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Abstract: Manycast routing and spectrum assignment (RSA) in elastic optical networks (EONs) has
become a hot research field. In this paper, the mathematical model and high efficient algorithm to
solve this challenging problem in EONs is investigated. First, a multi-objective optimization model,
which minimizes network power consumption, the total occupied spectrum, and the maximum
index of used frequency spectrum, is established. To handle this multi-objective optimization model,
we integrate these three objectives into one by using a weighted sum strategy. To make the population
distributed on the search domain uniformly, a uniform design method was developed. Based on this,
an improved grey wolf optimization method (IGWO), which was inspired by PSO (Particle Swarm
Optimization, PSO) and DE (Differential Evolution, DE), is proposed to solve the maximum model
efficiently. To demonstrate high performance of the designed algorithm, a series of experiments
are conducted using several different experimental scenes. Experimental results indicate that the
proposed algorithm can obtain better results than the compared algorithm.
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1. Introduction

The rapid growth of numerous high-rate various applications, such as internet protocol television,
video on demand, and cloud computing, requires an efficient networking infrastructure; the future
optical network tends to be dynamic, heterogeneous, and unpredictable [1,2]. To tackle this issue,
elastic optical networks (EONs) [3] are proposed to realize flexible and efficient spectrum allocation
with much finer spectrum granularity. In particular, EONs provide just-right bandwidth for the
arriving request connection dynamically, which brings better spectrum assignment flexibility [4,5].
Orthogonal frequency division multiplexing is a multi-carrier modulation technology. It can distribute
the high-speed data stream into several orthogonal low-speed subcarriers [6]. The adjacent subcarriers
have the spectrum overlapping of a subcarrier bandwidth. This subcarrier is referred to the frequency
slot (FS). The elastic optical network can allocate several consecutive frequency slots to each connection
request according to the required bandwidth by using orthogonal frequency division multiplexing as a
spectrum-efficient modulation technology. Adjacent spectrum bandwidths assigned to two connection
requests in the same link should be separated by the guaranteed frequency slots (GFs). Similar to
the routing and wavelength assignment problem in wavelength division multiplexing networks [7],
a routing and spectrum assignment (RSA) problem exists in the elastic optical network [8]. In order
to establish a light-path for the connection request in the elastic optical network, three constraints
should be satisfied as follows: (1) Spectrum consistency means that the start frequency slot index
on different links of a path must be identical; (2) Spectrum continuity means that we must assign
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consecutive frequency slots to a specific connection request. That is to say, a large connection request
can not be divided into several smaller connection requests; (3) A frequency slot on a link should
be assigned to one connection request at most. Generally speaking, the objective of static routing
and spectrum assignment is to minimize the the maximum index of the used frequency slots with
unlimited resources, and to minimize the ratio of blocking with limited resources. Certainly, there are
some other optimization objectives, such as energy consumption, cost, etc.

In this paper, we focus on the manycast routing and spectrum assignment problem in EONs.
The main contributions of this paper are as follows. First, to minimize network power consumption,
the total occupied spectrum and maximum index of the used frequency spectrum, we established
a multi-objectives optimization model. Second, we first integrate these three objectives into one by
using a weighted sum strategy to handle this multi-objective optimization model. Then, an improved
grey wolf optimization method (IGWO), which was inspired by PSO (Particle Swarm Optimization,
PSO) and DE (Differential Evolution, DE) is proposed to solve the maximum model efficiently. Finally,
a series of experiments are conducted in several different experimental scenes.

The rest of this paper is organized as follows. Some related works are introduced in Section 2.
Section 3 gives the network architecture and the optimization model. To solve the optimization model
effectively, we propose an improved grey wolf optimization algorithm in Section 4. To evaluate the
algorithm proposed, simulation experiments are conducted, and the experimental results are analyzed
in Section 5. The paper is concluded with a summary in Section 6.

