
Journal of

Marine Science 
and Engineering

Article

Observer-Based Autopilot Heading Finite-Time Control Design
for Intelligent Ship with Prescribed Performance

Liyan Zhu 1,† and Tieshan Li 1,2,*,†

����������
�������

Citation: Zhu, L.; Li, T. Observer-

Based Autopilot Heading Finite-Time

Control Design for Intelligent Ship

with Prescribed Performance. J. Mar.

Sci. Eng. 2021, 9, 828. https://

doi.org/10.3390/jmse9080828

Academic Editor: Carlos Guedes

Soares

Received: 21 May 2021

Accepted: 24 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Navigation College, Dalian Maritime University, Dalian 116026, China; livvyan@163.com
2 School of Automation Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China
* Correspondence: tieshanli@126.com; Tel.: +86-198-1894-1589
† These authors contributed equally to this work.

Abstract: Traffic engineering control is a major challenge in marine transportation. Cost efficiency
and high performance demand advanced technologies for the ship control systems. This paper
develops an autopilot heading control scheme based on a fuzzy state observer for an intelligent ship
on this subject to track the prescribed function while calling for performance limitation and order
execution time. A fuzzy logic system (FLS) is adopted to approximate the unknown uncertainties
caused by the changes in water depth, wind, wave, ship loading, and speed in navigation. State
observer is required to obtain unknown yaw rate. By adopting performance function and tracking
error transformation techniques, the heading tracking error can converge to prescribed performance
bounds. Taking settling time into account, the finite-time adaptive prescribed performance control
algorithm can save more resources effectively. Based on the Lyapunov stability theory, the observer-
based adaptive fuzzy control approach does not cause any unbounded signal, the system remains
stable. Meanwhile, the autopilot heading control system with an unknown yaw rate and constraint
state can benefit from the given design.

Keywords: adaptive fuzzy control; autopilot; finite-time control; prescribed performance; state observer

1. Introduction

As an important carrier or mode of transportation by sea, ships play an important
role in global trade. Proper ship maneuvering is vitally important to the safety of ships,
lives, and the environment. As is well known, human factors are one of main causes for
marine accidents. Thus, to enhance the safety of navigation, the automation control of
ship motion [1–7] has attracted more and more attention. The ship course is the most
common way to change and control the ship’s motion attitude, especially when sailing
in open waters. Therefore, research into course control has become an important branch
of ship motion control study. Unfortunately, ship course control suffers from unknown
parameters, functional uncertainties, and external disturbances. The mathematical model
of ship course is widely affected by many factors, such as ship type and size, loading
conditions, etc., which makes it difficult to accurately acquire prior knowledge of model. In
addition, ship motion is persistently influenced by exogenous disturbances, such as wind,
wave, and current. The noise and error existing in state measurement may also degrade
control performance. Even under some situations, it is impossible to obtain necessary state
information due to the breakdown of corresponding instruments. Thus, it is challenging to
design a practical ship course control scheme.

In practical industrial applications, it may be not easy to directly measure the states in a
timely manner, so many solutions are employed to solve the problem, such as input driven
filter and observer. Among them, the observer is one of the common and powerful methods
to deal with the above problems. Its broad applications generate a great deal of scientific
and practical research, linear observer [8], high gain observer [9], the linear dynamic

J. Mar. Sci. Eng. 2021, 9, 828. https://doi.org/10.3390/jmse9080828 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-2687-8615
https://doi.org/10.3390/jmse9080828
https://doi.org/10.3390/jmse9080828
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9080828
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9080828?type=check_update&version=2


J. Mar. Sci. Eng. 2021, 9, 828 2 of 16

compensator [10], the full state observer [11], the passive state observer [12], and so on.
Moreover, model uncertainties are also a pervasive problem in most engineering fields.
Based on universal approximation theorem [13], fuzzy logic system [4], or NN (Neural
Network) control [5] has been widely used to solve the control issues for nonlinear uncertain
systems, and some significant results have been published in [14–18]. In reference [14], for
an input–output linearization applied in nonlinear vessel steering system, the system was
divided into a system with linear dynamics and a system with internal dynamics.

