
 information

Article

A Computational Study on Fairness of
the Tendermint Blockchain Protocol

Nicolas Lagaillardie † , Mohamed Aimen Djari and Önder Gürcan *

CEA, LIST, Point Courrier 174, F-91191 Gif-sur-Yvette, France; nicolas.lagaillardie@etu.ese.fr (N.L.);
Mohamed-Aimen.DJARI@ca.fr (M.A.D.)
* Correspondence: onder.gurcan@cea.fr; Tel.: +33-1-69-08-00-07
† Current address: Imperial College London, SW7 2AZ, London, UK.

Received: 1 November 2019; Accepted: 25 November 2019; Published: 30 November 2019 ����������
�������

Abstract: Fairness is a crucial property for blockchain systems since it affects the participation:
the ones that find the system fair tend to stay or enter, the ones that find the system unfair tend to
leave. While current literature mainly focuses on fairness for Bitcoin-like blockchains, little has been
done to analyze Tendermint. Tendermint is a blockchain technology that uses a committee-based
consensus algorithm, which finds an agreement among a set of block creators (called validators), even
if some are malicious. Validators are regularly selected to the committee based on their investments.
When a validator does not have enough asset to invest, it can increase it with the help of participants
that delegate their assets to the validators (called delegators). In this paper, we implement the default
Tendermint model and a Tendermint model for fairness in a multi-agent blockchain simulator where
participants are modeled as rational agents who enter or leave the system based on their utility values.
We conducted experiments for both models where agents have different investment strategies and
with various numbers of delegators. In the light of our experimental evaluation, we observed that
while, for both models, the fairness decreases and the system shrinks in the absence of delegators, the
fairness increases, and the system expands for the second model in the presence of delegators.

Keywords: blockchain; tendermint; fairness; simulation

1. Introduction

Bitcoin, introduced by Satoshi Nakamoto [1], is the core of blockchain systems—decentralized
transactional systems that are based on blockchain protocols. Participants following blockchain
protocols can create together a distributed, economical, social and technical system where anyone
can join and leave and perform transactions in between without either needing to trust each other or
having a trusted third party. It is a very attractive technology since it maintains a public, immutable
and ordered log of transactions that guarantees an auditable ledger accessible by anyone. The security
and sustainability of blockchains, however, are not trivial and require increased participation, since
each participant validates the diffused data, and keeps a replica of the entire blockchain. Participants
consider it worthwhile to join and stay in the system over time if they find it fair.

Generally speaking, a blockchain system is an open and distributed system composed of
participants called users and block creators. Users create transactions and broadcast across the
blockchain network for being confirmed. Note that, due to the characteristics of the network,
every participant will receive in different orders and also some transactions might be lost during
communication. In this sense, block creators are responsible for ordering transactions totally as blocks
for appending to the blockchain in an immutable manner. Block creators (based on the consensus
algorithm used and the blockchain technology, block creators are named as miners [1], validators Ref [2],
bakers [3], committee members [4,5], and so on, respectively.) agree on how and who to create a block

Information 2019, 10, 378; doi:10.3390/info10120378 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6431-4100
https://orcid.org/0000-0003-0212-8908
https://orcid.org/0000-0001-6982-5658
http://www.mdpi.com/2078-2489/10/12/378?type=check_update&version=1
http://dx.doi.org/10.3390/info10120378
http://www.mdpi.com/journal/information

Information 2019, 10, 378 2 of 14

(consensus) either by themselves (Proof-of-Work [6], Proof-of-Stake, Delegated Proof-of-Stake, etc.)
or by a committee (Practical Byzantine Fault-Tolerance [7], etc.)—see [8] for a review. Blockchain
systems are usually classified with respect to their consensus algorithms as Bitcoin-like blockchains1 (e.g.,
Bitcoin [1], Ethereum [2]), committee-based blockchains (e.g., Tendermint [4], RedBelly Ref [9]) and hybrid
blockchains (e.g., PeerCensus [10], Byzcoin [11]). Considering Bitcoin-like blockchains, several studies
have been conducted so far analyzing and improving fairness both for block creators Ref [12–20] and
for users [21–23]. However, fairness in committee-based blockchains has not been studied much yet.

Based on this observation, in this paper, we study the fairness of the committee-based blockchain
Tendermint [4]. We have chosen Tendermint because, in [24], it has been shown by mathematical
analyzes that Tendermint, as a closed system, is unfair for some of its participants. However, we
consider Tendermint as an open system and thus aim to study its fairness by computational analyzes.
To this end, we modeled each participant, like in [21], as a rational agent who finds the system fair if the
total satisfaction of its expectations is above a certain degree. We, then, realized two implementations
of Tendermint: (1) as proposed by Buchman et al. [4], which we call the Tendermint Default protocol
and (2) as proposed by us, which we call call the Tendermint Fairness protocol. We conducted various
simulation experiments with different initial conditions and different agent strategies.

1.1. Contributions

The contributions of this study are as follows:

• A fairness improvement for the Tendermint protocol;
• A computational analysis of the fairness in the Tendermint protocol.

1.2. Organization

The organization of this paper is as follows. Section 2 provides background about the Tendermint
protocol. Section 3 provides a formalization of the existing Tendermint protocol. Section 4 improves
this formalization by improving fairness of the behaviors for participants. In Section 5, make simulation
analyzes of both models. Results and discussion are presented in Section 6. Section 7 presents the
related work and, finally, Section 8 concludes the paper.

