each group of data 
(Table 1 8–15), to evaluate the importance of each of parameter groups. A ‘Combined’ 
ANN was constructed using groups, which improved prediction of the basis ANN. Fi-
nally, an ‘All’ group using all 15 groups of data was constructed. In addition, a ‘Check’ 
data set that includes the target values with all the group sets in the input is also tested, 
to verify the ANNs solving technique. To compare the performance of each ANN in this 
paper, the mean squared error was used:  

( )2

1

1 ˆ ,
n

i i
i

MSE Y Y
n =

= −∑  (3) 

where n corresponds to the number of sample data points, Yi corresponds to the observa-

tions, and iY  corresponds to the network outputs. Performance statistics for the training 
set and combined set is reported alongside the test set performance. Additionally, corre-
lation coefficients are reported for the test models. From the total number of observations, 
70% or 160 beaches were used to train the ANN weights and biases, and the remaining 
30% or 68 beaches were used for testing. The data was split into training and test sets 
randomly. The testing data was not seen by the machine learning algorithm in the training 
stage, while the training data was not used to measure the accuracy of the ANN. Only the 
test data set (30% of total observations) was used to test the success of the model.  

3. Results and Discussion 
3.1. Beach nourishment data 

Figure 1a shows a box plot of the surveyed 5-year gravel nourishment volumes along 
the Croatian coast, with 20 outliers marked with crosses. Here, outliers are defined when 
they are 1.5 interquartile ranges (IQRs) above the 75th quantile as the data is not normally 
distributed. Outliers account for the top 8.7% of the dataset. These outliers were not in-
cluded into ANN. As shown in Figure 1a, the data is too sparse in the region above 1150 
m3 to train a reliable ANN. The distribution is extremely right-skewed, as expected when 
0 m3 acts as a natural boundary for the dataset because beach nourishment volume cannot 
have a negative value. Nourishment volumes are always positive values. A log transfor-
mation function is commonly applied to highly skewed distribution types. After the log 
transformation, the 5-year nourishment volume distribution takes a shape similar to a 
normal distribution, but still negatively skewed (Figure 1b). 
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(a) (b) 

Figure 1. Distribution of 5-year gravel nourishment volumes that have been reported by counties in the survey: (a) box 
plot with specified outliers; (b) log transformed 5-year nourishment volumes correspond to a normal distribution. 

3.2. Artifical Neural Network Model Results 
An ANN trained and tested using all 15 input data variables (All network) presented 

in Table 1 shows good prediction ability for beach nourishment volumes (Figure 2a–c). 
Mean squared errors are 9.63 × 103, 1.96 × 104, and 1.26 × 104, for the training set, test set, 
and overall set, respectively. The corresponding RMSE are 98.13 m3, 140 m3, and 112.25 
m3, for the training set, test set, and overall set, respectively. When normalized with the 
beach nourishment data range, values of 8.53%, 12.17%, and 9.76% are obtained for the 
training set, test set, and overall set, respectively. These NRMSEs are acceptable because 
they are at about 10% of the beach nourishment range. Correlation coefficients between 
the target (observed) and output (predicted) data for the training, test, and overall (train-
ing and test) show a strong positive relationship. Correlation coefficients are 0.94, 0.84, 
and 0.91 for the training set, test set, and overall set, respectively. However, the ANN 
underestimates the observed values as the beach nourishment volume (target value) in-
creases, which is shown by the regression slope being below 1. The error histogram for 
the overall set is normally distributed (Figure 2d). This means that there are no inherent 
biases when the regression equation is applied. The standard deviation of the error histo-
gram equals 76.9 m3. For an average beach area of 6834.01 (Table 2) this is equal to about 
0.01 m in height. There is a 95% probability that the target value will be within the range 
of output ± 153.8 m3. This could serve to the network user as a model uncertainty indica-
tion. 

As shown in Figure 2a,b, the data spread is higher for the test set in comparison to 
the training set as to expect. This is reflected in a higher mean squared error for the test 
set than the training set. Still, the correlation coefficient shows a strong relationship be-
tween the output and target values. This shows ANN’s good ability to generalize the 
model to unseen data. The ANN underperforms in predicting values near 0 m3 as it some-
times predicts negative values, which is unreasonable. The ANNs with different hidden 
layer sizes (5, 7, 10, 12, 15, and 20 neurons) revealed no significant variation in network 
performance on the test set (not shown in this paper). For the rest of the modelling, only 
networks with 15 neurons in the hidden layer were trained. 



