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Abstract: A mesoscale eddy is detected and tracked in the western North Pacific region. Within
the life cycle of the cyclonic eddies, the intensities of eddies make a difference. Satellite images
indicate the oceanic eddy keeps westward-moving until it disappears. Oceanographic and acoustic
characteristics of the eddy are studied. The acoustic energy distribution results from the different
intensity of both modelled eddy and measured eddy are calculated. With sound propagation through
the cyclonic eddy and anticyclonic eddy, the position of convergence zone moves away from and
towards the acoustic source compared with the sound propagation through background hydrography.
The coupling coefficient of different orders of normal modes changes significantly. The closer to the
centre of the eddy, the stronger the coupling coefficient.

Keywords: mesoscale eddy; parabolic equation; normal mode

1. Introduction

Ocean dynamic phenomena have been distributed in the global ocean. Among them,
eddies are characterised by unstable, time-dependent water masses, which separate from
their respective currents and enter water bodies with different physical, chemical and
biological characteristics [1]. More than half of the kinetic energy of the ocean circulation is
stored in the mesoscale eddies, with the remainder contained in the large-scale circulation,
swirling motions of eddies mixed between layers and consequent mixing of nutrients,
heat and salinity. Sound propagation through eddies has a crucial impact on humans,
marine animals and invertebrates [2]. Under the influence of oceanic eddies, human
underwater acoustic communication networks are impacted. The existence of eddies
affects the detection and communication of marine creatures [3]. Some whales, seals and
fishes use low-frequency sound to communicate, perceive the environment and respond
to those sounds [4]. At present, there are some experiments to prove that the sound of
deep-sea creatures is detected at a location of 15 km away. Fishes feed along with the
density structure of the eddies, which indicates that eddies accelerate the transfer of energy
and nutrients in the ocean. Anticyclonic eddies carry higher surface chlorophyll than
cyclonic eddies. Because the mixed layer of cyclonic eddies is often shallower than that
of anticyclonic eddies, the pycnocline depth of the anticyclonic eddies is deeper. More
plankton in the deeper mixed layer therefore provides more nutrients for zooplankton [5].
The study of sound propagation through the eddies clearly plays a significant role in the
life of human and marine organisms. Regarding the deep-sea sound propagation issue,
we always focus on the convergent position of sound energy and the acoustic intensity
distribution. Aiming at the phenomenon of how the oceanic eddy affects the position of the
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convergence zone, this paper uses the parabolic equation method to solve sound field and
combines it with the normal mode theory to analyse the difference of energy distribution
of the acoustic wave at different positions.

It is of great significance for weather and marine scientific research to grasp the real-
time movement of eddies. The nonlinear interaction of barotropic and baroclinic Rossby
waves could lead to strong instability, which is a major source of the kinetic energy of
eddies [6]. These eddies are affected by Coriolis, which lifts high-temperature cyclones from
subsurface water to the surface of the sea [7]. Some smaller-scale eddies (tens of kilometres
in diameter) are formed due to the instability of baroclinic at the horizontal density, while
larger-scale eddies located near the warm current of Gulf Stream and the Kuroshio Current
are generally due to strong horizontal shear motion, which intensely affects the temperature
and salinity distribution in the depth direction. The dynamic model of the eddies was
proposed as early as the 19th century. Taking the change of sea surface height and the
temperature in the depth direction caused by the eddies into account, the sound speed
shapes in space can be divided into the following types: bowl shape, lens-shaped, cone-
shaped, moreover, the generation mechanism of eddies are divided into three types, sea
surface wind, the interaction between ocean currents and bottom topography, and Kuroshio
intrusion [8]. In the northern hemisphere, these cyclonic eddies rotate clockwise,whereas, in
the southern hemisphere, they rotate counterclockwise. The low-temperature anticyclonic
eddies cause the downwelling of the surface layer and dent formed in opposite directions
of rotation. Eddies could be distinguished through the combination of sea surface height
and sea surface temperature anomalies. Some scholars used buoys to capture the formation,
the movement and the extinction of eddies. Mesoscale eddies in the Pacific generally last
several weeks. Their motion trajectories are approximately circular with a diameter of
100–200 km. The effect of the mesoscale eddies gradually concerns many scholars and
has great investigation result. The oceanic eddies not only affect the circulation structure
of the ocean but also ocean temperature, salinity, sound speed profile. Mesoscale eddies
keep rotating and moving every moment, and momentum and energy are transported,
interacting strongly with oceanic circulations, affecting the vertical profile structure of the
marine environment. In 1977, based on practical experience, Henrick proposed a quasi-
elliptical eddy model. To detect and track mesoscale eddies [9], Dong used sea surface
height fluctuations to study the distribution laws and characteristics of eddies from the
perspective of oceanography [10]. We study from the perspective of ocean acoustics the
influence of spatial and temporal distribution characteristics of eddies.