2. Background

In this section, we give background information about the Tendermint blockchain protocol.
Tendermint is a committee-based blockchain protocol that uses an adaptation of the Practical Byzantine
Fault Tolerance (PBFT) algorithm [7] as its consensus algorithm. In the following, we first describe the
PBFT algorithm (Section 2.1) and then we describe the Tendermint protocol (Section 2.2).

2.1. Practical Byzantine Fault Tolerance

The PBFT algorithm [7] is a variant of traditional Byzanytine Fault Tolerant (BFT) consensus
algorithms that are resilient to both byzantine and crash failures and generally work under partial
synchrony assumptions and bounded communication latency. In PBFT, an agreement among n nodes
is reached through the transmission of O(n2) messages; it does so relying on a three phase round
division where in each round a value (e.g., a block) is validated passing through a pre-prepared, prepared
and commit steps. Each peer’s proposal accesses to the next phase only with the 2/3 network approval.
Therefore, the algorithm requires at least 2 f + 1 honest replicas to tolerate f faulty nodes.

Figure 1 illustrates the normal operation of this protocol. Here, the line ‘C’ represents the
operations of a peer requesting an agreement on something (in particular, sending a transaction in the

1 Since Bitcoin came up by Proof-of-Work, blockchains using Proof-of-something algorithms are classified as Bitcoin-like.

Information 2019, 10, 378 3 of 14

context of the blockchain), and waiting for the reply. The lines ‘0–3’ represent the operation of peers
running the PBFT protocol, ‘3’ is faulty and ‘0’ is called the proposer.

Figure 1. Normal execution of the Practical Byzantine Fault Tolerance (PBFT) protocol [7].

2.2. Tendermint Protocol

Tendermint is a committee-based blockchain protocol that relies on the proof-of-stake (PoS) algorithm
for the selection of the committee. The Tendermint protocol defines three types of participants [25]:
the users, the validators, and the delegators; and two types of assets: the balance and the stake. Users
create transactions, validators create blocks, and delegators invest in validators. For each new block,
a committee is selected among the validator, a validator can only create a block if it is in the committee.
Each participant keeps an account balance on the blockchain data structure. All participants can use
their balances to send or receive assets to or from other participants. Validators and delegators can
invest their balances in stakes, and stakes can be withdrawn into balances. The more stakes a validator
has, the higher its chance to become a block creator (i.e., PoS). The delegators, on the other hand, do not
directly enter into the committee and create blocks, but invest in validators they choose to increase
their chance to be in the committee. In general, validators who are aware that they do not have enough
stakes to be selected as block creators become delegators. All participants can switch roles at any
moment: the amount of personal stakes and where they are determine the role.

For each new block that needs to be created, a committee is selected among the validators.
The selection of validators for the committee is a deterministic process: each participant knows
the committee size and can compute the stakes of the validators thanks to its own local copy of
blockchain for selecting the wealthiest. During this process, if a participant acts incorrectly and this is
detected by the others, its stakes and the stakes of the delegators which invested in it are slashed, i.e.,
the stakes are burnt and remain unusable.

When a committee is selected, its members go through a PBFT process as explained in Section 2.1.
This process is illustrated in Figure 2 (even though in the original Tendermint paper [7] the consensus
protocol steps are named propose, prevote, precommit, and commit, hereafter, in this paper, we prefer to
use prepropose, propose, vote, and commit, respectively, as proposed in [7].) At round r, the rth validator,
modulo the size of the committee, is considered as the proposer. The proposer sends a prepropose message
containing a block proposal to all validators in the committee, including itself. It can propose a block
that has already been proposed in a different round for the same height. Validators check the proposal,
and, if they found it valid, they send a propose message containing the proposal to the other validators.

When a validator receives at least 2/3 of the proposed messages containing the same valid block,
it broadcasts to the whole blockchain system a vote message containing the proposal. When at least
2/3 of the vote messages containing the same valid block are received by a participant, it commits the
block: i.e., it appends it to its own blockchain. Otherwise, it considers the block invalid and moves to
a new round with a new proposer. A block can be proposed more than once in different rounds for
the same height. Upon a successful creation of a new block, the committee members are rewarded.
However, unlike Bitcoin-like blockchains where block creators are rewarded directly by themselves,
in Tendermint, block creators (committee members) are rewarded by the following committee.

Information 2019, 10, 378 4 of 14

Figure 2. Illustration of the Tendermint consensus protocol for the creation of block h.

3. Tendermint Default Model

In this section, we provide a Tendermint protocol model based on [4,25] and various core features
from the official protocol given in the official Github repositor2. In the following, we first introduce the
overall system model (Section 3.1), after we give the blockchain data structure model (Section 3.3), and
then we each present validators and delegators by providing high-level detailed pseudocodes of their
key actions (Sections 3.4 and 3.5, respectively).

3.1. Overall System Model

We model the Tendermint blockchain network as a dynamic directed graph G = (N, E), where N
denotes the dynamic node (vertex) set, E denotes a dynamic directed link (edge) set. A node n can
enter and leave G by using its join(G) and leave(G) actions, respectively. Upon joining G, n discovers
neighbor nodes to connect to. A link 〈n, m〉 ∈ E represents a directed link n→ m, where n, m ∈ N, n is
the owner of the link, and n is the neighbor of m.

