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Abstract: In the intelligent perception of the marine engine room, visual identification of auxiliary
equipment is the prerequisite for defect recognition and anomaly detection. To improve the detection
accuracy, this study presents an auxiliary equipment detector in the cabin based on a deep learning
model. Owing to the compact layout of pipeline networks and the large disparity in the equipment
scales, we initially adopted RetinaNet as the basic framework, and introduced the single channel
plain architecture RepVGG as the feature extraction network to simplify the complexity and improve
realtime detection. Secondly, the Neighbor Erasing and Transferring Mechanism (NETM) was applied
in the feature pyramid to deal with more complicated scale variations. Then, the complete IoU (CIoU)
regression loss function was used instead of smooth L1, and the DIoU Soft-NMS mechanism was
proposed to alleviate the misdetection in congested cabins. Further, comparison experiments and
ablation experiments were performed on the auxiliary equipment in a marine engine room (AEMER)
dataset to validate the efficacy of these strategies on the model performance boost. Specifically, our
model can correctly detect 93.44% of coolers, 100.00% of diesel engines, 60.26% of meters, 95.30% of
pumps, 55.01% of reservoirs, 97.68% of oil separators, and 74.37% of valves in a practical cabin.

Keywords: AEMER; CIoU loss; DIoU Soft-NMS; NETM; RepVGG; RetinaNet

1. Introduction

The intelligent monitoring and alarm system in a marine engine room can perform
realtime monitoring of the various running statuses of the power system to guarantee
the safety of the ship’s operation. Whenever a failure happens, the system will send
various signals such as sound-light to alarm and simultaneously backup the relevant data
of the operating and system status, so that the engineers can find the cause of the failure
and repair it promptly. Even if there is no one on duty, the engineer can respond to the
signals by the extended alarm system when the intelligent monitoring in cabin transmits
them to all corners of the ship. However, these alarm systems seem to lose focus on the
defect recognition and anomaly detection of the appearance of the equipment because
the sensors cannot obtain the information above. For example, some screws may be loose
or the pipelines could leak when there is no engineer watching in the engine room, the
consequences could be deadly.

If the liquid level of the bilge well is abnormally high, the bilge would overflow due
to an unsupervised alarm; seawater pipelines could corrode and penetrate; the pipelines
connected with submarine gates or other discharge overboard valves could break up; the
bulkheads of a measuring tube could be missing. If any of the faults is not troubleshot
immediately, it will cause electrical equipment to trip and will endanger the safety of the
ship. If visual sensors are applied to identify the appearance information of the equipment
in the engine room automatically, and the monitoring information is integrated into the
centralized monitoring and alarm system, this can predict some faults or defects early to
help engineers deal with the hidden dangers and minimize the odds of failure in advance.
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However, the current visual perception technologies for ship’s intelligent engine room
are lesser-known. With the exploitation of computer vision, our main intention of this
paper is to propose a detection model for auxiliary equipment in a marine engine room,
which will replace the engineer’s eyes and recognize the equipment autonomously when
unattended. At the same time, it might provide a potential guide for subsequent visual
inspection to find the appearance defects in the cabin equipment. Despite the emergence
of convolutional neural networks that have greatly achieved considerable progress both
in detection robustness and accuracy, tasks of auxiliary equipment detection in practical
cabin still face difficulties and challenges for depth frameworks, which can be summarized
as the following:

• There are unavailable datasets for the marine engine room. The number of valves and
meters accounts for a large proportion of equipment in an engine room, while other
equipment accounts for only a small proportion;

• The auxiliary equipment is multiscale in size ranging from tiny valves to giant
diesel engines;

• The engine room is congested and formless, the pipelines with corresponding equip-
ment are densely distributed in cabin, which means there is a large amount of occlusion
or obscuring equipment.

Considering the challenges mentioned above, this study proposes a realtime detection
model for auxiliary equipment in a marine engine room. To recapitulate briefly, the
contributions of this paper can be shown below:

• In consideration of the currently unavailable public datasets, we filtered the original
image resources and expanded the samples of the equipment in small proportion rely-
ing on our 3D virtual engine room team. Moreover, we built the auxiliary equipment
in a marine engine room (AEMER) dataset, whose equipment classes included diesel
engine, oil separator, cooler, reservoir, pump, valve, and meter;

• To facilitate the deployment of the detector in the cabin monitoring and alarm, we
replaced the backbone in RetinaNet with RepVGG, which combined the plain archi-
tecture of VGG and the residual branch of ResNet. Furthermore, to ameliorate the
situation of small-scale equipment misdetection in the cabin, we adopted the Neighbor
Erasing and Transferring Mechanism (NETM) with FPN to filter out the redundant
features of large-scale objects in the shallow feature pyramid layers and transfer them
to the deeper layers;

• Because of the characteristics of the cabin layout, we applied the DIoU Soft-NMS
to undermine the destructive impact on undetected errors, which can ensure the
precision and recall in cabin. At the same time, we replaced the regression loss of
smooth L1 with CIou loss, which not only ensures prediction boxes fit the targets better
but also accelerates the speed of convergence and regression accuracy of training.