Since the 1970s, hydro-acoustics scientists have been concerned about the influence of
ocean eddies on sound propagation. The ray method is used for analysing the receiver’s
time of arrival which is affected by the size, intensity and position of the eddy. By using
the ray-tracing model, people could understand how rays refract and bend. Additionally,
what people tracing is the ray stimulated from a particular source then propagating in free
space [11]. In the classical ray theory, the sound energy in the waveguide is shown in the
form of acoustic rays. With regards to sound rays from the point source traveling along
certain paths to the receiving point, the acoustic field at the receiver is the consequence of
the superposition of all types of sound rays. Furthermore, the receivers’ signal phase shift
is also calculated by Jian [12] combining the current model with the acoustic field model
when an eddy is present. In addition to the frequency domain, scholars have also done
some research on sound propagation through the eddies. Nysen [13,14] studied how the
acoustic energy leaked into the deep sound channel from the subsurface sound channel
with the dependence of frequency off the east coast of Australia. The strong coupling
between the two ducts leads to the near-surface acoustic energy being trapped in the duct
area affected by water mass. Lawrence [15] modelled a warm-core eddy propagation
problem and expounded the widening of the acoustic convergence zone. Baer [16] bonded
split-step parabolic-equation and used Henrick eddy model to calculate a non-typical
three-dimensional structure of eddy and examined the signal amplitude of vertical line
array. Specifically, the gain of the hydrophone array increased, and the energy flows
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horizontal angle changed by over 0.5 degrees. As underwater acoustic horizontal refraction
has attracted attention because of the eddy, Weinberg [17] simulated acoustic propagation
through ocean fronts and single mesoscale eddy. The received voltage amplitude was
significantly dependent upon the position of the Gulf Stream ring by a fixed system
experiment. Afterwards, the three-dimensional fully coupled parabolic equation method
was applied to investigate the effect of the horizontal refraction of the sound field caused
by mesoscale ocean dynamics on the impact of acoustic source localisation [18].

Even though the parabolic equation and the ray method could solve the sound field
problem of horizontal ocean environment fluctuations, the normal mode theory still plays
an irreplaceable role of analysing the effect of deep-sea eddies on the sound field. Dozier
and Tapert [19] deduced the normal mode amplitude distribution in a random ocean,
Colosi [20] used the coupling coefficient of acoustic normal mode to analyse the average
energy and sound pressure correlation characteristics of sound propagation under the
influence of internal waves. Similarly, we use the coupling coefficient derived by Tapert to
apply it to the ocean environment with an eddy to analyse the coupling relationship of the
normal mode of various orders in the deep ocean environment. As the sea depth increases,
the total of normal mode order increases. The theory of deep-sea normal modes is more
complicated than that of shallow-sea. High-order normal mode of the energy coupling
is more intense, according to the simulation results. Consistent with the coupling and
transmission characteristics of shallow sea normal mode, however, as the sound source
is located far away from the channel axis and closer to the sea surface, the low-order
normal mode no longer maintains a stable propagation path over a long distance. As a
consequence, we focus on the energy distribution of higher-order normal modes in the
deep sea. Incidentally, due to the surface and seabed boundary limitation of the impedance
character, the confined depth direction is expressed as a specific form of a standing wave,
whereas the unconfined direction is known as a form of a travelling wave, which is called
normal mode in a given waveguide. The modal expansion is a sum of resonances or
eigenfunctions for the waveguide. The eigenfunction mentioned here is limited to the
formal solution of the Helmholtz equation under the conditions of a given waveguide
section and a fixed edge condition, and eigenfunction, namely, mode shape function
expansion is often done in the numerical models based on the normal mode approach [11].
Local eigenfunctions of different positions are used to analyse the redistribution of energy
of the normal mode of each order in the eddy affecting the sound field and explain the
root cause of the change of the convergence zone position. As follows in Section 2, an eddy
environment was tracked and used to resolve the sound propagation and the forecasting
process of the sound transmission based on the parabolic equation method, and then,
the sound propagation experiments in the Kuroshio are introduced, and the comparison
between the measured results and numerical results is carried out in Section 3. In Section 4,
the numerical results of the modelled cyclonic and anticyclonic eddies acoustic propagation
and coupling characteristics are described, the character of sound propagation of different
normal modes is analysed. Summary of the discussions is drawn in Section 5.