2. Related Works

To detect potential access conflicts and prevent both processes from updating data simultaneously
in distributed database systems, the concept of manycast has been proposed first [9,10]. The problem of
manycasting over optical burst-switched networks has been investigated [11–13]. The main challenge
is providing reliability despite random contentions optical burst-switched networks for the problem of
manycasting. This research focuses on distributed routing or unicast routing algorithms to provide
reliable manycast for dynamic traffic. Some literature is focusing on the problem of manycast routing
and wavelength assignment in wavelength division multiplexing networks (WDM) [14–16]. However,
this research is focusing on the manycast routing and wavelength assignment in wavelength division
multiplexing networks. Thus, these algorithms can not work on the elastic optical networks well.
There are some different network properties among optical burst-switched networks, wavelength
division multiplexing networks, and elastic optical networks; the manycast routing and spectrum
assignment problem in elastic optical networks mainly considers efficient network resource utilization
and request blocking probability reduction. The literature [16] investigated the manycast routing
and spectrum assignment (MRSA) problem in WDM networks. The proposed heuristics observably
improved network performance in required wavelengths reduction over realistic networks. However,
some factors have not been considered in EONs, such as modulation level and spectrum assignment
constraints. Because of unique spectrum flexibility in EONs, it has an essential difference compared to
supporting manycast with WDM networks and optical burst-switched networks. Thus far, there have
only been a few studies about the MA-RMLSA problem in EONs. The energy-efficiency MA-RMLSA
strategy was proposed by green-energy aware destination nodes selection [17]. The proposed algorithm
has a high performance on decreasing the energy consumption of the network. While the authors
focus on the network energy consumption, it may not have advantages over some other objectives,
such as spectrum resource utilization, maximum index of used frequency slots, etc. Impairment-aware
manycast routing, modulation level, and spectrum assignment problem in EONs are investigated. Two
decomposed MILPs (Mixed Integer Linear Programming) and corresponding heuristic algorithms
are proposed to find a light-tree and assign modulation level and spectrum to the given requests,
sequentially [18]. The authors in [19] studied an integrated approach to optimally place content replicas
across DCs (Data Centers) by concurrently solving the routing and wavelength assignment (RWA)
problem for both inter-DC content replication and synchronization traffic following the manycast
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routing paradigm, and end-user-driven user-to-DC communication following the anycast routing
paradigm, with the objective to reduce the overall network capacity usage.

3. Problem Description and Mathematical Modeling

In this section, problem description and mathematical modeling of the manycast routing and
spectrum assignment (RSA) problem in elastic optical networks (EONs) will be given.

3.1. Problem Description

We use an undirected graph V = (V, E) to denote a network, where V = {V1, V2, · · · , VNV} and
NV denote the nodes set and the number of the nodes in the network, respectively. E = {lij|Vi, Vj ∈ V}
denotes the link set, and NE denotes the number of links in the network. If lij = lji = 1, there is a link
between Vi and Vj; otherwise, lij = lji = 0. Let f = { f1, f2, · · · , fu, · · · , fNF} denote the set of available
frequency slots (FSs) in each link, and NF be the number of frequency slots.

R = {R1, R2, · · · , Rk, · · · , RNR} denotes a set of connection requests, where NR is the number of
connection requests, and Rk is the k-th connection request. Rk can be represented as Rk = (sk, Dk, Bk),
where sk and Bk represent the source node and the numbers of frequency slots of Rk required.

Dk = {D1
k , D2

k , · · · , DNk
D

k } is the set of destination node, where Nk
D is the number of destination node;

when Nk
D = 1, it will be a unicast routing request. In this paper, we assume that all nodes in the

network are able to split their incoming connection request to any number of other nodes. This
architecture is the same as the scheme introduced in [16].

The manycast routing and spectrum assignment (RSA) problem in elastic optical networks (EONs)
can be summarized as: to achieve some objectives, the proper path should be selected for each
connection request. Then, the optimal scheme of spectrum assignment should be determined for all of
the connection requests.

3.2. Mathematical Modeling

In this section, we present a mathematical model for manycast routing and spectrum assignment
in EONs. The first objective is minimize the total power consumption, and the total power consumption
is calculated by [17]

P = ∑
Vi∈V

∑
Vj∈V

Qij AijPOA + ∑
Vj∈V

PjPOXC(Vj), (1)

where Qij is a boolean variable; Qij = 1 if and only if link lij is used in the network to provision all
manycast requests. Aij and POA denote the number of optical amplifiers in the link lij and the power
consumption of each optical amplifier, respectively. Pj is a boolean variable; Pj = 1 if and only if node
Vj is used in the network to provision all manycast requests. POXC(Vj) is the power consumption of
optical cross connect in node Vj. Since Equations (2) and (3) satisfy

∑
Vi∈V

∑
Vj∈V

Qij AijPOA ≤ ∑
Vi∈V

∑
Vj∈V

AijPOA, (2)

∑
Vj∈V

PjPOXC(Vj) ≤ ∑
Vj∈V

POXC(Vj), (3)

the total power consumption can be normalized as

F1 =

∑
Vi∈V

∑
Vj∈V

Qij AijPOA + ∑
Vj∈V

PjPOXC(Vj)