J. Mar. Sci. Eng. 2021, 9, 786 7 of 14 
 

 

  
(a) (b) 
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Figure 2. Correlation and scatter plot for the target (observed) and output (predicted using ANN) data: (a) training set; (b) 
test set; (c) overall (training and test set); (d) error histogram for the overall data set (training and test set) in (c). 

The ANN does not overpredict or underpredict certain geographic regions (Figure 
3). Overprediction and underprediction of the ANN are evenly spread throughout the 
Croatian coast. This shows that the ANN is not sensitive to region specifics like geology, 
geomorphology and meteorology. However, the error values for prediction of nourish-
ment values in the Croatia’s southern part (below 43.5° N) tend to be smaller than the rest. 
The mean absolute error for Croatia’s southern part equals 49.41 m3, and 88.23 m3 for the 
rest of Croatia’s coast. The mean absolute error for the whole coast equals 81.96 m3. As a 
result, the ANN should not massively overpredict or underpredict the gravel nourish-
ment volumes of a certain region for an unseen test case. 
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Figure 3. Mapped errors (target and output value differences) with underprediction and overprediction presented in or-
ange and blue respectively; the bubble size indicates error size. 

3.3. Evaluation of Input Variable Groups Contribution to ANN Prediction Skill 
In the present study, we compared ANN’s predictive ability for different input 

groups as shown in Table 1—column 4 and described in Section 2. Only the test set per-
formance metric (mean squared error according to Equation (3) was considered when 
comparing ANNs (Figure 3). This way the network’s generalization skill to unseen data 
is considered.  

Firstly, the check network is considered. The check network is normally expected to 
have perfect performance scores as it includes the target itself. This serves to test the net-
work solving technique. As shown in Figure 4, the check network does indeed have a 
perfect performance score with virtually no error and perfect correlation. 

Further, the ANN trained only with the input of basic group variables showed low 
prediction skill (Figure 4). The basic group consisted of beach length, area, azimuth, lon-
gitude and latitude. The correlation coefficient and mean square error for the test set were 
equal to 0.47 and 5.96 × 104, respectively. Thus, using only easily extracted map data, the 
network has low prediction ability.  

When ANN’s input comprised the basic and one other variable group, the best re-
sults were obtained by adding the fetch variable group (Figure 4). The correlation coeffi-
cient and mean square error for the test set were equal to 0.77 and 2.85 × 104, respectively. 
Hence, including the basic map information together with fetch data gives a good predic-
tion of gravel volume requirements. Gravel, wind, and tide group variables when added 
to the basic group variables moderately improved network prediction ability and will be 
considered further in the Combined group set (Figure 4). Rainfall contributed to some 
extent, but the network’s mean square error was high at 5.24 × 104 on the test set. The 
rainfall was taken into account as many Croatian beaches are affected by torrential surface 
flows. However, rainfall has a limited effect on beach nourishment volume prediction. 
Therefore, rainfall was not considered further. 

Interestingly, it was observed from the comparative analysis that the inclusion of 
beach slope did not add value to ANN prediction ability (Figure 4). The performance met-
rics with and without the inclusion of the beach slope remained the same. There might be 
various reasons for this lack of significance. These will be discussed further in Section 4.  

A combined group variable was formed to train an ANN to match the performance 
of the ANN with the All group variable (includes all 15 variables and presented in Section 
3.2). The input for the combined group variable comprised the basic, gravel, fetch, wind, 
tide group variables. The correlation coefficient and mean square error for the test set were 
equal to 0.83 and 2.23 × 104, respectively.  
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Figure 4. Performance statistics for tested ANNs on the test data sets according to equation 3—bar 
chart of mean squared errors (lower is better) on the left y-axis; stem chart of correlation coefficients 
(higher is better) on the right y-axis; variables included in each group can be found in Table 1; Com-
bined group comprises Basic + Gravel + Fetch + Wind + Tide; training set, test set, and overall (train-
ing and test set) performance statistics are presented in Table A1, Appendix A. 