Especially when navigating in narrow channel with limited available depth, ship
course control has high requirements for rapid response, which makes it of high practical
value to achieve the expected value in a limited time, and a special type of prescribed
performance is required, and the estimation error converges to a bounded set to ensure
navigational safety. The convergence rate is an important performance index in the ship
course control field. So far, most existing control schemes for ship course control guarantee
asymptotic stability, which means that the coordination can only be achieved as time tends
to infinity. Designing a control law that guarantees tracking performance with faster con-
vergence is still an open issue. The basic idea of finite-time control is to achieve the fastest
convergence speed of a closed-loop system in exponential form and ensure the stability of
the control system at the same time [19–21]. By using finite-time stability criterion, finite-
time stabilization control issue has been studied for rigid spacecraft in [22], and adaptive
finite-time stabilization scheme has been developed for a strict feedback nonlinear system
in [23]. State constraints are also an important issue that should be considered in ship
course control. Many methods have been designed to handle the state constraint problem,
for example, in [24], the problem of the tracking control with a prescribed performance
bound for the marine surface vessels was solved. In [6], the constrained tracking control
of the marine surface vessel was transformed into the stabilization of an unconstrained
system. The authors of [19–21] investigated the adaptive fuzzy or NN finite-time control
issues for nonlinear systems. To the authors’ knowledge, the problem of observer-based
autopilot course tracking control for the intelligent ship with state constraint has not been
studied in the existing literature, which is an interesting issue to be solved.

This paper focuses on the problem of observer-based adaptive fuzzy autopilot course
performance constraint finite-time control. A state observer is constructed to estimate
the unknown yaw rate state, and error transformation techniques are used to obtain the
unconstrained state. The finite-time Lyapunov function is the basic theory of controller
design and stability analysis. Compared with the existing works, the major contributions
of this paper can be summarized as follows.

(1) This paper developed an observer-based adaptive fuzzy autopilot course finite-
time control scheme for ship control systems. A fuzzy state observer is designed to lessen
the needed information and design the controller of ship autopilot.

(2) Based on the performance function and tracking error transformation techniques,
an autopilot course tracking error constraint control scheme is developed, which can ensure
the course tracking error converges to a prescribed performance bound in finite-time.

The rest of this paper is organized as follows. Section 2 provides problem formulation.
Section 3 presents the main results. Section 4 contains one group of simulations. The
conclusion is given in Section 5.

2. Problem Formulation
2.1. Description of Autopilot Heading Control

In this paper, a ship heading control model is considered. Although it is a simple
second-order response model, it includes all facts of ship autopilot system. Thus, it does
matter to research such a typical model. According to literature [25], the following model
can be given

φ̈ +
1
T

H(φ̇) =
K
T

δ (1)
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where δ is rudder angle, φ is ship heading angle, and δ and φ stand for control input
order and output information of ship autopilot, respectively. K denotes rudder gain, and T
represents time constant, which can be obtained from experiment data. H(φ̇) represents
the internal unknown dynamic of system.

For the sake of facilitating above description in the state space form, we define x1 = φ,
x2 = φ̇, f (x2) = (−1/T)H(x2) and u = Kδ/T; then, model (1) can be rewritten as

ẋ1 = x2

ẋ2 = f (x2) + u

y = x1

(2)

where x2 is assumed to be unmeasurable. Obviously, f (x2) is also an unknown smooth
nonlinear function, which satisfies the Lipschitz condition, there is a known constant l such
that | f (x2)− f (x̂2)| ≤ l|x2 − x̂2|, where x̂2 is the estimation of x2.

Assumption 1. For any t ≥ 0, the reference ship heading signal yr and its time derivatives ẏr and
ÿr satisfy |yr| ≤ Y0 ≤ Kc1, |ẏr| ≤ Y1, |ÿr| ≤ Y2, where Y0, Y1, and Y2 are the positive constants.

The control objective of this paper will be to design an observer-based adaptive fuzzy
autopilot heading finite-time controller, such that the ship heading y(t) can track the given
reference signal function yr(t) in finite-time, and the heading tracking error can converge
to a prescribed performance bound.