A node n can communicate with a set of recipient nodes Rn (where ∀m ∈ Rn|{n, m} ∈ E) by
exchanging messages of the form 〈n, msg, d〉, where n is the sender, msg is the type, and d is the
data contained.

Each node n ∈ N has a list of its neighbors Nn, where Nn ⊆ N and ∀m ∈ Nn|〈n, m〉 ∈ E. A node n
adds and removes another node m as its neighbor using its addNeighbour(m) and removeNeighbour(m)

actions, respectively. Each neighbor m ∈ Nn is represented as a 2-tuple 〈m, tm〉 where tm is the last
communication time. tm is updated at each message receipt and, if m has not communicated for more
than some time, m is removed from Nn.

Each node n has a memory pool Θn in which it keeps unconfirmed transactions that have input
transactions, an orphan pool Θ̄n in which they keep unconfirmed transactions that have one or more
missing input transactions (orphan transactions) and a blockchain ledger Bn in which they keep

2 Tendermint Github repository, https://github.com/tendermint/tendermint, last access on 9 September 2019.

https://github.com/tendermint/tendermint

Information 2019, 10, 378 5 of 14

confirmed transactions where Θn ∩ Θ̄n = ∅, Θn ∩ Bn = ∅ and Θ̄n ∩ Bn = ∅ always hold. The total
wealth of n, i.e., its balance (φn), is calculated from Bn.

3.2. Fairness Model

We model fairness based on the fairness model proposed in [21]. In this sense, we model all
nodes in the blockchain network G as rational agents. A rational agent behaves according to its local
perceptions and local knowledge, models uncertainty via expected values of variables or actions,
and always chooses to perform the actions with the optimal expected outcome (among all feasible
actions) for maximizing its utility [26]. Each rational agent n ∈ N has a set of actions An and a utility
function Un. Using An and Un, n uses a decision process where it identifies the possible sequences of
actions to execute. We call these sequences rational behaviors of n and denote as β. The objective of n
is to choose the behaviors that selfishly keep Un as high as possible.

We model the utility function of a rational agent n ∈ N as Un = u0 + ∑k
i=1 U (βi), where u0 is the

initial utility value, k ≥ 0 is the number of behaviors executed so far, and U (βi) is the utility value of
the behavior βi. A utility value U (βi) can also be interpreted as the degree of satisfaction experienced by
the realization of βi. The utility value U (βi) is calculated asR(βi)− C(βi), whereR(βi) is the overall
reward gained and C(βi) is the overall cost spent for the execution of βi.

Fairness: A rational agent n ∈ N finds a system (i.e., the blockchain network) G fair, if the
total satisfaction of its expectations Un is above a certain degree τn, where τn < u0.

If, at any time, an agent n finds G unfair (Un ≤ τn), it may decide to leave G if, from its points of
view, it will not be possible to increase its overall utility above τn by calculating the expected values of
its possible future behaviors. In other words, n may decide to leave G if Un + ∑m

j=k E(β j) ≤ τn where
βk, ..., βm are sufficiently enough desired future behaviors of n.

3.3. Blockchain Model

We model the blockchain ledger of an agent n as a dynamic append-only linked list Bn = {b0
r0←−

b1
r1←− ...

rh−1←−− bh}, where each block bi (0 < i ≤ h) contains a cryptographic reference ri−1 to its
previous block bi−1, h = |Bn| is the depth of Bn, b0 is the root block which is also called the genesis
block, and bh is the furthest block from the genesis block, which is referred to as the blockchain head.

We denote a block as bi = 〈hi, xΨi〉where hi is the block header and Ψi is the block data. The block
data Ψi contains all the transactions organized as a Merkle tree [27]. Basically, the copies of each
transaction are hashed, and the hashes are then paired, hashed, paired again, and hashed again until a
single hash remains, the Merkle root of a Merkle tree. We denote a Merkle tree and its root as Ψi and
ψi, respectively. A Merkle tree Ψi is created using the action of the form createMerkleTree(Xi−1, θv),
where Xi−1 is the set of coinbase transactions that reward the validator agents V and the delegator
agents d ∈ D of the previous block bi−1 with a total block reward γ for their work, θv ⊆ Θv is the set
of candidate transactions chosen for this block. The set of candidate transactions θv is selected using
the action of the form selectTransactions(Θv) : θv, where Θv is the memory pool of the validator.

The block header is denoted as hi = {vn,H(hi−1),H(hi), tbi
, ψi}, where vn is the version number

of the protocol used by n,H(·) is the cryptographic hash function,H(hi−1) is the cryptographic hash
code of the header of the previous block bi−1 (i > 0), H(hi) is the cryptographic hash code of hi
generated by m, tbi

is the current timestamp, and ψi is the root of the Merkle tree.
We model a transaction as tx = 〈I, O〉 where I is a list of inputs (I 6= ∅) and O is a list of outputs

(O 6= ∅). We model the outputs as oi = 〈m,¢oi 〉, where m ∈ N is the receiver of the coins ¢oi (¢oi ≥ 0).
All inputs of a transaction have to be spent in that transaction and the total input coins ¢I has to be
greater than or equal to the total output coins ¢O. The fee ftx of a transaction tx is then modeled as
ftx =¢I−¢O. Depending on the fee to be paid, if there are still some coins left to be spent, the sender
can add an output that pays this remainder to itself.