∑
Vi∈V

∑
Vj∈V

AijPOA + ∑
Vj∈V

POXC(Vj)
. (4)

Thus, we have 0 ≤ F1 ≤ 1, and the first objective function can be expressed as
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min F1 = min


∑

Vi∈V
∑

Vj∈V
Qij AijPOA + ∑

Vj∈V
PjPOXC(Vj)

∑
Vi∈V

∑
Vj∈V

AijPOA + ∑
Vj∈V

POXC(Vj)

 . (5)

The second objective is minimize the total occupied frequency slots, and the total
occupied spectrum is

FS = ∑
Rk∈R

∑
Vi∈V

∑
Vj∈V

∑
fu∈ f

yku
ij , (6)

where yku
ij represents a binary valuable; yku

ij = 1 if and only if the frequency slot fu on link lij is
allocated to connection request Rk. We have FS ≤ NE × NF, and the total occupied frequency slots can
be normalized as

F2 =
1

NE × NF
∑

Rk∈R
∑

Vi∈V
∑

Vj∈V
∑

fu∈ f
yku

ij . (7)

Thus, 0 ≤ F2 ≤ 1, and the second objective function can be represented by

min F2 = min

 1
NE × NF

∑
Rk∈R

∑
Vi∈V

∑
Vj∈V

∑
fu∈ f

yku
ij

 . (8)

The third objective is minimize the maximum index of used frequency slots (MIUFS) in the
network; we can express this objective function as

min F3 = min

{
1

NF
max
lij∈E

n(Fij)

}
, (9)

where n(Fij) denotes the maximum index of used frequency slots on link lij. Since we have
n(Fij) ≤ NF(∀lij ∈ E), 0 ≤ F3 ≤ 1.

To simplify the model, we integrate the three objectives into one to be minimized by the sum
weighted strategy as follows:

min F = min {α1F1 + α2F2 + α3F3} , (10)

where α1, α2, and α3 are three weights to adjust the importance of the three objectives, and we have
0 ≤ α1, α2, α3 ≤ 1, α1 + α2 + α3 = 1. Since 0 ≤ F1, F2, F3 ≤ 1, 0 ≤ f ≤ 1. The objective should be made
under some conditions. These conditions constitute the constraints of the problem as follows:

Constraint (a): the same spectrum slots are not assigned to two requests. That is,

∑
Rk∈R

yku
ij ≤ 1, ∀Vi, Vj ∈ V, fu ∈ f . (11)

Constraint (b): contiguous frequency slots should be allocated to the connection request,

u+Bk−1

∑
u′=u

yku′
ij ≥ Bk × xku

ij , ∀Rk ∈ R, Vi, Vj ∈ V, fu ∈ f , (12)

where xku
ij represents a binary valuable, xku

ij = 1 if and only if fu is the first frequency slot on link lij
allocated to connection request Rk.

Constraint (c): all the destinations must be reached, we can express this constraint as

∑
Vi∈V

∑
Vj∈Dk

∑
fu∈ f

xku
ij = ND, ∀Rk ∈ R. (13)
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Constraint (d): at least one outgoing traffic should leave the source node.

∑
Vj∈V

∑
fu∈ f

xku
sk j ≥ 1, ∀Rk ∈ R. (14)

Constraint (e): it ensures that the source node could not have incoming traffic:

∑
Vi∈V

∑
fu∈ f

xku
isk

= 0, ∀Rk ∈ R. (15)

Constraint (f): each node, except the source node, can have at most one piece of incoming traffic.

∑
Vi∈V\{sk}

∑
fu∈ f

xku
ij ≥ 1, ∀Rk ∈ R, Vj ∈ V. (16)

Constraint (g): one node, except the source node, could not have outgoing traffic unless it has
incoming traffic,

∑
Vj∈V

xku
ij ≤ NV ∑

Vj∈V
xku

ji , ∀Rk ∈ R, fu ∈ f , Vi 6= sk. (17)

Constraint (h): if a node is not one of the target destinations and has incoming traffic, it should
have one or more pieces of outgoing traffic,

∑
Vj∈V

xku
ij ≤ ∑

Vj∈V
xku

ji , ∀Rk ∈ R, fu ∈ f , Vi /∈ Dk. (18)

Based on the objectives and constraints above, we can set up a global constrained optimization
model as follows: 

min F = min {α1F1 + α2F2 + α3F3}
s.t.
(a) ∑

Rk∈R
yku

ij ≤ 1, ∀Vi, Vj ∈ V, fu ∈ f ;