2.2. Prescribed Performance

Definition 1. The prescribed performance can be described by the following inequality [26,27]:

−δminµ(t) < s(t) < δmaxµ(t), ∀t > 0 (3)

where µ(t) = (µ0 − µ∞)e−at + µ∞ , δmin, δmax, a, µ∞ are positive design parameters, µ0 = µ(0).
Consider the limited min and max µ0 is selected such that µ0 > µ∞, −δminµ(0) < s(0) <
δmaxµ(0). It follows from (3) that s(t) is guaranteed to be less than max{δminµ(0), δmaxµ(0)},
and the performance bounds of the error s(t) can be determined by appropriately choosing the
performance function µ(t) and the parameters δmin,δmax.

Remark 1. s(t) is the performance state to be prescribed, inequality (4) prevents the prescribed
error state from reaching the bounds µ(t). Note that the constrained error state can be either
autopilot physical constraint or ship safety performance requirement.

2.3. Fuzzy Logic Systems

Lemma 1 ([13]). Let f (x) be a continuous function defined over a compact set Ω . Then for any
constant ε > 0, there exists a FLS θ∗T ϕ(x) such that

sup
x∈Ω

∣∣∣ f (x)− θ∗T ϕ(x)
∣∣∣ ≤ ε (4)

where θ∗ =
[
θ∗1 , θ∗2 , · · · , θ∗N

]T is the ideal weight vector. This paper assumes that θ∗ is unknown

and bounded, satisfies ‖θ∗‖ ≤ θ̄ with a positive constant θ̄, ε is the fuzzy minimum approximation
error, and there exists a positive constant ε̄ that satisfies |ε| ≤ ε̄. N > 1 is the fuzzy rules number,
ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕN(x)]T

/
∑N

i=1 ϕi(x) is fuzzy basic function vector with the property

0 < ϕT(x)ϕ(x) ≤ 1, ϕi(x) is selected as Gaussian function such that
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ϕi(x) = exp
[−(x− µi)

T(x− µi)

η2
i

]
where µi and ηi are the centers vector and width of Gaussian function, respectively.

2.4. Finite-Time Stability

To address the issue of finite-time control, the following Definition and Lemma will
be given.

Definition 2 ([19,20]). The equilibrium point ξ = 0 of nonlinear system ξ̇ = f (ξ) is semi-global
practical finite-time stability (SGPFS), if for all initial values ξ(t0) = ξ0, there exists a constant
ε > 0 and a setting time T(ε, ξ0) < ∞ to make ‖ξ(t)‖ < ε, for all t ≥ t0 + T.

Lemma 2 ([21]). There exists a positive definite function V(ξ), with constants C > 0, 0 < β < 1,
and Ξ > 0, the nonlinear system ξ̇ = f (ξ) satisfies

V̇(ξ) ≤ −CVβ(ξ) + Ξ, t ≥ 0 (5)

Then the nonlinear system ξ̇ = f (ξ) is SGPFS.

3. Autopilot Control Design and Stability Analysis

As shown in Figure 1, based on the Lyapunov function, observer-based finite-time
autopilot heading control strategy and stability analysis are given in this section to ensure
that the error constraint is not violated.

Figure 1. The flowchart of the sequence of steps of the proposed method.

3.1. Adaptive Fuzzy State Observer Design

In practice, the yaw rate signal in the intelligent ship may not be available in many
cases, and the state observer must be introduced to estimate the yaw rate information. In
this section, the only available signal of plant (2) is y = x1, and the state observer serves to
estimate the unknown yaw rate.

The adaptive fuzzy state observer is designed as
˙̂x1 = x̂2 + m1(y− x̂1)

˙̂x2 = u + θ̂T ϕ(x̂2) + m2(y− x̂1)

ŷ = x̂1

(6)

where m1 > 0 and m2 > 0 are observer gains, x̂1 is the estimation of x1, x̂2 is the estimation
of x2, and θ̂ is the estimation of θ∗.

