
 information

Article

An Improved Word Representation for Deep Learning
Based NER in Indian Languages

Ajees A P * , Manju K and Sumam Mary Idicula

Department of Computer Science, Cochin University of Science and Technology, Kochi-682022, India;
manju@mec.ac.in (M.K); sumam@cusat.ac.in (S.M.I.)
* Correspondence: ajeesap@cusat.ac.in; Tel.: +91-9061859697

Received: 27 April 2019; Accepted: 27 May 2019; Published: 30 May 2019
����������
�������

Abstract: Named Entity Recognition (NER) is the process of identifying the elementary units in a
text document and classifying them into predefined categories such as person, location, organization
and so forth. NER plays an important role in many Natural Language Processing applications
like information retrieval, question answering, machine translation and so forth. Resolving the
ambiguities of lexical items involved in a text document is a challenging task. NER in Indian
languages is always a complex task due to their morphological richness and agglutinative nature.
Even though different solutions were proposed for NER, it is still an unsolved problem. Traditional
approaches to Named Entity Recognition were based on the application of hand-crafted features
to classical machine learning techniques such as Hidden Markov Model (HMM), Support Vector
Machine (SVM), Conditional Random Field (CRF) and so forth. But the introduction of deep learning
techniques to the NER problem changed the scenario, where the state of art results have been
achieved using deep learning architectures. In this paper, we address the problem of effective word
representation for NER in Indian languages by capturing the syntactic, semantic and morphological
information. We propose a deep learning based entity extraction system for Indian languages
using a novel combined word representation, including character-level, word-level and affix-level
embeddings. We have used ‘ARNEKT-IECSIL 2018’ shared data for training and testing. Our results
highlight the improvement that we obtained over the existing pre-trained word representations.

Keywords: Named Entity Recognition; Bi-LSTM-CRF; Indian languages; affix embedding;
character-based word composition; agglutinative languages

1. Introduction

The information available on the internet is increasing drastically. Annual growth in the number
of Internet users is also increasing. Lots of texts and images are added to the internet every second. This
information is stored on the web in an unstructured manner. Finding the relevant information from this
unstructured data is very time-consuming. The importance of information extraction (IE), a sub-branch
of Artificial Intelligence is worth mentioning at this point. Information Extraction transforms the
unstructured text into a structured form that is convenient for machine level processing. IE plays
important roles in information retrieval, question answering, summarization and so forth [1]. NER
is one of the subdomains of IE, which originated in the sixth message understanding conference
(MUC-6) [2].

Dayong Wu et al. reports that 60% of the total queries in search engines are named entities [3].
Hence identification of named entities from unstructured text has got significant attention in query
processing. Question answering systems also make use of Named Entity Recognition. Answers to
most of the questions containing the keyword ‘where’, points to an entity belonging to the class
‘location’. Hence, recognizing such entities from unstructured text is crucial for applications like

Information 2019, 10, 186; doi:10.3390/info10060186 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-4960-1865
http://dx.doi.org/10.3390/info10060186
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/6/186?type=check_update&version=2

Information 2019, 10, 186 2 of 20

question answering systems [4]. Similarly, questions containing the keyword ‘who’ seek for an answer
belonging to the class ‘person’. Building structured information from unstructured text is crucial
for such applications. Geographical navigation systems employ NER systems to access information
about nearby places. Such systems store information about named entities with their geographical
coordinates in a database.

Most of the online publication sites hold millions of scholarly articles and review papers. There
can be a substantial number of papers related to a single topic with slight variations. Retrieving the
relevant articles from this plethora of information is a challenging task. Categorizing the articles
based on entities present in them can produce good results and save the effort required for shortlisting
the articles. Integrating a NER API to the online publication sites can accelerate this categorization
process and hence the retrieval performance. NER techniques can also be incorporated in content
recommendation systems where new contents and ideas of today’s world are recommended in an
automated way. Netflix, which stands as a pillar example of success in content recommendation,
creates wonders for the fortunes of a media company by making their platforms more attractive and
event addictive. Customer support systems can make use of NER tools by categorizing the customer
feedbacks/queries based on the entities present in them. Those feedbacks/queries are assigned to the
relevant department within the organization for proper handling.