(b)
u+Bk−1

∑
u′=u

yku′
ij ≥ Bk × xku

ij , ∀Rk ∈ R, Vi, Vj ∈ V, fu ∈ f ;

(c) ∑
Vi∈V

∑
Vj∈Dk

∑
fu∈ f

xku
ij = ND, ∀Rk ∈ R;

(d) ∑
Vj∈V

∑
fu∈ f

xku
sk j ≥ 1, ∀Rk ∈ R;

(e) ∑
Vi∈V

∑
fu∈ f

xku
isk

= 0, ∀Rk ∈ R;

( f ) ∑
Vi∈V\{sk}

∑
fu∈ f

xku
ij ≥ 1, ∀Rk ∈ R, Vj ∈ V;

(g) ∑
Vj∈V

xku
ij ≤ NV ∑

Vj∈V
xku

ji , ∀Rk ∈ R, fu ∈ f , Vi 6= sk;

(h) ∑
Vj∈V

xku
ij ≤ ∑

Vj∈V
xku

ji , ∀Rk ∈ R, fu ∈ f , Vi /∈ Dk.

(19)

The problem of manycast routing and spectrum assignment in EONs is the hardest combinatorial
optimization problems. The existing algorithms cannot be applied directly, and are necessary to make
some improvements or revisions. To solve the global constrained optimization model established,
we propose an improved grey wolf optimization method and denote it as IGWO.

4. Grey Wolf Optimization (GWO)

The Grey Wolf Optimization (GWO) algorithm simulates the leadership hierarchy and hunting
mechanism of grey wolves [20] and has been proven to be an effective technique for many hard
problems [21–23]. However, it is not suitable to directly apply the algorithms mentioned above to the
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problems of manycast routing and spectrum assignment in EONs, and it is necessary to make some
improvements or revisions on them. In this section, we will describe the proposed IWGO detailed.

4.1. Encoding Scheme

In the manycast routing and spectrum assignment problem, we should determine the optimal
scheme of routing and spectrum assignment. For the spectrum assignment, it is much easier to assign
spectra using first fit strategy [6] than using the method with encoding. Thus, it only needs to encode
for routing scheme.

Each individual in routing population represents a routing scheme for all the connection requests.

Qk = {Q1
k , Q2

k , · · · , Qq
k, · · · , Q

NQ
k

k } denotes the candidate paths set of connection request Rk that is
calculated by the K-Shortest path algorithm in advance, where NQ

k is the number of the candidate
paths and Qq

k is the q-th path. We assume that y = (y1, y2, · · · , yNR) is an individual in path selection
population. yk = q if and only if Rk occupies the path Qq

k.

4.2. Population Initialization

In the proposed improved Grey Wolf Optimization (IWGO) algorithm, we use uniform design
method to generate the population. To generate points to be uniformly distributed on the experimental
domain, a uniform design method was developed. It generates a small number of the uniformly
distributed representative points in a domain by using a uniform array U(S, H) = [Ui,j]H×S, where
Ui,j denotes the level of the j-th factor in the i-th combination with the j-th factor representing the j-th
variable and its level being its value [24,25].

To construct uniform design array, many methods are presented—not only simple but also efficient
methods are proposed. Firstly, we construct a hypercube over an S-dimensional space:

CS = {(c1, c2, · · · , cS)|ai ≤ ci ≤ bi, i = 1, 2, · · · , S} ,

where ai and bi are the lower and upper bounds of the i-th factor (i.e., i-th variable), respectively. Then,
a hyper-rectangle is formed between ai and di as follows:

C(d) = {(c1, c2, · · · , cS)|ai ≤ ci ≤ di, i = 1, 2, · · · , S} ⊂ CS.

Finally, H uniformly distributed points are selected randomly from CS. Assume that H(d) is the
number of points fallen into the hyper-rectangle C(d), and the fraction of points in C(d) is H(d)/H.
As the volume of hypercube CS is ∏S

i=1 (bi − ai), the volume of C(d) is ∏S
i=1 (di − ai). The H uniform

distributed points in CS should minimize

sup
x∈CS


H(d)

H
−

S
∏
i=1

(di − ai)

S
∏
i=1

(bi − ai)

 . (20)

Hence, we can map these H points in CS to the problem domain with S factors and χ levels
uniformly, where H is an odd and H > S. It has been proved that Ui,j can be given by [26]:

Ui,j = (iσj−1 mod χ) + 1, (21)

where σ is a constant related to the number of factors S and level χ. The H sample points scattered
uniformly in the hypercube can be selected.
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4.3. Improved Grey Wolf Optimization (IGWO) for Manycast RSA

In the Grey Wolf Optimization method, each grey wolf denotes an individual. Four types of
grey wolves β, γ, δ, and ω denote the optimal individual, suboptimum individual, third-optimum
individual, and other individuals. Assume that there are NI grey wolves, and the position of i(i =
1, 2, · · · , NI)-th wolf can be denoted as xi = (x1

i , x2
i , · · · , xd

i , · · · , xD
i ). We can update the position of

i-th wolf by
xd

i (t + 1) = zd
p(t)− A · |C · zd

p(t)− xd
i (t)|, (22)

where zp = (z1
i , z2

i , · · · , zd
i , · · · , zD

i ) and t denote the position vector of the prey and the current
iteration, respectively. A and C denote coefficient vectors, and are calculated as follows:

A = 2 · a · r1 − a, (23)

C = 2 · a · r2, (24)

where r1, r2 are two random vectors in [0, 1]; a linearly decreases from 2 to 0 during the course of
iterations. The position of other wolves can be updated according to the position of individual β, γ, δ

(denoted as xβ, xγ and xδ) 
xd

i,β(t + 1) = xd
β(t)− A · |C · xd

β(t)− xd
i (t)|,

xd
i,γ(t + 1) = xd

γ(t)− A · |C · xd
γ(t)− xd

i (t)|,
xd

i,δ(t + 1) = xd
δ(t)− A · |C · xd

δ(t)− xd
i (t)|.

(25)

To enhance the search ability and increase the convergent speed, an efficient position update
method of individual is proposed as follows:

xd
i (t + 1) =

xd
i,β(t) + xd

i,β(t) + xd
i,β(t)

3
+ r3 · (xd

i,best(t)− xd
i (t))

+ r4 · (xd
j (t)− xd

i (t)) + r5 · (Xd
i (t)− xd

i (t)),
(26)

where r3, r4 and r5 are three random vectors in [0, 1]; xi,best denotes the best position of i-th individual
in the past. xj(j 6= i) represents a random individual in current iteration. Xd

i (t) can be calculated by

Xd
i (t) =

1
µ

t

∑
t′=t−µ

xd
i (t
′), (27)

where µ(1 ≤ µ ≤ t− 1) is a constant. In this position update method of an individual, the position of
the other individual and its past position information are used like PSO and DE. Thus, it can enhance
the search ability and increase the convergent speed.

In the encoding scheme, each gene in all individuals is a positive integer. However, some real
numbers can be obtained with Equation (26). For this situation, we only use the integer portion as the
gene of the individual. In addition, some gene value, which is greater than the upper bound, can be
obtained. For this situation, we only use the integer portion as the gene of the individual. The gene
value is modulus the upper bound to make the individual update to a feasible solution. Through these
two methods, an infeasible solution can be modified as a feasible solution.

4.4. Framework of the IGWO

To make the proposed improved grey wolf optimization algorithm understood clearly, we give
the framework of the proposed algorithm in Algorithm 1. In the algorithm, step 1 is to initialize
the population according to the uniform design method. It can improve the search ability of the
algorithm. In step 2, fitness is calculated for all the wolves in the population by using the fitness
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function (objective function is defined as fitness function in this work). Step 4 to step 9 is update the
position of all the wolves by using Equation (23), Equation (24), and Equation (26). All the infeasible
solutions are converted to feasible solutions in Step 10. Step 11 is calculate the fitness for all the wolves
after the position updated. The position of optimal individual, suboptimum individual, third-optimum
individual (xβ, xγ, and xδ) are updated in step 12.

Algorithm 1: Framework of the IGWO
Input: Population size NI , Maximum iteration tmax, constant µ

Output: optimal individual
1 Population is initialized by the uniform design method, denoted as {xi|i = 1, 2, · · · , NI};
2 Fitness is calculated for all the wolves, and position of optimal individual, suboptimum

individual, third-optimum individual are denoted as xβ, xγ and xδ;
3 while t ≤ tmax do
4 for i = 1, 2, · · · , NI do
5 for d = 1, 2, · · · , D do
6 A and C are calculated according to Equations (23) and (24);
7 xd

i (t + 1) is calculated by using Equation (26);
8 end
9 end

10 Infeasible solutions are converted to feasible solutions;
11 Fitness is calculated for all the wolves, {F(xi)|i = 1, 2, · · · , NI};
12 Update the position of optimal individual, suboptimum individual, third-optimum

individual (xβ, xγ and xδ);
13 t = t + 1;
14 end

5. Experiments and Analysis

To demonstrate the effectiveness and efficiency of the proposed algorithm, several experiments
are conducted, and the results are presented in this section. In Section 5.1, the parameters used in
the algorithms are given. Experimental results are presented in Section 5.2. Finally, the experimental
analysis is given in Section 5.3.