Information 2019, 10, 378 6 of 14

A coinbase transaction tx ∈ Xi is a special transaction that collects and spends any transaction
fees paid by transactions included in a block and exceptionally it does not have any input set (I = ∅).
It is the first transaction in a block and can only be created by a validator when it is proposing a block.

3.4. Validator Model

An agent v ∈ V, where V ⊆ N, is said to be a validator if it is capable of participating in the
creation of blocks (consensus) for confirming the transactions in its memory pool Θv. To do so, v
can use its actions of the form prepropose(), propose(), vote() and commit() (see Algorithm 1). When
v receives a message m, it handles it using the action handleMessage(m) to store m into one of the
corresponding received messages list, i.e., Mpre, Mpro and Mvote.

Algorithm 1 The actions of a validator agent v for creation of the ith block

1: action prepropose()
2: bi ← createBlock()
3: send(〈 v,"prepropose", bi 〉, Ci)
4:

5: action propose()
6: if (valid(bi)) then
7: send(〈 v,"propose", bi 〉, Ci)
8: else
9: send(〈 v,"propose", nil 〉, Ci)

10: endif
11:

12: action vote()
13: if (|Mbi

pro| > 2/3 |Ci|) then
14: send(〈 v,"vote", bi 〉, Ci)
15: else
16: send(〈 v,"vote", nil, n 〉, Ci)
17: endif
18:

19: action commit()
20: if (|Mbi

vote| > 2/3 |Ci|) then
21: Bv ← Bv ∪ {bi}
22: else
23: newRound()
24: endif
25:

26: action createCoinbaseTxs()
27: for each (z ∈ Ci−1) do
28: for each (d ∈ D(z)) do
29: γd =

γi−1
|Ci−1|

× sd
z

sz
30: Xi−1 ← {d,γd}
31: endfor
32: γz =

γi−1
|Ci−1|

× sz
z

sz

33: Xi−1 ← {z,γz}
34: endfor
35: return Xi−1
36:

37: action createBlock()
38: θv ← selectTransactions(Θv)
39: Xi−1 ← createCoinbaseTxs()
40: Ψi ← createMerkleTree(Xi−1, θv)
41: bi ← 〈hi, Ψi〉
42: return bi
43:

44: action invest(a)
45: if (φvi ≥ a) then
46: φvi ← φvi − a
47: svi ← svi + a
48: endif
49:

50: action withdraw(a)
51: if (svi ≥ a) then
52: svi ← svi − a
53: φvi ← φvi + a
54: endif
55:

56: action handleMessage(m)
57: switch (m)
58: case : ”prepropose”
59: Mpre ← Mpre ∪ {m}
60: case : ”propose”
61: Mpro ← Mpro ∪ {m}
62: case : ”vote”
63: Mvote ← Mvote ∪ {m}
64: endswitch

During the creation of block bh+1, v is said to be a committee member (v ∈ Ch+1 where Ch+1 ⊆ V)
if it has enough stakes sv. If v does not have enough stakes, it can invest a certain amount a into
stakes in order to be selected in the committee using the action invest(a) where a ≤ balance φv. At any

Information 2019, 10, 378 7 of 14

time, v can withdraw a certain amount a from its investment sv into its balance φv using the action
withdraw(a).

Blocks are created using the action createBlock(), and they contain the reward transactions for
the last committee members and their delegators. These transactions are created using the action
createCoinbaseTxs() that takes into account the personal stakes of the validator vi, called svi

vi , the stakes
invested by a delegator di into a validator vi, called sdi

vi , and the global stakes of the validator vi,
which is the sum of its personal stakes and the stakes the delegators gave it, called svi = svi

vi + ∑ sdi
vi .

3.5. Delegator Model

An agent n ∈ D, where D ⊆ N and D∩V = ∅, is said to be a delegator if it is capable of delegating
a certain amount a to a validator v ∈ V for helping v to enter into the committee using the action of
the form invest(a, v) (see Algorithm 2). Hereafter, each time v is rewarded for participating in a block
creation, n is also rewarded. At any time, n ∈ D can withdraw a certain amount a of its investments
into its balance using the action withdraw(a, v).

Algorithm 2 The actions of a delegator agent d

1: action invest(a, v)
2: if (φvi ≥ a) then
3: φvi ← φvi − a
4: sTv ← sTv + a
5: si(d, v)← si(d, v) + a
6: endif
7:

8: action withdraw(a, v)
9: if (si(d, v) ≥ a) then

10: si(d, v)← si(d, v)− a
11: sTv ← sTv − a
12: φd ← φd + a
13: endif
14:

4. Tendermint Fairness Model

In this section, we improve the model given in Section 3 by improving the behaviors of validators
in order to increase the fairness of the system. The improvements are as follows.

It has been shown in [24] that when there is less than f Byzantines, and there is bad communication
between some committee members, the block creation process can be frozen. To tackle this problem,
rather than storing only the last valid proposed block, the committee members store all valid proposed
blocks for creation block h. This way, if there is bad communication between the members and there
are less than f Byzantines, they can still remember the previously valid proposed blocks and vote for
them when they are proposed once again.