NER systems can be successfully deployed in various semantic processing pipelines of multimedia
and social network data. Amato et al. have exploited NER modules to derive instances of relevant
concepts from digitized multimedia documents [5]. These concepts were used to develop a knowledge
management system which can facilitate easy document management and retrieval in e-government
applications. Fantacci et al. have plugged the NER module in a social network based emergency
management system [6]. Social networks, which play a major role in bidirectional information
exchange, can be directly involved in crisis management for emergencies. Entities such as locations
and disaster events were extracted from social media text and disseminated as emergency alerts to
citizens located in emergency areas. Kokkinogenis et al. have deployed the NER module to identify the
traffic-related messages retrieved from Twitter automatically [7]. These messages are used to perform
the real-time sensing of traffic information. Such information can be further used for providing insights
into the flaws of mobility networks.

The availability of local language enabled keywords and smartphones steer the increased use of
social media platforms and conversational systems by the Indian language users. This leads to a drastic
increase in the Indian language content over the web and is likely to continue at the same rate since
the Indian language internet user base is growing at 18% as compared with 3% growth of English [8].
According to a study by Zamora, almost all the domains including e-tailing, digital classifieds, digital
payments, online government services and so forth will be benefited by the support of their own
local language by 2021 [9]. Due to the severe data sparsity problem faced by Indian languages,
most of the earlier works in Indian languages were based on feature engineering over classical
machine learning techniques. These features include POS features, gazetteer features, morphological
features and so forth which are also challenging to acquire for resource-scarce languages. There
comes the advantage of deep learning system which hardly demands hand-crafted features. Several
works are reported for NER in Indian languages using deep learning techniques [10–15]. However,
most of them are language-dependent and relying on external resources. Further, developing a
language-independent and deep learning based framework for Indian languages is a challenging task.
NER in Indian languages is still an open challenge as compared with English and other European
languages. This challenge is constituted by a set of characteristics of Indian languages, namely ‘no
concept of capitalization’, ‘no closed set vocabulary’, polysemy and ambiguity.

At the very beginning, NER was solved using hand-crafted rules, lexicon, ontologies and
orthographic features [16–18]. Most of them were domain-specific and language-dependent models
relying on hand-crafted rules and external resources. These systems were followed by machine
learning techniques relying highly on hand-crafted features. Later, Collobert et al. (2011) came up

Information 2019, 10, 186 3 of 20

with a neural network based NER system with minimal feature engineering [19]. They did not depend
on any domain-specific or language-specific resources like lexicons, ontologies, rules and so forth.
However, the current trend is in building neural architectures for NER that combines character-level,
sub-word level and word level embedding features in a domain-independent way [20–22].

While traditional techniques are more dependent on hand-crafted features, deep learning
techniques rely on their key capability called hierarchical feature learning, where the higher level
features are learned automatically from lower level features. However, one of the major questions that
come at this point is how to effectively represent a word before feeding it into neural networks. Many
researchers addressed this question through their works on NER, where they attempted different
representations for words including character-level representation, word-level representation and
sub-word level representation. The second question to be addressed at this point is how to handle the
OOV (Out-of-vocabulary) problem. Since word embeddings can only be obtained for words available
in the corpus used to build the word embedding model, such embedding vectors are not available
for unknown words (OOV words) which are relatively common in NER problem. To handle this
problem, character-based word compositional models, which build the vector representation of a
word from its compositional characters, are introduced. Both convolutional neural networks [23] and
BiLSTMs (Bidirectional Long Short Term Memory) [24] were applied for this purpose. In this paper,
we further explore an effective representation for words in Indian languages through a combination of
character-level, word-level and affix-level embeddings. In our approach, we augment the methodology
used by Vikas Yadav et al. in 2018 [25]. The only difference is in the way in which character-based word
vectors are generated and frequent affixes are identified for each language. In their work, they had
used Bi-LSTM to generate character-based word embeddings. While the frequent affixes are identified
from the training data used for NER. Unlike their system, we have used convolutional neural networks
to create character-based word embeddings. Moreover, frequent affixes in a language are identified
from a general corpus (unannotated), which is much bigger in size as compared with the training
data size. Experimental results on Indian language NER showed that our novel word representation
improved the existing benchmark results on the same dataset.