Remark 2. An adaptive fuzzy state observer is designed to deal with the problem of unmeasured
states. Autopilot heading tracking control problems have been widely studied in [10,11]. However,
in practical environments, due to the influence of water depth, wind, and waves, the ship’s heading
and yaw rate of autopilot are not be measured directly, which inspired us to study the observer-based
output feedback autopilot heading tracking control problems.
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Rewritten (6) as { ˙̂x = Ax̂ + My + Bθ̂T ϕ(x̂2) + Bu

ŷ = CT x̂
(7)

where ˙̂x =
[ ˙̂x1, ˙̂x2

]T , A =

[
−m1 1
−m2 0

]
, M = [m1, m2]

T , C = [1, 0]T , B = [0, 1]T .

We choose a vector M to make A be strict Hurwitz. Thus, given a matrix Q = QT > 0,
there exists a matrix P = PT > 0 such that

AT P + PA = −Q (8)

Now, by adding and subtracting f (x̂2) on the right side of the second subsystem in
(2) and using (4), system (2) can be transformed as

ẋ1 = x2

ẋ2 = f (x̂2) + ∆ f + u

y = x1

(9)

where ∆ f = f (x2)− f (x̂2).
Since f (x̂2) is an unknown function, from Lemma 1, f (x̂2) in (9) can be approximated

by the FLS f̂ (x̂2|θ̂) = θ̂T ϕ(x̂2) and assume that

f (x̂2) = θ∗T ϕ(x̂2) + ε(x̂2) (10)

where ε(x̂2) is the approximate error.
Define the observe errors vector as e = [e1, e2]

T = x− x̂. According to (4), (7), and (9),
the dynamics of the observe errors can be obtained

ė = Ae + ε + ∆F + Bθ̃T ϕ(x̂2) (11)

where ε = [0, ε]T , ∆F = [0, ∆ f ]T , θ̃ = θ∗ − θ̂ is the estimation error.
Choose the Lyapunov function candidate V0 = eT Pe, the time derivative of V0 is

V̇0 = −eTQe + 2eT P[ε + ∆F + Bθ̃T ϕ(x̂2)] (12)

Applying Young’s inequality yields

2eT Pε ≤ ‖e‖2 + ‖P‖2 ε̄2 (13)

2eT P∆F ≤ ‖e‖2 + ‖P‖2l2‖e‖2 (14)

2eT PBθ̃T ϕ(x̂2) ≤ ‖e‖2 + ‖P‖2θ̃T θ̃ (15)

Substituting (13)–(15) into (12) results in

V̇0 ≤ −λ0‖e‖2 + ‖P‖2θ̃T θ̃ + D0 (16)

where λ0 = λmin(Q)− 3− ‖P‖2l2, D0 = ‖P‖2 ε̄2.

3.2. Design and Stability Analysis of Autopilot Heading Tracking Control

When designing a high-performance controller, the improvement of transient response
is a crucial object that must be addressed. Taking settling time into account, define finite-
time virtual control α and rudder angle u to control heading angle y, that is to say, the
task is to have a fast convergence rate with unknown yaw rate and constraint error z1 in a
settling time. Firstly, transfer the coordinate as
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
s = y− yr

z2 = x̂2 − r

χ = r− α1

(17)

where z2 is the virtual error surface, r is a state variable, α1 is the intermediate control
function, and χ is the error between r and α1. To achieve the performance constraint
problem, one can transform the constrained tracking error behavior into an equivalent
unconstrained state. Consider the following equation

s(t) = µ(t)H(ς(t)), ∀t > 0 (18)

where ς is the transformed error and H(ς) = (ωmaxeς −ωmine−ς)/(eς + e−ς) is a smooth,
strictly increasing function; then, one can obtain ∂H/∂ς = 2(ωmax +ωmin)/(eς + e−ς)2 > 0,
from the definition of H(ς(t)) and (18), and one can get

ς(t) = H−1
(

s(t)
µ(t)

)
= 1

2 ln H+ωmin
ωmax−H (19)

ς̇(t) = 1
2

[
ln H+ωmin

ωmax−H

]′
= 1

2

[
1

H+ωmin
− 1

ωmax−H

]
Ḣ

= 1
2

[
1

H+ωmin
− 1

H−ωmax

](
ṡµ−sµ̇

µ2

)
= h

(
ṡ− sµ̇

µ

)
(20)

where h = 1
2µ

[
1

H+ωmin
− 1

H−ωmax

]
, defining the following state transformation as

z1(t) = ς(t)− 1
2 ln ωmin

ωmax
(21)

Then, one can get
ż1(t) = h

(
ṡ(t)− s(t)µ̇

µ

)
(22)

Inspired by [24], one can obtain that if z1(t) is bounded, then the prescribed perfor-
mance as shown in (17) of s(t) is satisfied. The backstepping controller of ship autopilot is
defined as follows.