The remainder of our paper is organized as follows. Section 2 discusses the related
works on computer vision. Section 3 introduces the proposed novel auxiliary equipment
detection model in a marine engine room based on RetinaNet. Section 4 analyzes the
ablation study and comparison experiments based on the AEMER dataset. Finally, we
summarize the full text and identify the future work in Section 5.

2. Related Work

Visual identification is a prerequisite for the inspection task in a marine engine room.
Whether the information can be detected comprehensively and accurately will greatly affect
the reliability of subsequent equipment prediction and evaluation. With the development
of deep learning, the convolutional neural network made major breakthroughs in accuracy
and speed compared with traditional object detection methods [1–3]. In general, there are
two main schools among the detection models: the two-stage algorithm represented by
the R-CNN [4–6] and the one-stage algorithm represented by YOLO [7–9] and SSD [10].
Specifically, the two-stage algorithm firstly generates candidate regions on the image, then
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classifies and regresses them individually. Conversely, the one-stage algorithm directly
locates and classifies all targets on the entire image, which bypasses the step of gener-
ating candidate regions. Both the two-stage and one-stage have their own advantages,
generally speaking, the former is more accurate and the latter is faster. For the current
object detection task, no matter which genre of algorithm is adopted, one must face the
challenge of multiscale, that is, the size of the target to be detected differs greatly from the
proportion of the entire images and between different images, even within the same image.
In Figure 1a–c, we can see the scale of the diesel engine, pump, and valve are from large
to small while Figure 1d contains multiscale targets. The challenges caused by the scale
variations severely limit the overall performance of the existing detectors. Therefore, how
to better achieve multiscale object detection has always been a central issue in scholarship.
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Figure 1. Examples of the multiscale objects in a marine engine room. In (a), the engine occupies
almost the whole image. In (b), the pixels of every pump account for about 10% of the image.
In (c), the pixels of the tiny valve are less than 1% of the whole image. Here, in (d), are some small
valves and a middle size valve.

Object detection includes the two subtasks of regression and classification. The root
of the scale problem is that, as the convolutional neural network deepens, its ability to
express abstract features strengthens. However, shallow spatial and semantic information
is gradually lost during downsampling, which results in the inability of deep features to
provide fine-grained spatial information, so it cannot accurately locate the target. Therefore,
a generic strategy to solve the scale variations is to construct multiscale feature expression.
At present, the commonly used methods for constructing multiscale features include:
(1) The use of the feature pyramid network (FPN) [11] to sequentially perform object
detection on different resolutions [12,13]. (2) In the neural network, the connection of
feature maps of different depths to reconstruct a feature pyramid for object detection [14,15].
(3) The design of parallel branches in the internal neural network to build a spatial pyramid
for object detection [16,17]. In addition to constructing multiscale feature expressions,
some scholars have studied strategies to reduce the accuracy gap of different scales from
a more detailed level in the algorithm process, such as bounding box regression loss
function [18–21] and anchor mechanism [22,23].
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Among many strategies, the typical single-shot detector is SSD [10], which combines
both the main point of YOLO [7] and the anchor mechanism of Faster R-CNN [6] to
ensure that the feature maps of different receptive fields can adapt to different scale targets.
However, the representative ability of shallow features is much weaker than the deep,
which leads to poor performance in detecting small objects. DSSD [24] proposed a complex
feature pyramid network on the basis of SSD, promoting feature fusion between different
levels and achieving better accuracy at the price of calculating efficiency. FSSD [25] inserted
a fusion mechanism into the original SSD, making full use of local detailed features and
global semantic features. ASSD [26] added an attention module [27] to each feature layer
and achieved the accuracy of RetinaNet [28]. Considering the single-shot detectors are
prone to scale-confusion during feature fusion, Li et al. [29] proposed the Neighbor Erasing
and Transferring Mechanism (NETM) that erases salient large-scale features in the shallow
feature maps by the Neighbor Erasing Module (NEM), and transfers them to the deep by
the Neighbor Transferring Module (NTM) to ensure that small-scale features can be better
perceived by the network. Their experimental results were significantly better than other
single shot detectors. To this end, the RepVGG-RetinaNet equipped with NETM was used
to detect auxiliary equipment of various scales in marine engine room.

3. Methodologies

In this section, the overview of our proposed framework for auxiliary equipment
detection in marine engine room is introduced firstly. Next, we present the simple but
powerful plain architecture of the convolutional neural network RepVGG used for the
feature extraction network in RetinaNet, and describe how to convert a trained block into
the inference layer. Then, we discuss the Neighbor Erasing and Transferring Mechanism
(NETM), which is adopted in the feature pyramid to deal with more complicated scale
variations. Finally, the DIoU Soft-NMS postprocessing mechanism and CIou loss function
are introduced in detail.