2. Materials and Methods
2.1. Gaussian Eddy Hydrology Model

In the deep ocean, the speed of sound varies between 1450 and 1570 m per second.
Notably, sound speed profiles have a remarkable influence on the variation of the tem-
perature and salinity which is associated with eddies. Specifically, the intensity of eddy
represents the difference between the acoustic properties at the eddy edge and eddy centre.
Its intensity does also reflect how surface cool water rises or how deeply warm water
descends. The upwelling and downwelling of the eddy (as shown in the Figure 1) could be
simplified as an asymmetric model with Gaussian distribution. The temperature/salinity
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profile for a cold-core or warm-core eddy could be simply modelled as (referring to the
theory section of [21,22]):

T(r, z) = Tk(z)(1− e(− r
R
)) + Tc(z)e(−

r
R
), (1)

where Tk is the background value of temperature/salinity without eddy, and Tc is the
value of temperature/salinity of an eddy core. Typically, R = 3R0, where R0 is the radius
of Rossby. Particular temperature and salinity formulation for an elliptical eddy feature
model is simplified given by

T(r, z) = Tc(z)αβ(r), (2)

where α is generally a delta function, β(r) is an exponential function depending on the
current characteristic. The empirical formula of sound speed profile could be determined
by temperature and salinity. Gaussian eddy sound speed model has an advantage in
considering underwater sound propagation related issues, and the overall sound speed is
distributed as

c(r, z) = c0(z) + δc(r, z) = c0(z) + DC ∗ exp(−( r− r0

dr
)2 − (

z− z0

dz
)2) (3)

where DC is the amplitude of variation of sound speed because of the existence of the eddy,
r0 and z0 are the location of the core of eddy and dr and dz are the radius of semi-major axis
and radius of semi-axis of eddy, respectively. Otherwise, background sound speed satisfies
the Munk deep ocean sound speed profile, where c0(z) = 1500(1 + 0.0057(e−ζ − (1− ζ))),
zc0 is the depth of the sound channel axis in the equation ζ = 2(z−zc0)

zc0
.

Figure 1. (a) Cyclonic eddy and (b) anticyclonic eddy three-dimensional schematic diagram. Shades
of colour represent the water column temperature level, the red part has the highest temperature; by
contrast the blue part has the lowest temperature, and the red arrow represents the direction of the
eddy current in the northern hemisphere.

2.2. Parabolic Equation Modelling

To solve range dependent propagation problem for low-frequency sound propagation,
a more appropriate model is the parabolic equation. The acoustical wave equation can be
derived as serial spatial iterative equations [23–25]. Previously, we start with the Helmholtz
equation with a point source for constant density sediment:

∂2P
∂r2 +

1
r

∂P
∂r

+ ρ
∂

∂z
1
ρ

∂P
∂z

+ k2P = 0 (4)

where k = ω
c = ω

c0
n = k0n, k0 is defined as reference wave number, ω is the angular

frequency, c is the sound speed, c0 is the reference sound speed of 1500 m per second,
and n is the index of refraction. Simulating the acoustic field by frequency-domain finite
difference method, selecting and keeping only the outgoing sound pressure component we
consequently obtain

∂[φH(1)
0 (k0r)]
∂r

= ik0
√

1 + X[φH(1)
0 (k0r)] (5)
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P = φH(1)
0 (k0r), where H(1)

0 is zeroth-order Hankel function of the first kind, which satisfies
the Bessel differential equation. Then it is displayed in the iterative form, φ(r +4r) =

eik04r
√

1+Xφ(r), where operator X = 1
k2

0
[ 1

α(z)
∂
∂z (

∂α(z)
∂z ) + k2 − k2

0]

This approximation equation is a one-way wave equation that could be estimated step
by step in the recursion. Eventually, sound transmission loss is decibel quantities

TL = −20lg
∣∣∣∣ P

p0(r = 1)

∣∣∣∣ (6)

where p0 is the pressure of the source in the free space. For a smoothed transmission loss re-
sult (∑J

j=1 |P(r, z)|2)1/2, where J is the total number of wide-band covered frequency points.