Step 1: According to (6), (17) and x2 = x̂2 + e2, the time derivative of z1 is

ż1 = h
(

x2 − ẏr − sµ̇
µ

)
= h

(
z2 + χ + α1 + e2 − ẏr − sµ̇

µ

) (23)

The candidate Lyapunov function V1 is chosen as

V1 = V0 +
1
2 z2

1 (24)

It follows from (9), (16), (17), (23), and (24), that the time derivative of V1 satisfies

V̇1 ≤ −λ0‖e‖2 + ‖P‖2θ̃T θ̃ + D0

+ z1h
(

z2 + χ + α1 + e2 − ẏr − sµ̇
µ

) (25)

Applying Young’s inequality yields
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z1hz2 + z1hχ + z1he2

≤ 3
2 z2

1h2 + 1
2 z2

2 +
1
2 χ2 + 1

2‖e‖
2

(26)

Substituting (26) into (25) yields

V̇1 ≤ −λ1‖e‖2 + ‖P‖2θ̃T θ̃ + D0

+ z1h( 3
2 z1h + α1 − ẏr − sµ̇

µ ) + 1
2 z2

2 +
1
2 χ2

(27)

where λ1 = λ0 − 1
2 .

The intermediate control function α1 is

α1 = − c1
h z2β−1

1 − 3
2 z1h + ẏr +

sµ̇
µ (28)

where c1 > 0 is a design parameter.
Substituting (28) into (27) yields

V̇1 ≤ −λ1‖e‖2 + ‖P‖2θ̃T θ̃

− c1z2β
1 + 1

2 z2
2 +

1
2 χ2 + D0

(29)

Define the following first-order filter to avoid repeatedly differentiating α1:{
τṙ + r = α1

r(0) = α1(0)
(30)

where τ > 0 is a design parameter.
It follows from (17) that {

ṙ = − χ
τ

χ̇ = ṙ− α̇1 = − χ
τ + Y(·)

(31)

where Y(·) is a continuous nonlinear function.
Step 2: From (6) and (17), one has

ż2 = ˙̂x2 − ṙ

= m2e1 + θ̂T ϕ(x̂2) + u− ṙ
(32)

Consider the Lyapunov function V as

V2 = V1 +
1
2 z2

2 +
1
2 χ2 + 1

2γ θ̃T θ̃ (33)

where γ > 0 is a design parameter.
Along with the solution of (17), (23), (29), (32), and (33), the derivative of V can be

expressed as
V̇2 = V̇1 + z2ż2 + χχ̇ + 1

γ θ̃T ˙̃θ

= V̇1 + z2[m2e1 + θ̂T ϕ(x̂2) + θ̃T ϕ(x̂2)

− θ̃T ϕ(x̂2) +u−ṙ] +χ[− χ
τ +Y(·)]+ 1

γ θ̃T ˙̃θ

≤ −λ1‖e‖2 + ‖P‖2θ̃T θ̃ − c1z2β
1 + 1

2 z2
2 +

1
2 χ2

+ z2[m2e1+θ̂T ϕ(x̂2)+θ̃T ϕ(x̂2)−θ̃T ϕ(x̂2)

+ u− ṙ] + χ[− χ
τ + Y(·)]+ 1

γ θ̃T ˙̃θ + D0

(34)
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Applying Young’s inequality again yields

−z2θ̃T ϕ(x̂2) ≤ 1
4 z2

2 + θ̃T θ̃ (35)

and substituting (35) into (34) yields

V̇2 ≤ −λ1‖e‖2 + ‖P‖2θ̃T θ̃ − c1z2β
1 + 1

2 z2
2

+ 1
2 χ2 + θ̃T θ̃ + z2[m2e1 +

1
4 z2

+ θ̂T ϕ(x̂2) + θ̃T ϕ(x̂2) + u− ṙ]