3.1. Overview of the Proposed RetinaNet

The basic framework in this paper is RetinaNet, which is mainly comprised of a
backbone, feature pyramid network (FPN), and subnet. The backbone is designed to pick
up low-level general features, such as shape and texture. FPN is a U-shaped network
structure, the pyramid generated by feature fusion can effectively combine the seman-
tic representations of different depths and dimensions, which can individually explore
multiscale features in different layers. The subnet module includes classification and
regression branches.

In the RetinaNet as shown in Figure 2, the low-level features are first extracted through
the RepVGG [30], and feature maps of different resolutions are output through five stages,
which are labeled as C1, C2, C3, C4, and C5 according to the output sequence. Then
the maps are fused by the FPN, and generate the fused pyramid layers P3, P4, and P5
with the same resolution as C3, C4, and C5. At the same time, the pyramid layer P6 is
obtained through 3× 3 convolution with stride 2 on P5, and then the P7 is obtained through
3 × 3 convolution with stride 2 on P6. In FPN, pyramid features are fused in a top-down
strategy, which may introduce large-scale object features to shallow maps and exert passive
influence on detecting tiny objects. Therefore, the feature maps need to be aggregated
by NETM [29] except for P7, and the salient large object features in P3 and P4 erased by
NEM are transferred to P5 and P6 via NTM. Finally, the five feature maps are sent to the
subnet to classify and regress. Both the classification and the regression subnet adopt the
FCN [31] structure. After a series of straight convolution operations, the former can obtain
the confidence score that each anchor contains the ground truth. Similarly, the latter can
obtain a set of location offsets that each anchor regresses to the ground truth. Specifically,
both the object class and precise coordinate position are obtained in the subnet.
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3.2. Backbone Feature Extraction Network

For the current computer vision tasks, ResNet [32] and MobileNet [33–35] appear
frequently. A large collection of experimental analyses argue that the ResNet can extract
robust feature representations, and the customers can flexibly choose ResNet-50 or 101
according to their requirements; MobileNet is suitable for some embedded devices with
low computing power, which can significantly balance the detection speed and accuracy.
RepVGG is improved on the basis of classical VGG [36], whose main idea is to add the
essence of ResNet to the VGG Block, namely, the identity branch and the residual branch.
The sketch of the RepVGG architecture is shown in Figure 3a represents the classical ResNet
that contains the residual structure of identity and 1 × 1 convolution, which commendably
solve the vanishing gradient problem in the deep layers and make the model easier to
converge Figure 3b represents the RepVGG training enlightened by ResNet but in a different
way that the identity and 1×1 branches can be removed by structural reparameterization,
which not only allows the deep network to obtain robust feature performance, but also
solves the vanishing gradient problem quite nicely Figure 3c represents the RepVGG
inference, we performed the transformation in identity and 1 × 1 branches to accelerate the
network deployment, which can be converted into a stack of 3 × 3 convolutional structure
with simple algebra.
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Figure 3. Sketch of RepVGG architecture. (a) The body of ResNet. (b) The body of the training time
RepVGG. (c) The body of the inference time RepVGG. Only stage 2 of RepVGG-B1g4 is shown, which
has 4 layers and conducts downsampling via stride-2 convolution at the beginning.



J. Mar. Sci. Eng. 2021, 9, 1006 6 of 17

Figure 4 describes how to subtly convert a trained RepVGG block into a single plain
3 × 3 conv layer for RepVGG inference. Firstly, the convolutional layer in the residual
block is fused, then the fused convolution layer is transformed into 3 × 3 convolution, and
finally the 3 × 3 convolution in the residual branches is merged, that is, the weights and
offsets of all branches are added together.
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Figure 4. Structural reparameterization of a RepVGG block. (a) Structural reparameterization of
a RepVGG block from the perspective of structure. (b) Structural reparameterization from the
perspective of parameter.

We used W3 ∈ RC2×C1×3×3 , W1 ∈ RC2×C1 to denote the kernel of 3 × 3 and 1 × 1
convolutional layers respectively, and used µ, σ, γ, β as the accumulated mean, standard
deviation, learned scaling factor, and bias of the identity branch or the BN layer, respectively.
Let M1 ∈ RN×C1×H1×W1 , M2 ∈ RN×C2×H2×W2 be the input and output respectively, and
∗ be the operator of convolution. If C1 = C2, W1 = W2, H1 = H2 in M1, M2, we have
the Equation (1):

M2 = BN( M1, µ0, σ0, γ0, β0) + BN( M1 ∗W1, µ1, σ1, γ1, β1) + BN( M1 ∗W3, µ3, σ3, γ3, β3) (1)

3.3. FPN with NETM

As shown in Figure 5a, the NETM contains the neighbor erasing module (NEM) and
the neighbor transferring module (NTM). The former was proposed to erase the redundant
salient features of large objects and highlight the small objects in shallow feature maps.
The latter was designed to receive these erased features from NEM, and transfer them to
enhance the deep features.