2.3. Normal Mode Method

For the purposes of acquiring the primary causes of the redistribution of the sound en-
ergy, the mode decomposition method is applied. According to normal mode theory [11,26],
the sound field is represented as the superposition of the normal modes.

P(r, z) =
∞

∑
n=1

an(r)φn (7)

where φn are eigenfunctions of depth separated equations, and an(r) is amplitude of range
dependence. The orthogonal property of φn is represented as∫ D

0

φnφm

ρ
dz = δnm (8)

By multiplying local eigenfunctions to both sides of Equation (8), the amplitude
distributions of different orders of normal modes are solved after integrating with the total
depth direction. We then obtain the following form:

∫ D

0
p(r, z)φm(z)dz =

∫ D

0

N

∑
n=1

an(r)φn(z)φm(z)dz (9)

To illustrate the effect of coupling between normal modes of each order, putting 7 into
formation wave Equation (4) we obtained

N

∑
n=1

(
ω2

c2 an(r)φn(z) +
∂2an(r)

∂r2 φn + an(r)
∂2φn(z)

∂z2 ) = 0 (10)

The form expressed as a potential function is ∂2φn(z)
∂z2 = (k2

n − k2
0)φn(z), where kn is

horizontal wave number of nth normal mode. The above formula is reorganised and
obtained as follows,

N

∑
n=1

(
ω2

c2 an(r)φn(z) +
∂2an(r)

∂r2 φn + an(r)(k2
n − k2

0)φn(z)) = 0 (11)

The orthogonal property of eigenfunction is used, and as a result we get

∂2an(r)
∂r2 + an(r)k2

n +
M

∑
m−1

Bnm(r, t)am(r) = 0 (12)

The coupling coefficient is described as

Bmn(r, t) =
2ω2

c2
0

∫ D

0

δc(r, z)
c0

φn(z)φm(z)dz (13)



J. Mar. Sci. Eng. 2021, 9, 787 6 of 17

The range dependent amplitude component is obtained by using small angle single
scattering approximation

∂an

∂z
− iknan = −i

N

∑
n=1

Bnm(r)am (14)

The expression of coupling coefficient of the stochastic ocean is obtained

Bmn =
k2

0√
knkm

∫ D

0

δc(r, z)
c0

φn(z)φm(z)dz (15)

3. Eddy Tracking Experiments and Underwater Acoustic Propagation Experiment

From May to July 2019, a joint acoustic propagation/mesoscale eddy physics experi-
ment was carried out near the Kuroshio. The purposes of the experiment were to explore
eddy hydrology structure and the influence of eddy on sound propagation. The expend-
able conductivity temperature depth (XCTD), conductivity temperature depth (CTD) and
moving vessel profiler (MVP) were used to measure temperature and salinity in the ocean.
Observational networks were extended to cover practically the entire mesoscale eddy area,
a longitude from 148.5° E to 150.5° E and latitude from 33.65° N to 34.15° N. Receiver
hydrophone line array coordinate is located at 150°30′ E, 33°42′ N. Moreover, the survey
depth fluctuates obviously from 5900 to 6040 m. The surface sound speed approximately is
1520 m/s; the sound speed at the lowest channel axis position is 1484 m/s and increases
to around 1547 m/s near the seabed. The equipment used for the experiment is shown
in Figure 2 to track and measure the distribution of sound speed which lasted four days
since 16 June 2019. Two types of explosives were selected whose explosion depth is 100 m
and 200 m, respectively. The deep-sea sound propagation experiment was conducted by
1 kg explosions, dropped evenly spaced at the constant latitude and along the direction of
longitude. The broadband explosive was occurring every 3 km, and the ship sailing within
3 h at a speed of 5 knots on the survey line. Inasmuch as the impact of ocean currents, two
depth meters are hung on the vertical hydrophone line array to determine the position of
each hydrophone in actual time.

MVP

...

...200m

100m

Explosions

...