+ χ[− χ
τ + Y(·)]+ 1

γ θ̃T ˙̃θ + D0

(36)

The the actual controller u and the parameter adaptive law of θ̂ is

u = −m2e1 − c2z2β−1
2 − 3

4 z2 − θ̂T ϕ(x̂2) + ṙ (37)

˙̂θ = γz2 ϕ(x̂2)− σθ̂ (38)

where c2 > 0 and σ > 0 are design parameters.

4. Stability Analysis

The property of the developed observer-based autopilot heading finite-time control
scheme via performance constraint can be summarized as following theorem. Therefore,
the graph of the above control scheme is shown in Figure 2.

Theorem 1. Consider the autopilot heading control system (1), under Definitions 1 and 2, As-
sumption 1, and Lemmas 1 and 2, and based on the designed state observer (6), control rudder
(37), and parameter adaptive law (38), one can ensure that all signals in the closed-loop system are
bounded and that the error constraint is not violated.

Proof. Choose the whole Lyapunov function as

V = eT Pe + 1
2 z2

1 +
1
2 z2

2 +
1
2 χ2 + 1

2γ θ̃T θ̃

From (16), (33), and (34), by substituting (37) and (38) into (36), the time derivative of V is

V̇ ≤ −λ1‖e‖2 + ‖P‖2θ̃T θ̃ − c1z2β
1 − c2z2β

2

+ 1
2 χ2 − χ2

τ + χY(·) + θ̃T θ̃ − σ
γ θ̃T θ̂ + D0

(39)

Using Young’s inequality, one has

χY(·) ≤ χ2Ȳ2(·)
2π + 2π (40)

− σ
γ θ̃T θ̂ = − σ

γ θ̃T(θ∗ − θ̃) ≤ − σ
2γ θ̃T θ̃ + σ

2γ θ̄2 (41)

where |Y(·)| ≤ Ȳ with positive constant Ȳ.
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Figure 2. The graph of the above control scheme.

Substituting (40) and (41) into (39) yields

V̇ ≤ −λ1‖e‖2 +‖P‖2θ̃T θ̃ −c1z2β
1 −c2z2β

2 +θ̃T θ̃

−
(

1
τ−

1
2−

Ȳ2(·)
2π

)
χ2− σθ̃T

2γ θ̃ + σ
2γ θ̄2 +D0

=−λ1‖e‖2 −c1z2β
1 −c2z2β

2 −
(

1
τ−

1
2−

Ȳ2(·)
2π

)
χ2

+ (1− σ
2γ + ‖P‖2)θ̃T θ̃ + D

(42)

where π > 0, D = D0 +
σ

2γ θ̄2 + 2π.

Assume that A(t) = 2eT Pe + z2β
1 + z2β

2 + σ
2γ θ∗Tθ∗ + χ2, and for a given d > 0, all

initial conditions satisfy A(t) < d. According to Assumption 1, for any W0 and d, the sets
Π0 := {(yr, ẏr, ÿr) : y2

r + ẏ2
r + ÿ2

r ≤ W0} and Π := {A(t) ≤ d} are compacts in R3 and R,
respectively, and thus, set Π0 ×Π is also compact in R4 . Then, (42) can be rewritten as

V̇ ≤ −λ1‖e‖2 − c1z2β
1 − c2z2β

2 + D

−
(

1
τ −

1
2 −

Ȳ2

2π

)
χ2+(1− σ

2γ+‖P‖
2)θ̃T θ̃

(43)

Define c̄ = min{c1, c2, σ− 2γ(‖P‖2 + 1), 1/τ − 1/2− Ȳ2/2π}, one has

V̇ ≤ −λ‖e‖2 −
(

1
τ−

1
2−

Ȳ2

2π

)
χ2 − 2β c̄( 1

2 z2
1)

β

− λ2
λmin(P) (λmin(P)‖e‖2)β − 2β c̄( 1

2 z2
2)