To ease the feature scale-confusion, the NEM was designed to take out the superflu-
ous features. As shown in Figure 5b, sth and (s + 1)th are two adjacent pyramid layers,
ps ∈ Rcs×hs×ws has more semantic information about object xs than ps+1 ∈ Rcs+1×hs+1×ws+1 .
Based on the distribution of features, p̃s for object s from the original ps can be generated
by the filtering features pes of objects in [s + 1, S] as Equation (2), and the feature pes from
ps is extracted by Equation (3):
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p̃s = fs(xs) = ps 	 pes = fs(xs, xs+1, . . . , xS)	 fs(xs+1, . . . , xS) (2)

pes = ps � gs
s+1 = ps � Fs+1→s(ps+1) = ps �

1

1 + e−g(u(ps+1);Ws
s+1)

(3)

As formulated in Equation (2), pes helps extract the refined information of large objects.
In Figure 5c, we transferred it and obtained a specific pyramid layer p̃s+1 as Equation (4):

p̃s+1 = Ts→s+1(pes, ps+1) = c1×1(D(pes); Ws+1
s )⊕ ps+1 (4)

where D(pes) represents a downsampling operation in order for pes to match the feature
resolution with ps+1. In addition, c1×1 represents a 1 × 1 convolutional layer, which can
discern the corresponding channel number with learnable Ws+1

s ∈ R1×1×cs×cs+1 .

3.4. DIoU Soft-NMS

How to better achieve object detection in dense scenarios has always been a research
hotspot. With our observation in the AEMER dataset, the equipment obstruction in marine
engine room can be roughly divided into the following conditions: the same class of
equipment obstruction, different classes of equipment obstruction, and nonequipment
obstruction. If we take the first case as an example in traditional NMS, all of the bounding
boxes must first be sorted by the confidence score in descending order, and then the highest
score box is selected. In addition, the rest of boxes might be suppressed if there is an
obvious overlap with the selected box. However, what if the suppressed boxes have better
location information than the selected box? As shown in Figure 6, when the separator (S2)
overlaps with separator (S1), the detectors are readily confused as a result of the similar
physical features of the separators. Therefore, the bounding box2 (B2) that should regress
to S2 may be misguided to S1 or suppressed by the bounding box1 (B1) that should regress
to S1, resulting in inaccurate positioning.

Considering that the model used in this paper might generate multiple prediction
boxes, we adopted the Soft-NMS [37] postprocessing mechanism to ensure that each target
was detected, and replaced the IoU metric with DIoU [20]. In other words, we should not
abandon the prediction boxes that were mistakenly deleted due to the excessive overlap
such NMS, but retain them by lowering their confidence scores. The pseudo code of DIoU
Soft-NMS is shown in Figure 7.
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To improve the recall and eliminate the redundancy in marine engine room, the
postprocessing mechanism takes into account the distance and the overlap relationship
between multiple boxes. Here, the IoU metric in NMS was replaced by Equation (5):

DIoU = IoU − (
ρ2(b, bcand)

c2 )
β

(5)

where ρ is the Euclidean distance between the midpoints of two boxes. c is the diagonal
length of the outer rectangular bounds covering the two boxes. bcand and b represent the
candidate boxes and highest score box. In addition, the penalty term, β, is assigned 1
generally, when it approaches zero, nearly all prediction boxes whose center points do not
overlap with the center points of the highest score box are preserved; when it approaches
infinity, the DIoU will degenerate to IoU, that is to say, the effectiveness of DIoU Soft-NMS
can assimilate with greedy-NMS [38].

If the DIoU of candidate boxes with the highest score prediction box is greater than or
equal to θ, the confidence score will be punished by Gauss rather than harshly setting as
zero. As a result, the final confidence score function is shown in Equation (6):
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3.5. Loss Function

In the self-made dataset, we found that valves and meters made up a large majority
of the auxiliary equipment in a marine engine room, compared with diesel engines or oil
separators. To solve the imbalanced sample class, we first expanded the small percentage
of equipment to minimize the negative impact of the dataset. Since the focal loss can well
solve the passive influence of the traditional cross entropy loss on class imbalance and
difficult to classify samples, the original classification function focal loss in RetinaNet was
retained and defined by Equation (7):

FL(p, y) = αt ∗ (1− pt)
γ ∗ CE(p, y) (7)

where γ represents the focusing parameter. αt is an indicator variable. In our experiments,
we set them as suggested in Ref. [28].

Regarding the regression loss function of the bounding boxes, Girshick et al. [5]
proposed the smooth L1 loss, which combines the characteristics of L1 and L2. Considering
that these functions cannot directly reflect the similarity of boxes, Yu et al. [18] proposed
the IoU loss function, which treats the rectangular box as a whole. However, if there is no
overlap between boxes, the IoU will always be zero and the model cannot learn. Therefore,
Rezatofighi et al. [19] proposed a Generalized IoU (GIoU) loss function, which added
a penalty term on the basis of the IoU. Zhang et al. [20] argued that the GIoU loss will
degenerate into an IoU loss if the prediction box is wholly surrounded by the ground truth
box, which might cause the model to fail to distinguish the relative position relationship.
Accordingly, they proposed Distance IoU (DIoU) and Complete IoU (CIoU) loss, the former
adds a penalty term for the center distance between boxes on the basis of IoU loss, and
the latter adds a penalty term for the similarity of the aspect ratio on the basis of DIoU.
By comprehensive comparison, we used the CIoU loss defined by Equation (8) as the
regression loss.