V
er

ti
ca

l 
 

H
y
d
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p
h
o
n
e 

A
rr

y
 

CTD

...

Figure 2. Sound propagation experiment configuration.

With the influence of sea conditions, the depth of the receiving hydrophones fluctuates
up and down. After the depth of hydrophones is determined through depthometers, the
signal of sound pressure at the same depths is corrected. The sampling frequency is
10 kHz. To guarantee the integrity of the received signal, the time window for intercepting
the signal is selected according to the actual signal amplitude. What is more, the signal
spectrum is distributed at 5–500 Hz. In a practical process of data processing, 320 Hz with
the strongest received signal spectrum is truncated for one-third octave band filtering to
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process the voltage signal. The parabolic equation method is used for calculating the sound
intensity at the receiving position, and the broadband average sound intensity is achieved
by averaging the frequency points within the bandwidth to ensure the consistency of the
processing result of the experiment and the propagation loss curve.

3.1. Hydrographic Data

The observation data and satellite remote sensing data are used for studying the
evolution process of the vertical structure, such as the growth and extinction of this
cyclonic eddy. The Figure 3 shows the temperature and salinity and the speed of sound
profiles collected by MVP 33.7° N, 33.78° N, 33.95° N and 34.10° N, respectively. The
sound propagation experiment is located at the latitude of 33.7° N section; the thermocline,
halocline, sonic cline and sonic cline at each site are shown in the Figure 4.

Figure 3. Measured data of (a) temperature, (b) salinity and (c) sound speed and each sub-figure from top to bottom was
located at the latitude of 33.7°, 33.78°, 33.95° and 34.10° E.

It is known from Figure 4 that the depths of the thermocline, halocline and pycnocline
came close. The position of saltation is important for human submersible vehicle and
marine animal in underwater navigation and action. Above those depths, oceans mix
whereby winds, turbulence and currents, the temperature, salinity, density and sound
speed differ greatly. Mesoscale eddy redistributes heat and brings carbon and other
elements from one part of a body of water to another. Below those depths, the temperature
and sound speed gradually decreased. Taking an eddy in the North Pacific as an example,
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in the section of 33.7° in latitude, the depth of the maximum salinity layer (34.68 psu) is
located at about 70 m, and the depth of the minimum salinity layer (33.9 psu) is about
500 m. Sound speed approximate minimum at 1480 m/s, and the depth of the sound
channel is nearly 800–1000 m. Judging from Figure 3, from the surface to 300 m depth,
along the latitude of the section, temperature, salinity, density and speed of sound have
a peak and two valleys. The peak value position is near 149.3° E that also represents
the centre of the cyclonic eddy, while the valley value locations are near 148.7° E and
150.5° E. Moreover, the difference in temperature and sound speed between the cyclonic
centre and the surroundings is much weightier than that of the salinity and density. The
temperature and sound speed at the eddy centre (0–1000 m vertical integral) is greater
than the surrounding values by about 0.97 ◦C and 3.5 ms−1. While the salinity and density
differences are about 0.05 psu and 0.14 kgm−3, respectively.

Figure 4. Measured data at the latitude of 33.7° N, (a) temperature, (b) salinity, (c) density and (d) sound speed profiles.

Satellite remote sensing data were obtained on the CMEMS website, and we tracked
the position of the cyclonic eddy. The centre of the eddy moved westward by 18 min
on the day of finishing the sound propagation experiment. The process of movement
of the cyclonic was observed through sea surface height. The size, intensity and kinetic
energy of the eddy increased at the early youth of the eddy’s life cycle; these characteristics
remain stable in the later 3/5 of its adult period, and then rapidly decrease in the final old
age of eddy’s life. As shown in Figure 5, the research area was from 148.5◦ to 151◦ east
longitudes and from 33.5◦ to 34.5◦ north latitudes. The North Pacific cyclonic eddy moved
westward over time and merged into Kuroshio after about three weeks. In Figure 6, the
colour represents the satellite altimeters data and geostrophic velocity as the black arrow
shows. Getting the information of marine and according to the sea surface temperature to
determine the position of the eddy centre, we replan the acoustic propagation experiment,
particularly the location of explosions. The scale of the tracked eddy is about 50 km.
Combined with the distribution of hydrographic data, the eddy centre is predicted to be
at 149.25° E and 34° N. Figure 7 shows the topography of the experimental area in the
western North Pacific, the path of MVP300 (red dots) and the position of the vertical line
array (green circle) on 18 June 2019.
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Figure 5. Sea surface height of the life cycle of the eddy.