5.1. Parameters Setting

In the experiments, two widely used networks are used as shown in Figures 1 and 2, i.e., NSFNET
(National Science Foundation Network) with 14 nodes and 21 links and US Backbone (United States
Backbone) with 27 nodes and 44 links, respectively [27,28], respectively, in Figures 1 and 2; each
number on the link denotes the distance between adjacent nodes, and the unit of the link distance is
Km. We assume that FSs is 12.5 GHz, and transmission distance of BPSK (Binary Phase Shift Keying),
QPSK (Quadrature Phase Shift Keying), 8QAM (8 Quadrature Amplitude Modulation), 16QAM (16
Quadrature Amplitude Modulation) are 9600, 4800, 2400 and 1200 km, respectively. Four groups’
connection requests are generated, and their numbers are 250, 500, 750 and 1000, respectively. All
connection requests in every group satisfy uniform distribution among all nodes in two topologies. In
our work, a large number of experiments are conducted for each case. To make the algorithm converge
to an optimal solutions, tmax = 2000 and µ = 3 are adopted. Generally speaking, when the population
size is large, it will require a long computation time. In addition, when the population size is small, it
will result in a bad diversity of population. Thus, NI = 100 is selected in many research works. Like
existing works, we use NI = 100 in the algorithm. Each connection request requires frequency slots
that satisfy uniform distribution in [1, 10], and each link has 1000 frequency slots, i.e., NF = 1000.
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Figure 1. NSFNET topology.

Figure 2. US Backbone topology.

5.2. Experimental Results

To demonstrate the performance of the proposed algorithm, we compare the proposed algorithm
IGWO with other three algorithms. The first is EEM, which was proposed in [17]. Another one was
proposed in [29], and denoted as RSAGA. RSAGA optimizes the MA-RMLSA problem in routing
constitution, modulation level allocation, and spectrum assignment jointly, to enhance the performance
of the network. In addition, we also compared IGWO with GWO (Grey Wolf Optimization), which
was proposed in [20].

To demonstrate the performance of proposed model and algorithm, we design two experimental
scenes. In the first scene, we fixed the number of destination nodes as ND = NV/3 and ND = 2NV/3,
i.e., Nd = ND/NV = 1/3 and Nd = ND/NV = 2/3. That is to say, the number of destination nodes
is generated in [NV/6, NV/3] and [NV/3, 2NV/3] randomly. Figure 3 shows the results obtained
in NSFNST topology and US Backbone topology when α1 = 1, α2 = 0, α3 = 0. Figure 4 shows
the results obtained in NSFNST topology and US Backbone topology when α1 = 0, α2 = 1, α3 = 0.
Figure 5 shows the results obtained in NSFNST topology and US Backbone topology when
α1 = 0, α2 = 0, α3 = 1. Figure 6 shows the results obtained in NSFNST topology and US Backbone
topology when α1 = α2 = α3 = 1/3. In each experiment, the number of connection requests are set as
NR = ρNV(NV − 1), and ρ = 0.25, 0.5, 1, 2 and 4, respectively. In each figure, the experimental results
of ND = NV/3 are given with a full line, and experimental results of ND = 2NV/3 are given with a
dashed line.
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Figure 3. Experimental results obtained when α1 = 1, α2 = 0, α3 = 0.
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Figure 4. Experimental results obtained when α1 = 0, α2 = 1, α3 = 0.
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Figure 5. Experimental results obtained when α1 = 0, α2 = 0, α3 = 1.
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Figure 6. Experimental results obtained when α1 = 1, α2 = 1, α3 = 1.

In the second scene, we fixed the three weights α1, α2 and α3 as α1 = 1/3, α21/3 and α3 = 1/3,
i.e., the objective function is min F = min{α1F1 + α2F2 + α3F3}. Figures 7–11 show the results obtained
in NSFNST topology and US Backbone topology when ρ = 0.25, ρ = 0.5, ρ = 1, ρ = 2 and ρ = 4,
respectively. In each experiment, the number of connection requests are set as ND = θNV , and θ = 0.2,
0.4, 0.6, 0.8 and 1, respectively.
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Figure 7. Experimental results obtained when ρ = 0.25.