LCIoU = 1− DIoU + αv (8)

where α and v, respectively, denote a positive tradeoff parameter and the consistency of
aspect ratio, which is defined as Equation (9).{

v = 4
π2 (arctan wgt

hgt − arctan w
h )

2

α = v
(1−IoU)+v

(9)

4. Experiments

The process of auxiliary equipment detection in marine engine room is presented
in Figure 8. Raw images of auxiliary equipment were collected by the cabin acquisition
device. Some of the images were processed by data augmentation, and then the auxiliary
equipment in marine engine room (AEMER) dataset was built completely. We trained the
RepVGG-RetinaNet detector on the AEMER, and the equipment was detected through the
trained model eventually.

4.1. AEMER Dataset

With the resources of our 3D virtual engine room team, we quickly collected various
images in the Very Large Container Ship (VLCS), Very Large Ore Carrier (VLOC), and
Very Large Crude Carrier (VLCC) cabin scenes. Most of them were taken by our team
through Canon digital cameras, and others were photographed by cabin monitoring. Due
to fact that the angular variation of the image acquisition devices might cause inconsistent
light intensity, we preprocessed the original images. Furthermore, to ease the passive
influence of imbalanced class, the data augmentations we used included adding Gaussian
noise, mirroring, rotating, shifting, color translation, and cutout. Specifically, we combined
several augmentations to enhance the auxiliary equipment images that accounted for a
small proportion. Then, we built the AEMER dataset with 7375 images, which contained



J. Mar. Sci. Eng. 2021, 9, 1006 10 of 17

Cooler, Engine, Meter, Pump, Reservoir, Separator, and Valve. Figure 9 displays some
raw image samples in the AEMER. In this paper, we randomly selected 70% of the data in
AEMER as the training set, 20% as the validation set, and 10% as the test set.

J. Mar. Sci. Eng. 2021, 9, 1006 10 of 17 
 

 

the IoU loss function, which treats the rectangular box as a whole. However, if there is no 
overlap between boxes, the IoU will always be zero and the model cannot learn. Therefore, 
Rezatofighi et al. [19] proposed a Generalized IoU (GIoU) loss function, which added a 
penalty term on the basis of the IoU. Zhang et al. [20] argued that the GIoU loss will de-
generate into an IoU loss if the prediction box is wholly surrounded by the ground truth 
box, which might cause the model to fail to distinguish the relative position relationship. 
Accordingly, they proposed Distance IoU (DIoU) and Complete IoU (CIoU) loss, the for-
mer adds a penalty term for the center distance between boxes on the basis of IoU loss, 
and the latter adds a penalty term for the similarity of the aspect ratio on the basis of DIoU. 
By comprehensive comparison, we used the CIoU loss defined by Equation (8) as the re-
gression loss. 

1CIoUL DIoU vα= − +  (8) 

where α  and v , respectively, denote a positive tradeoff parameter and the consistency 
of aspect ratio, which is defined as Equation (9). 

π

α


= −


 =
 − +

2
2

4 (arctan arctan )

(1 )

gt

gt

w wv
hh

v
IoU v

 (9) 

4. Experiments 
The process of auxiliary equipment detection in marine engine room is presented in 

Figure 8. Raw images of auxiliary equipment were collected by the cabin acquisition de-
vice. Some of the images were processed by data augmentation, and then the auxiliary 
equipment in marine engine room (AEMER) dataset was built completely. We trained the 
RepVGG-RetinaNet detector on the AEMER, and the equipment was detected through 
the trained model eventually. 

 
Figure 8. The process of auxiliary equipment detection in a marine engine room. 

4.1. AEMER Dataset 
With the resources of our 3D virtual engine room team, we quickly collected various 

images in the Very Large Container Ship (VLCS), Very Large Ore Carrier (VLOC), and 
Very Large Crude Carrier (VLCC) cabin scenes. Most of them were taken by our team 
through Canon digital cameras, and others were photographed by cabin monitoring. Due 

Figure 8. The process of auxiliary equipment detection in a marine engine room.

J. Mar. Sci. Eng. 2021, 9, 1006 11 of 17 
 

 

to fact that the angular variation of the image acquisition devices might cause inconsistent 
light intensity, we preprocessed the original images. Furthermore, to ease the passive in-
fluence of imbalanced class, the data augmentations we used included adding Gaussian 
noise, mirroring, rotating, shifting, color translation, and cutout. Specifically, we com-
bined several augmentations to enhance the auxiliary equipment images that accounted 
for a small proportion. Then, we built the AEMER dataset with 7375 images, which con-
tained Cooler, Engine, Meter, Pump, Reservoir, Separator, and Valve. Figure 9 displays 
some raw image samples in the AEMER. In this paper, we randomly selected 70% of the 
data in AEMER as the training set, 20% as the validation set, and 10% as the test set. 