A lot of challenges are there in implementing automatic Named Entity Recognition system for
Indian Languages. Languages like English and Spanish support capitalization feature in their scripts.
But capitalization feature is not supported in Indian Languages. The morphological richness of the
languages is also a problem in recognizing named entities. The rich morphology of Indian Languages
allows the addition of suffixes and prefixes to morphemes, thereby adding meaningful context and
semantics to words. Many words in Indian Languages are formed by the repeated addition of suffixes
to their stems [26]. Case information attached to the nouns is also a problem in the identification of
named entities. Inflectional property of Indian Languages results in the appearance of the same word
in different forms. This leads to poor probabilities and sparse data problem in statistical methods. It is
the most specific characteristic of Indian languages, which makes the problem of computation very
hard. Most of the words in Indian Languages are agglutinated. Agglutination leads to the formation
of new complex words which are difficult to handle. Non-availability of resources like standard
datasets, POS taggers, morphological analyzers, dictionaries and so forth, are also a hindrance to the
development of NER systems for Indian Languages.

Since Indian Languages are morphologically rich and agglutinative in nature, the morphological
features of the languages seem to be essential for language processing applications. Moreover,
the words in Indian languages contain more semantic information than the words in Western
languages. For example, the phrase ‘to Rahul’ in English can be expressed by a single word ‘raahulinu’
in Malayalam. Similarly, the phrase ‘not like that’ in English can be expressed by a single word
‘appadiyillay’ in Tamil. Hence, acquiring maximum information from individual words can give better
approximation about the semantic category of words. The same word can be expressed in different
forms without any change in the semantic class of the word. For example, even though the words
‘raamante’ and ‘raamanile’ are having different forms, both of them belongs to the same semantic class

Information 2019, 10, 186 4 of 20

‘person’. Statistical methods, which are based on the frequency count of the elementary units (words)
fail in this situation. In such cases, affix embeddings can shed some light towards the semantic category
of words from the context of affixes in a particular sentence.

This paper is organized into six major sections. The second section briefly reviews the related
work. A short description of the dataset used is given in Section 3. Section 4 explains the proposed
method. Section 5 deals with experiments and results. The final section concludes the paper with some
directions on future works.

2. Related Works

NER is one of the popular research areas in the Natural Language Processing (NLP) community.
It is a sequence labelling problem where each token in a sequence is labelled with its corresponding
semantic classes. Given a tokenized text, the objective is to identify different categories in the text
such as location, organization, event and so forth. Different solutions have been proposed to extract
and classify named entities in a text document. Each of them has its own strengths and weaknesses.
They can be broadly classified into four namely-Dictionary based, Rule-based, machine learning based
and hybrid methodologies [27]. In the dictionary-based approach, a finite set of named entities are
stored in a lexicon which acts as a look-up table to identify the entities in a text document [28,29].
Rule-based systems employ hand-crafted rules for identifying named entities from unstructured
text [30,31]. They are designed for specific domains like clinical text, medical reports and so forth
and are specific to the languages for which the rules are written. Lots of rules are required for entity
recognition. Moreover, they are not portable and robust. Such limitations motivated the researchers in
this field to develop machine learning based approaches, where we can effectively avoid the language
specific and domain-specific barriers.

Most of the researches in Named Entity Recognition is conducted using machine learning based
approaches [32–34]. They are of two types- supervised and unsupervised. Supervised methods
demand training data that has been annotated for a specific task. The annotation process is a tedious
one which requires a lot of time and human effort [35]. Here each word in the tagged corpus is
replaced by a set of features capable of representing the meaning of that word. The tags of the
words act as supervisors to tune the model parameters, whereas unsupervised methods work in the
absence of labelled data. There is no supervisor in the case of unsupervised learning. They try to
learn representations from the data. These representations are later used for entity recognition tasks.
The hybrid approach is a combination of two or more approaches to combine the strengths and avoid
the weaknesses in those techniques [36]. They can be easily adapted to new domains. Ensemble
classifiers are examples of the hybrid approach, where a combination of two or more classifiers is
employed to overcome the weakness of each other.