The mean square error is 13.8% higher than for the All group variable, and the corre-
lation coefficient decreases by 1%. When beach location coordinates were left out from the 
Combined group variable, no clear decrease in ANN prediction ability is evident. 
Knowledge already contributed by other included variable groups included might make 
the beach coordinates irrelevant. For example, latitude would be important only if a north-
ern region has a pattern of bigger or smaller gravel nourishment volume requirements in 
comparison to the south. In that case, the ANN would include the location knowledge 
into the nourishment volume prediction with beach coordinates. To sum up, the Com-
bined group variable without beach coordinates (Combined—Coord) is declared the best 
ANN because of its decreased number of required input variables without losing predic-
tion ability of beach nourishment volumes. 

3.4. Sensitivity Analysis of the ANN to Beach Orientation, Fetch, and Wind Variables 
To analyze the sensitivity of the ANN, we changed the values of one variable at time, 

while keeping the other variables constant. For latter we used mean observed values in 
Croatia (Table 2). Additionally, when one fetch length is varied to examine the ANN’s 
response, the other two are fixed to zero. Also, when the mean yearly number of days 
with wind stronger than 6 Bf is varied, the mean yearly number of days with wind 
stronger than 8 Bf was fixed at 5 times smaller than the one used for duration of wind 
above 6 Bf. This sensitivity analysis was conducted on the Combined model without co-
ordinates (Combined—Coord) (Figure 4), which showed performance similar to the All 
ANN. 

Figure 5 reveals an extremely nonlinear response of the ANN to the reconstructed 
test cases. Predictions that extend far beyond the value range considered in the training 
dataset can lead to unphysical results. Therefore, with a black dashed box, we have des-
ignated the region where the data should be reliable. For instance, the 5-year gravel nour-
ishment volumes decrease if the fetch length in the SE direction increases above 8 km 
(Figure 5b). However, this might not be a reliable prediction because there is only one data 
point beyond the designated region. Thus, the black boxes are regions where the ANN 
calculates an interpolation of the training data.  
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Table 2. Expected beach characteristic based upon means for observed values for each characteristic. 

Number Data Min Mean Max Dimension 
1 Beach length 12 370 2000 meters 
2 Beach area 32 6834.01 104,020 square meters 
3 Beach orientation (azimuth) 0 192.69 359 degrees 
4 Gravel diameter 1 14.82 32 millimeters 
5 Fetch length in NE direction 0.54 1033.98 19,259 meters 
6 Fetch length in SE direction 0.85 4663.27 108,701 meters 
7 Fetch length in SW direction 0.79 11,422.14 137,514 meters 
8 Mean yearly number of days when the wind is stronger than 6 Bf 12.90 48.84 123.90 days 
9 Mean yearly number of days when the wind is stronger than 8 Bf 0.6 9.10 33.30 days 
10 Mean tide range 0.23 0.30 0.48 meters 
11 Mean extreme tide range 0.29 0.42 0.67 meters 

 

  
(a) (b) 

  
(c) (d) 
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Figure 5. Sensitivity analysis presented with a heat map of the best-performing ANN (combined group variables without 
the beach coordinates) and scatter plot of available data (black crosses): (a) fetch length in the SW direction—beach orien-
tation; (b) fetch length in the SE direction—beach orientation; (c) fetch length in the NE direction—beach orientation; (d) 
Mean yearly number of days when the wind is stronger than 6 Bf—beach orientation; the dashed black box designates the 
area where predictions are considered reliable because the ANN calculates an interpolation of the training data. 

It should be noted that the ANN can also carry out calculations even for unrealistic 
inputs. For example, if we assume a beach orientation in the SW direction (225 degrees), 
the NE fetch length should physically be close to zero (black crosses in Figure 5c). How-
ever, any other fetch length can be inputted into the network and ANN will always pro-
duce an output as one can see in Figure 5c. However, this could be unphysical. In contrary 
the reliable regions for SW and SE fetch lengths are much larger. And in the case of mean 
yearly number of days when the wind is stronger than 6 Bf, the whole domain is consid-
ered reliable because the training data spans the entire area (Figure 5d). 