0.2 0.4 0.6 0.8 1.0

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

F

 

IGWO EEM RSAGA GWO

(a) results obtained in NSFNET

0.2 0.4 0.6 0.8 1.0
0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

F

 

IGWO EEM RSAGA GWO

(b) results obtained in US Backbone

Figure 8. Experimental results obtained when ρ = 0.5.
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Figure 9. Experimental results obtained when ρ = 1.
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Figure 10. Experimental results obtained when ρ = 2.
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Figure 11. Experimental results obtained when ρ = 4.

5.3. Experimental Analysis

In the first experimental scene, the experimental results are obtained by the proposed algorithm
(IGWO) and three compared algorithms (EEM, RSAGA, and GWO) are shown in Figures 3–6.
In Figure 5, the experimental results are obtained in NSFNET and US BackBone when α1, α2 and
α3 are selected as 1, 0, and 0, respectively. Thus, the objective function is to minimize total power
consumption. From the experimental results, we can see that the IGWO can obtain better results than
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the three compared algorithms. The total power consumption obtained by the IGWO is 2.8%–4.9%
less than those obtained by EEM, RSAGA, and GWO when the number of connection requests
is 0.25 NV(NV − 1). When the number of connection requests is 4 NV(NV − 1), the total power
consumption obtained by IGWO is 6.9%–11.6% less than those obtained by EEM, RSAGA, and GWO,
respectively. That is to say, the IGWO can obtain a smaller total power consumption and save more
power used than EEM, RSAGA, and GWO with the increase of the number of connection requests.
The RSAGA algorithm is to minimize the maximum index of used frequency slots, and the EEM
algorithm can decrease the energy consumption. Thus, the total power consumption obtained by
EEM is less than that obtained by RSAGA. The proposed algorithm IGWO uses uniform design to
generate initial population; it can enhance the search ability of the algorithm. Thus, it can obtain the
best scheme among the three algorithms. From the experimental results, we can see that the total
power consumption obtained when the number of destination node is NDC = 2NV/3 is larger than
that obtained when the number of destination node is NDC = NV/3 for the same number of connection
requests. With the increase of destination node, it will increase the number of connection requests.
Thus, the total power consumption is increased.

When α1, α2 and α3 are selected as 0, 1, and 0, the objective function is to minimize the total
occupied frequency slots. The experimental results obtained in two networks are shown in Figure 4
with the different number of connection requests. From the experimental results, we can see that the
IGWO can obtain better results than the three compared algorithms. The total occupied frequency
slots obtained by the IGWO is 4.2%–6.2% less than those obtained by EEM, RSAGA, and GWO when
the number of connection requests is 0.25 NV(NV − 1). When the number of connection requests is 4
NV(NV − 1), the total power consumption obtained by IGWO is 8.6%–10.7% less than those obtained
by EEM, RSAGA, and GWO, respectively. That is to say, the IGWO can obtain a smaller total occupied
frequency slots and save more frequency slots used than EEM, RSAGA, and GWO with the increase in
the number of connection requests. The proposed algorithm IGWO uses uniform design to generate
initial population; it can enhance the search ability of the algorithm. Thus, it can obtain the best
scheme among the three algorithms. From the experimental results, we can see that the total occupied
frequency slots obtained when the number of destination node is NDC = 2NV/3 is larger than that
obtained when the number of destination node is NDC = NV/3 for the same number of connection
requests. With the increase of destination node, it will increase the number of connection requests.
Thus, the total occupied frequency slots is increased.

In Figure 5, the experimental results are obtained in NSFNET and US BackBone when α1, α2 and
α3 are selected as 0, 0, and 1, respectively. Thus, the objective function minimizes the maximum index
of used frequency slots. From the experimental results, we can see that the IGWO can obtain better
results than the three compared algorithms. The total occupied frequency slots obtained by the IGWO
are 3.8%–5.9% less than those obtained by EEM, RSAGA, and GWO when the number of connection
requests is 0.25 NV(NV − 1). When the number of connection requests is 4 NV(NV − 1), the maximum
index of used frequency slots obtained by IGWO is 8.1%–11.2% less than those obtained by EEM,
RSAGA, and GWO, respectively. That is to say, the IGWO can obtain a smaller maximum index of used
frequency slots than EEM, RSAGA, and GWO with the increase of the number of connection requests.
The proposed algorithm IGWO uses uniform design to generate initial population and well-designed
strategy of position update; it can enhance the search ability of the algorithm. Thus, it can obtain the
best scheme among the three algorithms. From the experimental results, we can see that the maximum
index of used frequency slots obtained when the number of destination node is NDC = 2NV/3 is larger
than that obtained when the number of destination node is NDC = NV/3 for the same number of
connection requests. With the increase of destination node, it will increase the number of connection
requests. Thus, the maximum index of used frequency slots is increased.