4.2. Implementation 
Our experiments were implemented according to the configuration in Table 1. For 

training details, we selected the RepVGG-B1g4 as the backbone for our proposed Reti-
naNet and trained it on the PASCAL VOC 07++12 trainval dataset (see the following Sec-
tion 4.4.1). Next, we joined this to the trained weights of Section 4.4.1 to conduct contrast 
experiments on AEMER dataset. During the AEMER training period, we set the number 
of whole training iterations and the initial learning rate to 100 epochs and 1 × 10−4, respec-
tively. If the total loss did not reduce noticeably in four straight epochs, the learning rate 
would drop to 50% of the previous stage. Then, Adam was used to update the weights to 
accelerate model convergence. Furthermore, we treated the bounding box as a positive 
sample if the IoU was greater than 0.5, and as a negative sample if the IoU was less than 
0.4. The hyperparameters of weighting factors and focusing parameter in focal loss were 
set to 2.5 and 0.25 respectively. 

 
Figure 9. The original image samples in the AEMER. Figure 9. The original image samples in the AEMER.



J. Mar. Sci. Eng. 2021, 9, 1006 11 of 17

4.2. Implementation

Our experiments were implemented according to the configuration in Table 1. For
training details, we selected the RepVGG-B1g4 as the backbone for our proposed RetinaNet
and trained it on the PASCAL VOC 07++12 trainval dataset (see the following Section 4.4.1).
Next, we joined this to the trained weights of Section 4.4.1 to conduct contrast experiments
on AEMER dataset. During the AEMER training period, we set the number of whole
training iterations and the initial learning rate to 100 epochs and 1 × 10−4, respectively. If
the total loss did not reduce noticeably in four straight epochs, the learning rate would drop
to 50% of the previous stage. Then, Adam was used to update the weights to accelerate
model convergence. Furthermore, we treated the bounding box as a positive sample if
the IoU was greater than 0.5, and as a negative sample if the IoU was less than 0.4. The
hyperparameters of weighting factors and focusing parameter in focal loss were set to 2.5
and 0.25 respectively.

Table 1. The implementation of our experiments.

Configuration Detail

CPU Inter i7-9700 (3.00 GHz) 8-core
GPU A single NVIDIA GeForce GTX 1660Ti
RAM 16 GB

Operating System Windows 10
IDE PyCharm 2020.1.4

Framework GPU-based PyTorch-1.4.0
Toolkit CUDA 11.3

4.3. Evaluation Criteria

In the object detection task, the image information generally consisted of background
and foreground (targets). When the current foreground was correctly detected by detectors,
we denoted the prediction boxes as true positive (TP). When the current foreground was
misdetected as background or other foregrounds by detectors, we denoted the prediction
boxes as false positive (FP). When the background was misdetected as foreground by
detectors, we denoted the prediction boxes as false negative (FN). Otherwise, we denoted
the prediction boxes as true negative (TN). On the basis of the four situations, precision
defined by Equation (10) and recall defined by Equation (11) were introduced to evaluate
the detection accuracy. Every class can generate a P–R curve according to precision and
recall, and the enclosed area of the curve and the coordinate axis in the range of (0,1)
was the average precision (AP). The mean average precision (mAP) has been widely used
in target detection and evaluation. In addition to detection accuracy, another important
evaluation metric for detection is speed. Only high speed can achieve realtime detection.
Generally, FPS is used to evaluate the speed of object detection, that is, the number of
images that can be processed per second. In this paper, the evaluation criteria we used
contained: precision, recall, AP, mAP, and FPS.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

4.4. Results Analysis
4.4.1. Results on PASCAL VOC

In this subsection, The PASCAL VOC2007 trainval and 2012 trainval were used as the
training datasets. The backbone of RepVGG-B1g4 and NETM were employed in RetinaNet.
For training details, we trained the RepVGG-B1g4-RetinaNet for 120 epochs and set the
initial learning rate to 0.001. The learning rate would drop to 10% of the previous stage if
the iterations reached the 50th epoch and 80th epoch.
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We demonstrate our method on PASCAL VOC 2007 test set with the major purpose
of comparing the FPS and mAP with other typical methods. The comparison results are
listed in Table 2. With a comparable detection speed, our proposed RepVGG-RetinaNet
carried out an appreciable improvement in detection compared to others. Specifically, the
mAP of our detector on PASCAL VOC 2007 test set was 3.3%, 0.2%, 6.0%, 2.5%, 2.0%, 1.1%,
1.2%, 0.9%, 0.2%, 0.2%, and 0.4% better than Faster R-CNN [6], R-FCN [39], YOLOv2 [8],
SSD [10], DSOD [40], DSSD [23], RSSD [41], FSSD [25], ASSD [26], RefineDet [42], and
RetinaNet, respectively.