Figure 6. Sea surface temperature and geostrophic velocity of the eddy.

 147°E  148°E  149°E  150°E  151°E  152°E 
  33°N 

 20' 

 40' 

  34°N 

 20' 

 40' 

  35°N 

meters (underwater)
6500 6000 5500 5000 4500 4000

Figure 7. Topography of the western North Pacific. Colour shading indicates topographic relief from
etopo1 data.

3.2. Acoustical Data

Considering multiple sources and a fixed receiver array, the acoustic reciprocity
theorem was generalised. Moving explosions can be regarded as a receiver moving away
from the sound source. Unfortunately, the measurement error was much higher because
vertical spacing between the adjacent hydrophones is around 50 m. Only data whose
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standard deviation of receiver depth and hydrophones real depth are sufficiently small
are selected when compared with the simulation of sound pressure transmission loss.
Therefore, fewer receivers acoustic data are picked, calculated and analysed.

The whole depth of sound pressure transmission loss diagram is illustrated in Figure 8,
and the simulated acoustic source was located in depths of 200 m. The sediment parameter
is as follows: sound speed is 1650 m/s, density is 1.5 g cm−3, and the bottom attenuation
coefficient is 0.5 dB/λ. The average depth of the ocean is 6137 m, which is approximately
horizontal. Owing to the change of thermocline arising from cold-core eddy downwelling,
surface sound channel (ranging from 0 m to 400 m in depth) is formed. New sound path
markedly appears, as can be seen in Figure 8, marked as “new path”.

Figure 8. Sound transmission loss propagation through the eddy.

According to the eddy structure discussed in the previous section, we select the
position of placing the receiver hydrophones array and the place of dropping the explosions.
Through the prior simulation results of sound propagation, we know that the convergence
zone was expected to be the most affected on both the energy distribution and arrival
time structure. Ultimately, we dropped explosions within the scope of the first and second
convergence zones, removed the locations where the ocean current has a great impact on
the depth of the hydrophones, and calculated the propagation loss distribution using the
remaining locations. Compared with sound pressure transmission loss impact by oceanic
eddy, topography could be ignored. Figure 9 shows the comparison of the the numerical
results with experimental data when the sound source was located in the mixed layer
(200 m). The agreement of experiment and modelling can get a satisfactory result.

Figure 9. Transmission loss and experimental results in depths of 200 m (red asterisk), 100 m
explosions (a) and 200 m explosions (b), and the blue line is simulated sound pressure transmission
loss with a different range.

The curve of diagrams Figure 9 best illustrates the existence of a “new path”, which
can be seen in the splitting of convergent zone approximately at 70 and 140 km. It is a
pity that we have not been able to measure the sound propagation at the same location in
the absence of the eddy situation. Eventually, the comparison of the two simulations of
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travel times results is given in Figure 10, which respectively are travel through the eddy
and without the eddy.

Figure 10. Arrivals in blue travel through the eddy and in red is travel without the eddy. The arrow
points out sound exit angle from the source.

For receiver at the depth of 200 m and at the range of 150 km, arrivals structure
contain the number of echoes or arrivals. The direct path is missing under the circum-
stance of sound traversing the cyclonic eddy. An acoustic signal arrives earlier in range
independent horizontal sound speed stratification environment than that of in cold-core
eddy environment.

4. Discussion
4.1. Analysing the Influence of Mesoscale Eddy on the Sound Field

The analysis of effect of eddies on acoustic properties implied that the movement of the
sound field converging zone is caused by the vertical gradient of the sound speed. Setting
up the location of minimum sound speed profile as 1000 m, coefficient DC in Equatoin (3)
is −25 m/s and 25 m/s for cyclonic and anticyclonic eddy, respectively. Furthermore, the
semi-major axis of the Gaussian eddy model is 40 km, while the semi-minor axis is 400 m.
Figure 11 shows sound speed contours of the cold core eddy and the warm core eddy. The
bottom of the western North Pacific’s sound speed is 1650 m per second, and density is
1.5 g per cubic centimetre. The sediment parameters of deep water have little effect on
the sound intensity in the distance. We select the parameters based on historical data in
the Pacific. The parabolic equation method is applied to sound propagation problems to
discuss how sound waves traverse eddies. The harmonic point source is located 200 m
below the surface of the ocean. Subsequently, sound pressure redistribution is investigated.