Figure 5a–c reveals that an increase in the fetch length in any direction increases the 
5-year gravel nourishment volumes which is expected (in the reliable region designated 
with the black box). A fetch length increase in the NE direction shows the biggest increase 
in 5-year gravel nourishment volumes at 0.09 m3 per meter of fetch length. The increase is 
3 times lower for the SE direction at 0.03 m3 per meter of fetch length, and 30 times lower 
for the SW direction at 0.003 m3 per meter of fetch length. These results show significant 
susceptibility of 5-year gravel nourishment volumes to the wind and waves from the NE 
direction. For the most part of Croatia’s coast, the NE wind tends to be a seaward wind. 
This is not the case for island beaches and some other, where a NE direction orientation is 
likely. 

Figure 5d shows that an increase in mean yearly number of days when the wind is 
stronger than 6 Bf results in an increase of the 5-year nourishment volumes. This is an 
expected behavior, because it is assumed that an increase in windy days will increase the 
number of days with waves. When the beach is exposed to NE waves, the ANN tends to 
output the highest values of 5-year gravel nourishment volume. Again, pointing to the 
NE wind as having the most erosion potential of the 3 considered wind directions (NE, 
SE, and SW). On the other hand, the beach orientation toward the NW tends to have the 
lowest values. The Figure 5d shows also the ANN ambiguity with beach orientation of 0 
and 360 degrees, which are considered as two different orientations. 

4. Discussion 
This study has shown that the ANN and observation data can be used to adequately 

predict the observed spatial variability of gravel nourishment volumes on Croatian 
beaches. The significance of the obtained results and in particular the importance of dif-
ferent variables for the prediction of beach nourishment volumes are discussed in the con-
text of other studies, as there are no other ANN models to compare the results with. 

Tides were found to have a moderate influence on ANN accuracy (Figure 4). This 
contrasts with the findings of Yates and Le Cozannet [22], that tidal range and wave height 
had a similar influence on the network prediction ability. This is not surprising, however, 
as there is more variation in tidal ranges across the entire European continent than on the 
Croatian coast. The eastern Adriatic Sea has a microtidal regime with tidal ranges of less 
than 2 m and with very little regional variation. 

Waves (indirectly via the fetch length) had a significantly greater influence on the 
predictive ability of the ANN. The fetch length turned out to be a more important variable 
than the annual mean number of windy days. Another study by Wilson, Adams [3] re-
ported that wave runup had a bigger influence on network prediction ability than WIH 
alone (wave impact hours). We indirectly confirmed this in this paper, as the fetch length 
had a more important impact than the yearly mean number of windy days. 

The beach slope was expected to be an important factor in beach nourishment mod-
elling, as the beach slope influences the transformation of the nearshore waves, and hence 
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the driving forces behind beach changes as well as the beach stability. However, this var-
iable was not selected by the ANN. One possible explanation for this is that beach slopes 
were extracted from navigational maps that are not detailed enough near the coastline to 
provide reliable slope data. On the other hand, beach slope is difficult to integrate into the 
ANN model because it is a time-dependent variable. Beach slopes are often stepper after 
winter wave storms that greatly reshape beach profiles and often generate onshore berms. 
By comparison, the beach slope is flatter after the summer tourist season and a milder 
wave climate. Anthropogenic influences like gravel nourishment can also alter the beach 
slope in the nearshore. Wilson et al. [3] established an event-based network where the 
beach slopes could be updated after every event, but this could not be implemented into 
our ANN model. 

The gravel diameter was found to be an important variable for the ANN predictions. 
This is in agreement with the findings of previous studies that the gravel diameter pri-
marily dictates the equilibrium beach profile generated by cross-shore sediment processes 
[8,9]. Also, the beach slope is dependent on the gravel diameter and this may be why the 
gravel size information influenced the ANN’s prediction ability more than the beach slope 
itself. 

However, the developed ANN has some limitations. Section 3.4 highlights how even 
unphysical and unrealistic input variables could be fed to the ANN resulting in an unre-
liable output. Users should always remember not to use input variables that differ greatly 
from the parameter space over which the ANN has been established because the predic-
tions could be unphysical and unreliable. This was often highlighted in previous research 
[7,14]. The ANN is not fitted with a procedure to determine if the input data is reasonable 
or even physically sound. This could be handled only with a preprocessing procedure 
created for the ANN’s specific use case. This preprocessing procedure can limit extrapo-
lation of the training dataset and non-physical input combinations. 