β

+ λ
λmin(P) (λmin(P)‖e‖2)β − ( c̄

2γ θ̃T θ̃)β

+ ( c̄
2γ θ̃T θ̃)β − c̄

2γ θ̃T θ̃ + D

(44)
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According to [27], the following expression holds

|m|c|n|d ≤ c
c+d ν(m, n)|m|c+d

+ d
c+d (ν(m, n))−

c
d |n|c+d

(45)

where c > 0 and d > 0 are constant, ν(m, n) is a real-valued function, which yields

(
c̄

2γ
θ̃T θ̃)β ≤ (1− β)ν(m, n) +

c̄
2γ

θ̃T θ̃ (46)

(λmin(P)‖e‖2)β ≤ (1− β)ν(m, n) + λmin(P)‖e‖2 (47)

By substituting (33), (46), and (47) into (44), using inequality (
n
∑

i=1
|χi|)p ≤

n
∑

i=1
|χi|p ≤

n1−p(
n
∑

i=1
|χi|)p from [28], one has

V̇ ≤− CVβ + Ξ (48)

where C = min{λ
/

λmax(P), 2β c̄} and Ξ = (1 + λ
λmin(P) )(1− β)ν(m, n) + D.

From Lemma 3 and the proof in [27,29], for any constant 0 < η ≤ 1, one has

Treach =
1

(1− β)ηC
{V1−β(X(0))− (

Ξ
(1− η)C

)(1−β)/β} (49)

where initial values X(0) = [e(0), z(0), θ̃(0)]T , e(0) = [e1(0), e2(0)]T , z(0) = [z1(0), z2(0)]T

and θ̃(0). From the definition of V(X) (X = [e, z, θ̃F]), when ∀t ≥ Treach, one has ‖e‖ ≤√
[ Ξ
(1−η)C ]

1/β
, |z1| ≤

√
2[ Ξ

(1−η)
]
1/β

, |z2| ≤
√

2[ Ξ
(1−η)C ]

1/β
and

∣∣θ̃∣∣ ≤ √2γ[ Ξ
(1−η)

]
1/β

, thus,

the controlled system is SGPFS.
From (48), it can be shown that x1, x̂1, x2, x̂2, e, z1, z2 and θ̃ are bounded. From (3), one

can obtain that |s(t)| ≤ max{δminµ0, δmaxµ0}, where δmin and δmax are design parameters.
Moreover, according to [28], one can make the observer, tracking and estimation errors to
be small by suitable design parameters m1, m2, c1, c2, σ, τ, π and γ. Therefore, the design
parameters should be selected properly for achieving the desired transient performance
and control objective. This completes the proof of Theorem 1.

5. Simulation Study

In this section, simulation results are given to explain the feasibility of the developed
control algorithm and theory.

The ship autopilot parameters can be selected in [25] with the ship particulars as fol-
lows: forward speed 7.72 m/s, block coefficient 0.681, draft 8 m, breath molded B = 20.8 m,
length between perpendiculars Lpp = 126 m. From the above ship particulars, choose the
autopilot model parameters as T = 216, K = 0.478, a1 = 20, a2 = 30.

The desired heading signal is given by a representative practical mode as

φ̈m(t) + 0.1φ̇m(t) + 0.0025φm(t) = 0.0025φr(t) (50)

where φr is an order heading signal, φm is the desired autopilot performance for ship
heading φ(t) during the ship heading control:

In this simulation, the five fuzzy sets: Fl (l = 1, 2, · · · , 5) are selected over the intervals
[−0.4, 0.4]. The following fuzzy IF-THEN rules are chosen as

R1
2 : IF x̂1 is F1

2,1 and x̂2 is F1
2,2, THEN y is W1

2,;

R2
2 : IF x̂1 is F2

2,1 and x̂2 is F2
2,2, THEN y is W2

2,;
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R3
2 : IF x̂1 is F3

2,1 and x̂2 is F3
2,2, THEN y is W3

2,;

R4
2 : IF x̂1 is F4

2,1 and x̂2 is F4
2,2, THEN y is W4

2,;

R5
2 : IF x̂1 is F5

2,1 and x̂2 is F5
2,2, THEN y is W5

2,;