A sound source produced waves of frequency 300 Hz and wavelength 5 m, and the
first convergence zone typically moved 2.5 km closer to the sound source compared to that
of the sound field excited in the background sound speed environment. The convergence
area of the sound field influenced by the anticyclonic eddy has moved 3.3 km away from
the sound source. In addition, the warm eddy has resulted in an obvious widening of the
convergence zone. The sound rays go deeper into the influence region of eddies, and sound
rays were no longer limited into the deep-ocean sound channel which could propagate for
a great distance. As the sound rays will deflect towards a negative gradient direction of the
SSP, due to the cold-core of the cyclonic eddy, more rays tend to deflect to the centre of the
eddy like the convex lens effect. The rays refract gradually and deflect upwards exceeding
the position where they should horizontally reverse. The width of the convergence zone
became narrower, and the location of it moved toward the sea surface. Eddy intensity
is characterised by the sound speed of eddy currents. Figure 12 shows the influence of
intensity of eddy on transmission loss of the enlarged picture of the position of the first
convergence zone. With a larger absolute intensity of the eddy, the convergence zone
position moves farther away from the source. When the eddy intensity increases from 20 to
25 m/s, the sound speed changes by 1 m/s per 10 km in a horizontal direction, the location
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of the cyclonic eddy convergence zone moves towards the point source by 0.25 km, and
the location of the anticyclonic eddy convergence zone moves away from the point source
by 0.85 km.

Figure 11. Sound speed distribution of cyclonic eddy (a) and anticyclonic eddy (b).

Figure 12. Transmission loss of convergence zone 25 m/s intensity of cyclonic eddy (a) and anticy-
clonic eddy (b) and 20 m/s intensity of cyclonic eddy (c) and anticyclonic eddy (d).

Figure 13 shows sound propagation through cyclonic eddy and anticyclonic eddy. To
analyse the affection of ocean eddy on sound transmission, typical acoustic propagation
paths are drawn by white curves. Among them, SRBR is surface reflected/bottom-reflected
rays, RSR is refracted/surface-reflected rays, and RR is refracted/refracted rays. SRBR rays
are closely linked to seafloor parameters and are valid for short ranges (<20 km). When the
ocean is deeper than the critical depth, the remainder of the depth causes the formation of
a convergence zone. Except for the SRBR rays, other types of rays are influenced by the
critical depth. In addition, comparing these two pictures, the change of RSR rays caused by
eddies is the greatest. At the location of the first converge zone, the depth of ray reversal
changes dramatically. Near the sound source, those acoustic rays have a small grazing
angle corresponding to the lower-order normal mode being excited. When it comes to
the position of rays convergence in Figure 13a, the sound should be reversed at a small
angle; however, reversal occurs at larger angles near the sea surface and vice versa. Instead
of using the ray method, analysing from the normal mode perspective can get a similar
conclusion. Figure 14 illustrates, on the one hand, the whole depth function (eigenfunction)
moving up at the centre of the cold eddy and, on the other hand, the whole depth function
(eigenfunction ) moving down at the centre of warm eddy. Indeed, the closer the receiver
position gets to the centre of the eddy, the more violently the eigenfunction moves. Above
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all, with the process of sound propagation, the position of the seabed reversal points moves
toward the source. Then, the rays reverse near the surface more quickly, which causes
the position of the convergent area to move toward the source. As a consequence, the
eigenfunction at the location of the convergence zone moves both upwards and forwards.
Equally, with each order eigenfunction influenced by warm-core eddy, firstly, the position
of seabed reverses downwards; secondly, surface reversals occur in a position further away;
thirdly, the convergence zone keeps away from the source and to the surface.

Figure 13. Transmission loss distribution of cyclonic eddy (a) and anticyclonic eddy (b).

Figure 14. The eigenfunctions vary with depth influenced by eddy; red line represents warm-core
eddy, and blue line represents cold-core eddy. (a) 40 km away from the center of eddy; (b) 0 km away
from the center of eddy.