Figure 6 shows that the experimental results obtained in NSFNET and US BackBone when α1, α2

and α3 are selected as 1, 1, and 1, respectively. Similarly, we also can see that the IGWO can obtain
better results than EEM, RSAGA, and GWO. The objective function obtained by the IGWO is 3.7%–5.8%
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less than those obtained by EEM, RSAGA, and GWO when the number of connection requests is 0.25
NV(NV − 1). When the number of connection requests is 4 NV(NV − 1), the objective function obtained
by IGWO is 8.2%–11.6% less than those obtained by EEM, RSAGA, and GWO, respectively. The IGWO
can obtain a smaller objective function than EEM, RSAGA, and GWO with the increase of the number of
connection requests. The proposed algorithm IGWO uses uniform design to generate initial population
and a well-designed strategy of position update; it can enhance the search ability of the algorithm.
Thus, it can obtain the best scheme among the three algorithms. From the experimental results, we can
see the objective function obtained when the number of destination nodes is NDC = 2NV/3, which is
larger than that obtained when the number of destination node is NDC = NV/3 for the same number
of connection requests. With the increase of destination node, it will increase the number of connection
requests. Thus, the objective function is increased.

In the second experimental scene, the experimental results obtained by the proposed algorithm
(IGWO) and three compared algorithms (EEM, RSAGA, and GWO) are shown in Figures 7–11. In this
experimental scene, we set α1, α2 and α3 as 1, 1 and 1, respectively. From the experimental results,
we can see that IGWO can obtain better results than EEM, RSAGA, and GWO for different connection
requests in two networks. In each figure, the objective function is increased with the increase in the
number of destination nodes. When the number of destination nodes is ND = 0.2NV , the objective
function obtained by IGWO is 3.5%–5.8% less than those obtained by EEM, RSAGA, and GWO,
respectively. The objective function obtained by the IGWO is 8.6%–11.7% less than those obtained by
EEM, RSAGA, and GWO when the number of connection requests is ND = NV . With the increase
of destination node, it will increase the number of connection requests. Thus, the objective function
is increased. In addition, EEM minimizes the total power consumption, and RSAGA minimizes
maximum index of used frequency slots, so EEM, RSAGA, and GWO cannot be distinguished when
α1, α2 and α3 as 1, 1, and 1.

As shown in the experimental results, we can see that IWGO can obtain better results than
that obtained by GWO. In the IGWO, we improved the strategy of the position update method for
the individual. The position of another individual and its past position information are used like
PSO and DE. Thus, it can enhance the search ability and increase the convergent speed. In addition,
the parameter µ is used. It can help to take advantage of the trajectory information of the individuals.
When µ = 1, the proposed IGWO degraded to the standard GWO algorithm. Position update method
can use the past µ position information when µ ≥ 1. Thus, IGWO is better than GWO for this
optimization problem. That is to say, IGWO can obtain a better solution than GWO.

6. Conclusions

In this paper, we investigate the manycast RSA problem in EONs. A multi-objective optimization
model, which minimizes network power consumption, the total occupied spectrum, and maximum
index of used frequency spectrum, is established. To solve this multi-objective optimization model,
we integrate these three objectives into one by using a weighted sum strategy. Then, an improved grey
wolf optimization method (IGWO) is proposed. To demonstrate high performance of the designed
algorithm, a series of experiments are conducted in several different experimental scenes. Experimental
results indicate that the proposed algorithm can obtain better results than the compared algorithm.
According to the experimental results, we can find that the objective function obtained by the proposed
algorithm is 3%–12% less than those obtained by compared algorithms in different networks. However,
integrating these objectives into one by using the weighted sum method also has some disadvantages.
Thus, we will investigate the efficient algorithm based on the multi-objective optimization algorithm,
such as MOEA/D, or other swarm intelligent algorithm. In addition, there are other objectives for the
manycast RSA Problem in EONs. The multi-objective optimization algorithm will be investigated to
obtain the Pareto front. Thus, it can give more decision-making plans to decision-makers.
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