This is a disadvantage of the ANN model compared to the Bayesian network models. 
Bayesian networks use predefined bins for each category (e.g., beach nourishment vol-
ume) to conduct probabilistic predictions [3,22]. Predefined bins can easily limit the input 
data that is out of the trained parameter space or deemed unphysical. The approach han-
dles probabilities directly in contrast to the ANN, which estimates a specific value. More-
over, this approach implicitly gives model uncertainties for each output. This uncertainty 
information could be valuable to the user when applying the model to unseen test data 
sets. This advantage of the Bayesian networks can also be a disadvantage if a specific value 
is required and not just the highest probability category bin. For example, Yates and Le 
Cozannet [22] used Bayesian networks to predict if a coastline is accreting, stable, or erod-
ing. They did not include information on the amount of erosion and did not focus on 
gravel or sand beaches. The simple yes/no erosion information is probably not sufficient 
for operational coastal management on a local level, e.g., beach nourishment volumes. 
Thus, despite limitations, the ANN could be useful for forecasting beach replenishment 
volumes and thus for operational coastal management. 

5. Conclusions 
The results of this study show that an ANN can adequately predict the observed 

gravel nourishment volume spatial variability on Croatian beaches on unseen data. Tests 
revealed a strong correlation between the observations and the ANN’s output. The corre-
lation coefficient and mean square error for the test set equal 0.87 and 2.24 × 104, respec-
tively (Combined—coords group variable which includes beach area, beach length, beach 
orientation, fetch length, gravel size, mean yearly number of days when the wind is 
stronger 6 Bf and 8 Bf, and tide range). Other tested variables like beach slope, location 
coordinates, and rainfall had little or no contribution to the ANN’s prediction ability. 

The results show that fetch length was found to be the most important input variable, 
apart from the basic information derived from maps such as beach length, beach area and 
beach orientation for ANN’s prediction ability. The fetch length and beach orientation are 
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parameters that determine the height and direction of the wind wave and are therefore 
proxies for forcing. Fetch length in the NE direction showed the greatest impact on the 
gravel nourishment requirements; three times stronger impact than fetch length in the SE 
and 30 times stronger than fetch length in the SW direction. Beach orientation also points 
to the NE direction as the most impactful to beach nourishment volume requirements. 
Since the training set was limited to Croatian coast, further data in other countries is 
needed to expand this ANN gravel prediction model. 
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Appendix A 

Table A1. Performance metrics (correlation coefficient—R, and mean squared error according to equation 3—MSE) for 
every tested ANN for the training data, test data and overall data (training + test); the Combined group variable includes 
Basic, Gravel, Fetch, Wind, and Tide. 

ANN Performance Metric Training Test Training + Test 

Basic (B) 
R 0.452 0.467 0.454 

MSE 5.94 × 104 5.96 × 104 5.94 × 104 

B + Gravel 
R 0.618 0.678 0.635 

MSE 4.39 × 104 4.70 × 104 4.48 × 104 

B + Slope 
R 0.477 0.397 0.450 

MSE 5.95 × 104 5.95 × 104 5.95 × 104 

B + Fetch 
R 0.843 0.775 0.822 

MSE 2.23 × 104 2.85 × 104 2.42 × 104 

B + Wind 
R 0.660 0.667 0.658 

MSE 4.23 × 104 4.34 × 104 4.26 × 104 

B + Tide 
R 0.571 0.680 0.613 

MSE 4.58 × 104 4.93 × 104 4.69 × 104 

B + Rainfall 
R 0.550 0.572 0.544 

MSE 5.21 × 104 5.24 × 104 5.22 × 104 

Combined  
R 0.851 0.827 0.865 

MSE 1.69 × 104 2.23 × 104 1.85 × 104 

Combined—Coord 
R 0.894 0.867 0.885 

MSE 1.45 × 104 2.24 × 104 1.62 × 104 

All 
R 0.938 0.840 0.912 

MSE 9.63 × 103 1.96 × 104 1.26 × 104 

Check R 1.000 1.000 1.000 
MSE 0.0006 0.0232 0.0068 
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