4.2. Analysing the Acoustic Characteristics of Mesoscale Eddy Using Normal Mode Method

Based on the Equation (9) in the second section, the amplitude of each order normal
mode is calculated. The Figure 15 displays the normalised amplitude distribution of the
normal mode of various orders at different positions away from the sound source.
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Figure 15. Normalised amplitude distribution of normal mode at different distances from the sound
source, which are (a) 10 km, (b) 50 km, (c) 90 km and (d) 150 km away from the source.

The blue line illustrates the normal mode amplitude distribution under the influence
of cyclonic eddy, and the red dotted line shows the normal mode amplitude distribution
under the influence of anticyclonic eddy. Amplitude distribution of normal mode at
various distances is calculated. At different horizontal distances, after passing through the
cold eddy, that is, 100 to 200 km, the amplitude of the lower-order is generally increased.
On the contrary, after passing through the warm eddy, the amplitude distribution curve
of the normal mode will move towards higher-order as a whole. Affected by the eddy,
the amplitude distribution of the normal mode of each order varies greatly from 10 to
90 km away from the source. Under the influence of the cold eddy, when the receiver
position moves from the eddy edge to the position close to the eddy centre, more energy is
distributed in the higher-order, corresponding to more sound rays emitted from the source
at a larger grazing angle. Those rays have a shorter sound path, and a nearby convergence
zone occurs at a close distance. However, under the influence of the warm eddy, when
the receiver position moves from the edge of the eddy to the position close to the eddy
centre, more energy is distributed in the lower order, corresponding to more sound rays
emitted from a comparatively smaller grazing angle. These rays have longer sound paths,
and energy will converge at a greater distance.

Figure 16 shows the coupling matrix at 10, 50 and 90 km of the main orders of normal
mode. The left panel is the distribution of the coupling coefficient affected by the cyclonic
eddy, and the right panel is the distribution of the coupling coefficient affected by the
anticyclonic eddy. Because the eddy centre is located above the background sound channel
axis, sound speed continues to decrease at 500 m below sea level, causing the change of
the depth of the axis of the sound channel. For the cold-core eddy, the order of the normal
mode coupling is more than that of the warm-core eddy. In addition, the reasons for the
variation of the coupling strength of the normal mode at different distances from the eddy
center can be influenced by the variation rate of sound speed.

Measurement of sound speed of the eddy is used for taking everything into account.
From Figure 17 we can learn that, with the movement of the distance to the centre of the
eddy, normal mode theory is used for getting the amplitude of local modes at different
distances to the centre of the eddy. The same as the simulation of the cold eddy, the
measured eddy shows the same conclusion that the amplitude of higher-order normal
modes increases when the receiver position is to the centre of the eddy.
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Figure 16. Coupling coefficient affected by cold eddy: (a) 10 km, (b) 50 km and (c) 90 km away from the source and coupling
coefficient effected by warm eddy (d) 10 km, (e) 50 km and (f) 90 km away from the source.

Figure 17. Normalised amplitude distribution of normal mode affected by real eddy at different
positions from the sound source, which are (a) 10 km, (b) 50 km, (c) 90 km and (d) 150 km away from
the source.

5. Conclusions

Mesoscale eddy will lead to changes in the location of the convergence zone relative
to the acoustic source position. The convergence zone shifts toward the acoustic source
as the cyclonic eddy occurs on the acoustic propagation path, and the anticyclonic eddy
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causes the convergence zone to move away from the acoustic source and increases the
width of the convergence zone. Each order eigenfunction moves up influenced by cold-core
eddy (moves down influenced by warm-core eddy); the seabed reversal points move
toward (away from) the source, and then, the rays reverse near the surface moves toward
(away from) the source. The eddy causes the amplitude of normal modes to be different at
different positions away from the source. For the cyclonic eddy, the amplitude of higher-
order normal modes increases when the receiver is close to the centre of the eddy; on the
contrary, the amplitude of lower-order normal modes increases when the receiver is close
to the centre of the anticyclonic eddy. We researched both source and receiver near the sea
surface sound propagation problem with the effect of eddies. It brought with it a clarity of
purpose, an easy understanding of human submersible vehicles and large marine creatures.
They are known to produce low-frequency sounds that can propagate over long distances
and receive echoes, detect underwater objects and locate food. Eddies could interfere with
them in their prediction of distance and range.
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