As mentioned in Section 3, the committee rewards the previous one for successful creation of a
new block. However, if there are Byzantines in the previous committee, the current committee will
most probably not have enough time to detect this. This may cause unfair rewarding of the participants.
To tackle this problem, we propose delayed rewarding of the committees where a previous committee
is rewarded after a certain number of blocks. We model this improvement by modifying the actions
commit() and createCoinbaseTxs() as shown in Algorithm 3. When a validator of a committee commits
a block, it sends a message to the whole network that it has committed that block. The proposer of a
following committee will add the related coinbase transactions to its proposal.

Information 2019, 10, 378 8 of 14

Algorithm 3 The actions of a validator agent v for creation of the ith block in the Fairness model

1: action commit(bi)
2: if (|Mbi

vote| > 2/3 |Ci|) then
3: Bv ← Bv ∪ {bi}
4: if (v ∈ Ci) then
5: send(〈 v,"hascommit", bi 〉, Ci)
6: endif
7: else
8: newRound()
9: endif

10:

11:

12: action createCoinbaseTxs()
13: for each (z ∈ hascommit(bi)) do
14: for each (d ∈ D(z)) do
15: γd =

γi−1
|Ci−1|

× sd
z

sz
16: Xi−1 ← {d,γd}
17: endfor
18: γz =

γi−1
|Ci−1|

× sz
z

sz
19: Xi−1 ← {z,γz}
20: endfor
21: return Xi−1
22:

5. Simulations

To quantitatively analyze the aforementioned models in terms of fairness, we designed and
conducted several simulation experiments. In the following, we first give the various simulation
experiments we designed (Section 5.1) and then we present our experimental setup (Section 5.2).

5.1. Simulation Experiments

We designed experiments in order to analyze fairness of the Tendermint models given in Sections
3 and 4.

The assumptions we made for all the experiments are as follows:

• There are no Byzantines, i.e., there are no crashes or no erroneous messages.
• Each participant always plays the same role.
• The size of the committee is always 5.
• There are no fees for the transactions.
• All agents process the messages as soon as they receive them.
• The total block reward γb is 50.
• There is no message transmission delay in the network.
• The reliability of the network is 100%, i.e., every message is received by its receivers.
• Starting from the creation of the first block, each 30 ticks, the simulator calculates the overall

fairness of the system and adds new validators depending on the overall fairness according to

w =

{
log2(K), if K > 0,

0, otherwise,
(1)

where K = τn −
1
|N| ∗

|N|

∑
i=1
Ui.

• The initial balance for validators (αv) is calculated using a normal distribution between 50 and 100.
• The initial balance for delegators (αd) is calculated using a normal distribution between 25 and 75.
• The utility function of all agents is Un : N → N and for every agent n the threshold τn = −10.
• ∀ agent n : u0 = 0.

For each agent n, its utility follows the law:

Un =

{
Un + 1, if bh rewards n,

Un − 1, otherwise.
(2)

We define two different investment strategies for validators:

Information 2019, 10, 378 9 of 14

• β1: investing all balance in stakes,
• β2: investing random amounts from balance in stakes,

We define one investment strategy for delegators:

• β3: investing random amount from their balance in one random validator at each new block.

Using the different validator strategies and different initial number of delegators, we designed
eight different experiments (see Table 1).

Table 1. Settings of the experiments.

Experiment # Model Validator Strategy Initial # Validators Initial # Delegators

Ex 1 Default β1 10 0

Ex 2 Default β1 10 5

Ex 3 Default β2 10 0

Ex 4 Default β2 10 5

Ex 5 Fairness β1 10 0

Ex 6 Fairness β1 10 5

Ex 7 Fairness β2 10 0

Ex 8 Fairness β2 10 5

5.2. Experimental Setup

To study blockchain systems in general, we developed an agent-based simulator (the simulator is
called Multi Agent eXperimenter (MAX) and has not been made public yet) based on the MaDKit 3

framework. MaDKit is a lightweight Java library for designing and simulating multi-agent systems
[28]. We run our experiments on an Ubuntu OS computer powered by an Intel® Core™ i7-8850H CPU
@ 2.60 GHz x 12 threads and 32 GB of RAM (Gif-sur-Yvette, France).

We run each experiment five times until the 150th block is committed to the blockchain. We report
and discuss the results of these executions in the following section.

6. Results and Discussion
In section, we report and discuss the results of the conducted simulations.

6.1. Results

In order to study our experiments, we first get the utilities of each agent of the experiments at
each height. For each experiment, we compute the median of the utilities. Then, we compute the
average of the medians. We compare the experiments by computing the difference of those results.

Figures 3 and 4 give an overview of the differences between the different models and settings.
Figure 4 displays the number of agents over time. Figure 3 displays the median utilities of the
experiments overtime.

6.2. Discussion

Figure 4 gives an overview of the differences between the different models and settings. This chart
displays the number of agents overtime: the higher the numbers are, the better is the tested model. We
can see that, in general, the Fairness model is usually more fair than the Default model after a certain
amount of time. In the beginning, due to the presence or absence of delegators, there might be more or

3 MaDKit, http://www.madkit.net/madkit/, last access on 9 September 2019.

http://www.madkit.net/madkit/

Information 2019, 10, 378 10 of 14

less agents in the system. However, as they are still agents, they might leave if they think the system is
not fair enough. In addition, some experiments have the same settings, but different models, which
means that we should first compare them before transiting to others.