Select the fuzzy sets as follows: F1
2,1 = (NL), F1

2,2 = (NL), F2
2,1 = (NS), F2

2,2 = (NS),
F3

2,1 = (ZE), F3
2,2 = (ZE), F4

2,1 = (PS), F4
2,2 = (PS), F5

2,1 = (PL), F5
2,2 = (PL). NL is

negative large, NS is negative small, ZE is zero, PS is positive small, and PL is the positive
large. Choose the membership functions (displayed by Figure 3) as

µF1(x̂2) = e(x̂2−0.4)2/16, µF2(x̂2) = e(x̂2−0.2)2/16,

µF3(x̂2) = e(x̂2)
2/16, µF4(x̂2) = e(x̂2+0.2)2/16,

µF5(x̂2) = e(x̂2+0.4)2/16

−2 −1 0 1 2
0

0.5

1

1.5

 

 
Positive large
Positive small
Zero
Negative small
Negative large

Figure 3. The membership functions.

In simulation, the design parameters in controller and adaptive law are selected as
c1 = 0.5, c2 = 0.3, γ = 0.01, σ = 0.0001, τ = 0.9.

The initial conditions of variables and parameters are selected as: x1(0) = 20π/180,
x2(0) = −0.1, [x̂1(0), x̂2(0)]T = [0, 0]T , r(0) = 0, yr(0) = 0.

The performance function can be selected as

µ(t) = µ0 − µ∞e−at + µ∞

where µ0 = 2π, µ∞ = π/30, a = 0.05.
Choose the observer gains as m1 = 12 and m2 = 5, positive definite matrix Q =

16I, thus, by solving the Lyapunov Equation (9), we have positive definite matrix P as

P =

[
0.8000 1.6000
1.6000 23.2000

]
.

The simulation results are displayed by Figures 4–10, where Figure 4 compares tra-
jectories of ship’s heading and its desired heading angle; Figure 5 shows the comparing
tracking error curve with PID method; Figures 6 and 7 show the ship’s heading, yaw rate
and their estimations, respectively; Figure 8 shows the comparing rudder angle curve with
PID method; and Figure 9 show the curves of FLS θ̂T ϕ(x̂2) and function f (x2).
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Figure 4. Curves of ship’s heading and its desired heading angle.
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Figure 6. Curves of ship’s heading and its estimation.
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Figure 10. Tacking errors of finite-time and non-finite-time controll methods.

It can be see from Figure 10 that the developed autopilot heading tracking control can
guarantee the tracking error converges to a prescribed performance bound, and finite-time
control has a better performance. As shown in Figures 6 and 7, the designed fuzzy state
observer solves the problem of unmeasured states. Thus, the effectiveness of the developed
control method can be verified.

Remark 3. Since the finite-time controller contains the term of exponential power, thus, finite-time
control has high precision performance and fast transient performances. To explain the effectiveness of
the developed control scheme, we make the following comparison. Note that the control performance
of the developed finite-time control are mainly influenced by the parameter β; we choose the same
design parameters, initial values, and fuzzy membership functions except β, if β = 1, which belong
to non-finite-time control. The comparison result is displayed by Figure 10.

6. Conclusions

In this paper, we have investigated the observer-based autopilot heading adaptive
fuzzy control problem for intelligent ship with prescribed performance. A fuzzy state
observer was first established to obtain the unknown yaw rate. By combining backstepping
recursive design with the DSC technique, the stability of the intelligent ship autopilot
system has been given utilizing the finite-time Lyapunov stability theory. The developed
control algorithm has not only solved the adaptive fuzzy autopilot heading tracking control
but also guarantees the tracking error converges to a prescribed performance bound in
finite-time. The future research direction will focus on observer-based robust adaptive
fuzzy autopilot heading fault-tolerant control for intelligent ship autopilot system with
full-state constraint, parameter, or input uncertainties.

Although some progress has been achieved, there are still some other challenges in the
field, for instance, robust position control [30], station-keeping control [31], robust control [32],
neuro-fuzzy system [29], a simplified computer dynamics model [33], fuzzy sliding mode
control [34], etc., which will be our future research direction.
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