Table 2. Comparison of the test detection results on PASCAL VOC2007. The detection speed is measured by FPS with a
single 1660Ti GPU using a batch size of 1.

Method Pretrain Backbone Input Size GPU FPS mAP

Faster R-CNN
√

VGG
~600 × 1000

Titan X 7 73.2√
ResNet-101 K40 2.4 76.4

R-FCN
√

ResNet-50
~600 × 1000

- - 77.0√
ResNet-101 K40 5.8 79.5

YOLOv2
√

DarkNet-19 352 × 352 Titan X 81 73.7
SSD

√
VGG 300 × 300 Titan X 46 77.2

DSOD × DS/64-192-48-1 300 × 300 Titan X 17.4 77.7
DSSD

√
ResNet-101 321 × 321 Titan X 9.5 78.6

RSSD
√

VGG 300 × 300 Titan X 35 78.5
FSSD

√
VGG 300 × 300 1080Ti 65.8 78.8

ASSD
√

ResNet-101 321 × 321 K40 11.4 79.5
RefineDet

√
VGG 320 × 320 K80 12.9 79.5

RetinaNet
√

ResNet-50 600 × 600 1660Ti 17.4 79.3

Ours
√

RepVGG-B1g4 600 × 600 1660Ti 21.8 79.7

4.4.2. Ablation Study on AEMER

To validate the contribution of our strategies, we performed an ablation study on the
AEMER dataset to explore the effects of backbone, NETM, DIoU Soft-NMS, and CIoU loss
on detection accuracy and speed. In this experiment, we reconstructed the feature pyramid
network with NETM and replaced the bounding box regression loss function of the original
RetinaNet. At the same time, we applied the DIoU Soft-NMS postprocessing mechanism
during training. The comparison results are shown in Table 3, where the largest difference
of M1-4 and M5-8 lay in the backbone. M5 was 0.47% and 16% better than M1 in terms of
mAP and Time, M6 was 1.12%/34% better than M2, M7 was 0.91%/16% better than M3, M8
was 2.07%/34% better than M4. With the support of NETM, DIoU Soft-NMS, and CIoU, the
result of each strategy enjoyed significant mAP improvement and a faster inference time.

Table 3. Ablation study on AEMER dataset. Here we investigated three models, the original RetinaNet (M1), ResNet-
RetinaNet (M2-4), and RepVGG-B1g4-RetinaNet (M5-8). The NETM represented the neighbor erasing and transferring
mechanism. The BBRL was the bounding box regression loss. The detection speed was measured by Time with a single
1660Ti GPU using a batch size of 1.

Backbone M NETM CIoU BBRL DIoU Soft-NMS Time (ms) mAP

ResNet-50

1 - - - 58 79.34

2
√

- - 61 80.03
3 -

√ √
58 79.46

4
√ √ √

61 80.21

RepVGG-B1g4

5 - - - 49 79.81

6
√

- - 40 81.15
7 -

√ √
49 80.37

8
√ √ √

40 82.29
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4.4.3. Comparison with Others

As can be seen from Table 4, we evaluated our RepVGG-RetinaNet on the AEMER
dataset with other methods and presented the contrastive AP results of each equipment.
The mAP of our detector (82.29%) was 6.16% higher than Faster R-CNN (76.13%), 5.44%
higher than R-FCN (76.85%), 3.47% higher than YOLOv3 (78.82%), 6.08% higher than SSD
(76.21%), 4.33% higher than FSSD (77.96%), 3.23% higher than ASSD (79.06%), 5.34% higher
than RefineDet (76.95%), and 2.95% higher than original RetinaNet (79.34%). In summary,
Table 4 shows the favorable accuracy-speed tradeoff of RepVGG-RetinaNet and verifies
the significance of our proposed detector in a cabin.

Table 4. Comparison of the test detection results with the other classical methods on the AEMER dataset.

Method Backbone Cooler Engine Meter Pump Reservoir Separator Valve FPS mAP

Faster R-CNN ResNet-50 90.96 93.77 43.81 82.11 86.95 84.83 50.49 8.53 76.13
R-FCN ResNet-101 88.47 94.12 55.02 86.65 71.65 87.55 54.38 21.72 76.85

YOLOv3 DarkNet-53 87.95 100.00 57.16 88.34 73.93 87.87 56.49 29.86 78.82
SSD VGG 83.53 100.00 46.22 89.46 71.05 91.71 51.48 27.99 76.21

FSSD VGG 84.30 100.00 47.94 89.79 76.49 93.60 53.62 24.26 77.96
ASSD ResNet-101 85.85 100.00 49.53 90.39 78.57 93.90 55.18 17.94 79.06

RefineDet VGG 93.91 100.00 45.95 89.92 67.20 90.51 51.16 23.67 76.95
RetinaNet ResNet-50 88.80 100.00 57.21 94.03 48.81 95.69 70.86 17.24 79.34