1 25 50 75 100 125 150

−50

0

50

100

150

Height of the blockchain

U
ti

lit
ie

s
of

ex
pe

ri
m

en
ts

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8

Figure 3. Evolution of the utilities of the experiments by height.

1 25 50 75 100 125 150

5

10

15

20

25

30

Height of the blockchain

N
um

be
r

of
ag

en
ts

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8

Figure 4. Evolution of the number of agents by height.

We can also observe that most models seem to stabilize at a certain number of agents which is often
close to the initial number of agents. This can be due to multiple factors. First, the utility threshold is,
in our experiments, the same for every agent, which, in reality, is really different. Moreover, the utility
is only based on when an agent is rewarded, not how much. In real life, an agent can be rewarded at
every block, but the reward could be very low. Furthermore, because no agents withdraw their stakes,
the stakes of each agent will always increase, mathematically speaking. Hence, a validator selected

Information 2019, 10, 378 11 of 14

in a committee will have a huge chance to be selected at the following ones because the non selected
validators do not have enough stakes at first. The two ways to change this are:

1. a non selected validator has a higher sum of balance and stakes than a selected one, but lower
stakes at one height. Then, at a further height, this non-selected validator chooses to invest enough
balance in stakes to have more assets than the selected one, hence being selected afterwards.

2. delegators invest enough stakes in non selected validators rather than selected validators to
reverse the process.

The first option happens only with half of the experiments: those where the behavior of the
validators is β2. In real life, this can happen with a decreasing probability over time because the system
enters in a virtuous circle for multiple validators and a vicious circle for the others. Indeed, the gap of
the sum of the two assets, balance and stakes, between the validators will increase over time.

The second option happens only with half of the experiments too, but not the same ones. This is
what is expected to happen in order to make the system more fair: thanks to this process, more agents
would be rewarded. Of course, the delegators could invest only in the wealthiest validators, but if
we refer to [26], the delegators could be less rewarded than investing in a little bit poorer validators,
which could be then selected in a committee.

7. Related Work

One solution for solving partially the fairness issue in Bitcoin-like blockchains was found by its
participants: the use of mining pools [16]. Those structures allow more agents to be involved in the
system and be rewarded, even with small power. There are fees for being part of a pool, but they
remain low enough to be profitable even with a low-powered machine. However, such mining pools
are controlled by owners that reduce the distributed aspect of the Blockchain. Some Blockchain
protocols proposed solutions, such as the FruitChains protocol [29], to distribute the block rewards in a
more fair way. However, they still rely on energy consumption to secure the blockchain.

Other issues triggered by Bitcoin-like blockchain systems are summed up in [21]:

• There is no mechanism for a user to cancel an already issued transaction, i.e., once it decides
to engage in the game, it can never abandon it. This implies expected values going to minus
infinity. In decision theory terms, this would mean assuming a user having an infinite interest on
a transaction, which is in fact hard to assume in real settings.

• Given different fees with their associated probabilities, more flexibility to guarantee fairness
would have been reached by allowing the user (experiencing a long waiting time) to resend the
transaction with a lower fee. This flexibility, on the other hand, is not achieved in Bitcoin-like
blockchain systems mainly due to two reasons: (1) there is no deterministic guarantee that the
system chooses a given copy of the transaction, it is only guaranteed with high probability
that only one copy will be inserted into the blockchain, and (2) the miner behavior favors the
transaction with the highest fee to get included in a block.

• The block size is a fixed parameter today. Obviously, if the volume of transactions increases
over time, the space left for more transactions can become a scarce resource, and miners will be
more apt to deliberately delaying a transaction with a low fee. This will dramatically drop the
probabilities for low fees and their corresponding expected values by time.

• Fees are decided by the users, leading to a possible race among user fees. Such a situation would
make the probabilities difficult to predict, and expected values of users might drop even faster.

• The fairness is a locally perceived concept, and it must indeed be tracked. This needs further
detection mechanisms not included in the current systems.

In general, most of the work is focused on fairness to users, such as [21], but very few on block
creators. There is even less about the Tendermint protocol. In [30], the fairness policy in Tendermint is
discussed in order to correctly punish Byzantines. This aspect is crucial as the correct agents would

Information 2019, 10, 378 12 of 14

find a system unfair if incorrect ones are rewarded. This paper also addresses Factom [31], Enigma [32],
and Hawk [33], protocols which provide various ways of managing such policies. Jalalzai et al. [34]
implemented and evaluated the performance of different BFT based protocols for blockchains under
normal conditions as well as when byzantine failures are encountered in the network, and also
calculated the reliability of each protocol under the desired throughput.

8. Conclusions and Future Work

Tendermint introduces a class of Blockchain protocols which relies on committees, stakes,
and delegators. It aims at solving different issues from the Bitcoin-like blockchains, including
the fairness. In this paper, we show that we implemented a simulation model of Tendermint to analyze
its fairness using MaDKit. We then highlight the strengths and weaknesses of Tendermint based on
the results generated by the execution of this implementation. Thanks to its PBFT consensus, more
agents are involved in the block creation process (and rewarded for their involvement) and thus the
protocol is more fair compared to Bitcoin-like blockchains. We also show that the delegators play a
crucial role by giving more importance to agents who want to be involved without having enough
stakes. However, the Tendermint protocol suffers from flaws that exclude agents for various reasons,
especially when they do not have enough information on time or do not adapt rapidly. We proposed to
delay the rewarding and included the improvements proposed in [24]. Those modifications upgrade
the original model as seen in the results.

In this paper, we did not study the security limits of the Tendermint protocol with incorrect agents.
We also did not study more intelligent agents who could take more profitable actions for them and the
system. For instance, the delegators could have smarter processes for selecting their validators and
how much they invest. We also did not study the influence of fees for the transaction selections and
rewarding. Indeed, the agents have to be rewarded as soon as their messages are received. In a more
realistic system, validated transactions can be chosen by the proposers and they may refuse some of
them. All those issues can be studied in further research.

Author Contributions: Conceptualization, Ö.G.; methodology, Ö.G.; software, M.A.D. and N.L.; validation, N.L.,
M.A.D. and Ö.G.; investigation, N.L., M.A.D. and Ö.G.; writing–original draft preparation, Ö.G.; writing–review
and editing, N.L., M.A.D. and Ö.G.; visualization, M.A.D.; supervision, Ö.G.; project administration, Ö.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyzes, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

PBFT Practical Byzantine Fault Tolerance
PoS Proof-of-Stake
MAX Multi-Agent eXperimenter
MaDKit Multi-Agent Development Kit

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2008. Available online: http://www.bitcoin.org/
bitcoin.pdf (accessed on 29 November 2019).

2. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Available online: http:
//gavwood.com/Paper.pdf (accessed on 27 November 2019)..

3. Goodman, L.M. Tezos – s Self-Amending crypto-ledger. White Paper. 2014. Available online: https:
//tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf (accessed on 29 November 2019)

4. Buchman, E.; Kwon, J.; Milosevic, Z. The latest gossip on BFT consensus. arXiv 2018, arXiv:1807.04938

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf

Information 2019, 10, 378 13 of 14

5. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; Caro, A.D.; Enyeart, D.; Ferris, C.;
Laventman, G.; Manevich, Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. arXiv 2018, arXiv:1801.10228.

6. Back, A. Hashcash-A Denial of Service Counter-Measure; Technical report; 2002. Available online: http:
//www.hashcash.org/papers/hashcash.pdf (accessed on 29 November 2019).

7. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation, New Orleans, LA, USA, 22–25 February 1999;
USENIX Association: Berkeley, CA, USA, 1999; pp. 173–186.

8. Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A Survey on Consensus
Mechanisms and Mining Strategy Management in Blockchain Networks. IEEE Access 2019, 7, 22328–22370.
doi:10.1109/ACCESS.2019.2896108.

9. Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. (Leader/Randomization/Signature)-Free Byzantine
Consensus for Consortium Blockchains. Available online: http://csrg.redbellyblockchain.io/doc/
ConsensusRedBellyBlockchain.pdf (accessed on 27 November 2019).

10. Decker, C.; Seidel, J.; Wattenhofer, R. Bitcoin Meets Strong Consistency. In Proceedings of the 17th
International Conference on Distributed Computing and Networking Conference (ICDCN), Singapore,
4–7 January 2016.

11. Kokoris-Kogias, E.; Jovanovic, P.; Gailly, N.; Khoffi, I.; Gasser, L.; Ford, B. Enhancing Bitcoin Security and
Performance with Strong Consistency via Collective Signing. In Proceedings of the 25th USENIX Conference
on Security Symposium, Austin, TX, USA, 10–12 August 2016; USENIX Association: Berkeley, CA, USA,
2016; pp. 279–296.

12. Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. In International Conference on
Financial Cryptography and Data Security; Springer: Berlin, Germany, 2014; pp. 436–454.

13. Lewenberg, Y.; Sompolinsky, Y.; Zohar, A. Inclusive block chain protocols. In International Conference on
Financial Cryptography and Data Security; Springer: Berlin, Germany, 2015; pp. 528–547.

14. Eyal, I. The miner’s dilemma. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose,
CA, USA, 17–21 May 2015; pp. 89–103.

15. Sapirshtein, A.; Sompolinsky, Y.; Zohar, A. Optimal selfish mining strategies in bitcoin. In International
Conference on Financial Cryptography and Data Security; Springer: Berlin, Germany, 2016; pp. 515–532.

16. Eyal, I.; Gencer, A.E.; Sirer, E.G.; Van Renesse, R. Bitcoin-NG: A Scalable Blockchain Protocol. In Proceedings
of the 13th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA,
16–18 March 2016; pp. 45–59.

17. Göbel, J.; Keeler, H.P.; Krzesinski, A.E.; Taylor, P.G. Bitcoin blockchain dynamics: The selfish-mine strategy
in the presence of propagation delay. Perform. Eval. 2016, 104, 23–41.

18. Pass, R.; Shi, E. FruitChains: A Fair Blockchain. Cryptology ePrint Archive, Report 2016/916. 2016.
Available online: http://eprint.iacr.org/2016/916.pdf (accessed on 27 November 2019).