Ours RepVGG-B1g4 93.44 100.00 60.26 95.30 55.01 97.68 74.37 24.98 82.29

4.4.4. Visualization

We randomly selected several images from the AEMER dataset to visually compare
the detection results between the original RetinaNet (upper) and the RepVGG-RetinaNet
(lower) in Figure 10. We set the IOU threshold and confidence threshold to 0.5 and 0.25
respectively. There were nine whole valves in (a), both RetinaNet and RepVGG-RetinaNet
detected all of them, but the latter had higher confidence scores than the former. In (b), the
RetinaNet mistakenly identified one meter as a valve, and completely missed the four small
valves in the lower left corner. By comparison, RepVGG-RetinaNet detected one more
valve than RetinaNet. There were some multi\scale objects in (c), including two meters,
one reservoir, and one valve. Both RetinaNet and RepVGG-RetinaNet detected the large
reservoir, but the latter correctly detected one tiny valve more than the former. Furthermore,
we present the detection results in the congested scenarios (d–f), the RepVGG-RetinaNet
had a higher confidence probability and smaller position deviation in the practical cabin.
From the perspective of the detection error, our detector alleviated the problem of missed
detection and false detection, but the accuracy on valves and meters was not perfect. In
summary, the overall performance of our RepVGG-RetinaNet was superior to the original
RetinaNet, and had the robust ability of adaptive filtering feature information.
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J. Mar. Sci. Eng. 2021, 9, 1006 15 of 17 
 

 

(a) (b) (c) 

(d)  (e) (f) 

Figure 10. Detection results visualization on AEMER dataset. In column (a) we present the auxiliary equipment of valves. 
In other columns, we present the equipment of pumps (b), meters (b), reservoirs (c), auxiliary engines (d), coolers (f), and 
oil separators (e). In six of the comparisons, the upper images are the output of the original RetinaNet and the lower 
images are the output of the proposed RepVGG-RetinaNet. 

5. Conclusions and Discussion 
Considering the key technology of intelligent perception in a marine engine room, 

we built the AEMER dataset and proposed a RepVGG-RetinaNet detector for auxiliary 
equipment in a congested cabin. According to the analysis of experimental data, the fol-
lowing main conclusions can be reached: (1) Compared with ResNet, the backbone of 
RepVGG in RetinaNet has better detection performance in practical cabin scenes. (2) The 
FPN with the feature scale unmixing NETM is capable of helping the detector to have an 
adaptive filtering function, which enhances the expression ability of small-scale features 
and effectively solves the misdetection and false positive problems. (3) Through the im-
provement of the RetinaNet based on the CIoU regression loss as well as DIoU Soft-NMS 
postprocessing mechanism, we have further advanced the detection accuracy of auxiliary 
equipment in the cabin. (4) The proposed RepVGG-RetinaNet has comparable detection 
speed and accuracy, which meets the elementary demands of the inspection tasks in ma-
rine engine room, and effectively provides technical support for the defect recognition 
and anomaly detection of the appearance of equipment in the centralized monitoring and 
alarm system. 

Figure 10. Detection results visualization on AEMER dataset. In column (a) we present the auxiliary equipment of valves.
In other columns, we present the equipment of pumps (b), meters (b), reservoirs (c), auxiliary engines (d), coolers (f), and
oil separators (e). In six of the comparisons, the upper images are the output of the original RetinaNet and the lower images
are the output of the proposed RepVGG-RetinaNet.

5. Conclusions and Discussion

Considering the key technology of intelligent perception in a marine engine room,
we built the AEMER dataset and proposed a RepVGG-RetinaNet detector for auxiliary
equipment in a congested cabin. According to the analysis of experimental data, the
following main conclusions can be reached: (1) Compared with ResNet, the backbone of
RepVGG in RetinaNet has better detection performance in practical cabin scenes. (2) The
FPN with the feature scale unmixing NETM is capable of helping the detector to have an
adaptive filtering function, which enhances the expression ability of small-scale features
and effectively solves the misdetection and false positive problems. (3) Through the
improvement of the RetinaNet based on the CIoU regression loss as well as DIoU Soft-NMS
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postprocessing mechanism, we have further advanced the detection accuracy of auxiliary
equipment in the cabin. (4) The proposed RepVGG-RetinaNet has comparable detection
speed and accuracy, which meets the elementary demands of the inspection tasks in marine
engine room, and effectively provides technical support for the defect recognition and
anomaly detection of the appearance of equipment in the centralized monitoring and
alarm system.

As for the low detection accuracy of Reservoir and Meter, we tried to modify the
framework and parameters, but the results were unsatisfactory. Therefore, we strategically
shifted focus on improving the mAP and temporarily gave up the AP. In future work, we
will fully consider the AP of single class and try to further improve the detection accuracy
of small-scale targets in the cabin. Moreover, the AEMER constructed for the inspection
task has not been ideal, it will be supplemented and expanded in the future. Meanwhile,
the new semantic information will be added to the dataset, and unknown object detection
will be carried out by modifying the model and combining zero-sample classifiers, so that
the detector might have the ability of self-learning and self-updating, which will further
realize the full-smart visual perception.
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