19. Carlsten, M.; Kalodner, H.; Weinberg, S.M.; Narayanan, A. On the instability of bitcoin without the block
reward. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016; pp. 154–167.

20. Liu, J.; Li, W.; Karame, G.O.; Asokan, N. Towards Fairness of Cryptocurrency Payments. arXiv 2016,
arXiv:1609.07256.

21. Gürcan, Ö.; Del Pozzo, A.; Tucci-Piergiovanni, S. On the Bitcoin Limitations to Deliver Fairness to Users.
In On the Move to Meaningful Internet Systems. OTM 2017 Conferences; Panetto, H., Debruyne, C., Gaaloul, W.,
Papazoglou, M., Paschke, A., Ardagna, C.A., Meersman, R., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; Volume 10573, pp. 589–606. doi:10.1007/978-3-319-69462-7_37.

22. Gürcan, Ö.; Ranchal Pedrosa, A.; Tucci-Piergiovanni, S. On Cancellation of Transactions in Bitcoin-Like
Blockchains. In On the Move to Meaningful Internet Systems. OTM 2018 Conferences; Panetto, H.,
Debruyne, C., Proper, H.A.; Ardagna, C.A., Roman, D., Meersman, R., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; Volume 11229, pp. 516–533. doi:10.1007/978-3-030-02610-3_29.

23. Gürcan, Ö. Multi-Agent Modelling of Fairness for Users and Miners in Blockchains. In Proceedings of the
2nd Workshop on Block Chain Technologies 4 Multi-Agent Systems (BCT4MAS), Co-Located with PAAMS
2019, Avila, Spain, 26–28 June 2019.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://csrg.redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf
http://csrg.redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf
http://eprint.iacr.org/2016/916.pdf
https://doi.org/10.1007/978-3-319-69462-7_37
https://doi.org/10.1007/978-3-030-02610-3_29

Information 2019, 10, 378 14 of 14

24. Amoussou-Guenou, Y.; Del Pozzo, A.; Potop-Butucaru, M.; Tucci-Piergiovanni, S. Correctness and Fairness
of Tendermint-Core Blockchains; Research Report; LIP6 UMR 7606, UPMC Sorbonne Universités: Paris,
France, 2018.

25. Kwon, J. Tendermint: Consensus without Mining; White Paper. 2014. Available online: https://pdfs.
semanticscholar.org/df62/a45f50aac8890453b6991ea115e996c1646e.pdf (accessed on 29 November 2019).

26. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall Press: Upper Saddle
River, NJ, USA, 2009.

27. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. In Advances in
Cryptology—CRYPTO ’87: Proceedings; Pomerance, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp.
369–378. doi:10.1007/3-540-48184-2_32.

28. Gutknecht, O.; Ferber, J. The MadKit Agent Platform Architecture. In Workshop on Infrastructure for Scalable
Multi-Agent Systems at the International Conference on Autonomous Agents; Springer: Berlin/Heidelberg,
Germany, 2000; Volume 1887. doi:10.1007/3-540-47772-1_5.

29. Pass, R.; Shi, E. FruitChains: A Fair Blockchain. In Proceedings of the ACM Symposium on Principles of
Distributed Computing, Washington, DC, USA, 25–27 July 2017; ACM Press: New York, NY, USA, 2017;
pp. 315–324. doi:10.1145/3087801.3087809.

30. Herlihy, M.; Moir, M. Enhancing accountability and trust in distributed ledgers. arXiv 2016, arXiv:1606.07490.
31. Snow, P.; Deery, B.; Kirby, P.; Johnston, D. Factom ledger by consensus. 2015. Available online: https:

//factomize.com/uploads/FactomLedgerbyConsensus.pdf (accessed on 29 November 2019).
32. Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In Proceedings of the 2016 IEEE symposium on security and privacy
(SP), San Jose, CA, USA, 22–26 May 2016; pp. 839–858.

33. Zyskind, G.; Nathan, O.; Pentland, A. Enigma: Decentralized computation platform with guaranteed privacy.
arXiv 2015, arXiv:1506.03471.

34. Jalalzai, M.M.; Richard, G.; Busch, C. An Experimental Evaluation of BFT Protocols for Blockchains.
In Blockchain—ICBC 2019; Joshi, J., Nepal, S., Zhang, Q., Zhang, L.J., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 34–48.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pdfs.semanticscholar.org/df62/a45f50aac8890453b6991ea115e996c1646e.pdf
https://pdfs.semanticscholar.org/df62/a45f50aac8890453b6991ea115e996c1646e.pdf
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-47772-1_5
https://doi.org/10.1145/3087801.3087809
https://factomize.com/uploads/FactomLedgerbyConsensus.pdf
https://factomize.com/uploads/FactomLedgerbyConsensus.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contributions
	Organization

	Background
	Practical Byzantine Fault Tolerance
	Tendermint Protocol

	Tendermint Default Model
	Overall System Model
	Fairness Model
	Blockchain Model
	Validator Model
	Delegator Model

	Tendermint Fairness Model
	Simulations
	Simulation Experiments
	Experimental Setup

	Results and Discussion
	Results
	Discussion

	Related Work
	Conclusions and Future Work
	References