HMM, CRF, SVM and so forth were the most common supervised learning algorithms employed
for NER. In 2002, Reference [37] used an HMM-based NER system for English and reported 96.6%
F–score on MUC-6 data. They employed different orthographic features, trigger words and words
from gazetteers to identify the named entities. A comparative study between HMM and MEMM has
been performed by Malouf [38]. He experimented with the impact on NER of different features like
capitalization, word position, and so forth. His system reported an F-score of 73.66% on the Spanish
CoNLL 2002 data set. However, the winners of CoNLL 2002 were Carreras et al., who used binary
AdaBoost classifiers to identify the named entities [39]. They used various features like trigger words,
capitalization, bag of words and so forth to depict binary relations and these relations were used
to predict the entity labels. They obtained an overall F-score of 81.39% on the Spanish CoNLL 2002
data set.

Neural Architectures for NER have received attention since the work of Collobert et al. in
2011 [19]. They used pre-trained word embeddings over vanilla neural networks for different NLP
tasks such as POS tagging, chunking, NER, and so forth. Later, pre-trained character embeddings
were utilized in the same way for languages like Chinese [40,41]. Based on how the words are

Information 2019, 10, 186 5 of 20

represented in the network, neural architectures for NER can be broadly classified into word level,
character-level and combination of the above two. Huang et al. [42] presented a word level neural
architecture by stacking a Conditional Random Field (CRF) layer over BiLSTM layer and providing an
embedded representation of words as input. They achieved considerable improvement in performance
over Collobert’s vanilla neural network model. Later, similar systems were applied to different
domains such as biomedical NER [43], multilingual POS tagging [44] and drug NER [45] where similar
improvements were observed. In character-level architectures, sentences are treated as sequences of
characters. These sequences of characters, along with their corresponding labels, are passed through
RNNs (Recurrent Neural Networks) during the training time. The label for each character, predicted
during the testing time, is converted into word-level tags via post-processing. This approach was first
highlighted by Kim et al. in 2016 [46]. They used highway networks above the convolutional networks
on a sequence of characters. This representation is passed through an LSTM + Softmax layers to predict
the final tag sequence. Character-based models were most successful in languages like Chinese where
they have achieved near state of the art results [47–49]. Kuru et al. employed similar architecture for
NER on seven different languages, including Spanish and Dutch [50]. They have used the Viterbi
algorithm to convert the tag prediction over characters to word-level tags. Further, Ling et al. designed
a character-level representation for words using RNNs [24]. These representations are provided to the
Bi-LSTM layer to disambiguate the tag. This system was able to achieve the state of art results in many
domains, including POS tagging and NER.

After exploring the word-level and character-level representations, researchers turned their
attention towards the combinational representations were we can take the benefit of both the individual
representations. Ma and Hovy proposed the first combinational model in 2016 [20]. They represented
words as a combination of word embedding and character-level word compositional vector. This
representation is passed over a Bi-LSTM CRF stack to predict the final tag sequence. This model
reported an F-score of 91.21% on the CoNLL 2003 English data set. A similar network was implemented
by Limpsopatham et al. in 2015, where they concatenated word embeddings with CNN over characters
and orthographic features [51]. They attained an F-score of 65.89% on twitter NER data.

Lample et al. introduced an architecture which concatenates the pre-trained word embeddings
with Bi-LSTMs over the characters of the word [52]. This representation is passed through a
Bi-LSTM-CRF stack to predict the final label sequence. They obtained an F-score of 90.94% on CoNLL
2002 data. Later, Bharadwaj et al. added phoneme representations in addition to the word level
and character-level features [22]. They also incorporated an attention mechanism over a sequence
of characters in the word. This model became the state-of-the-art system (85.81%) for Spanish NER
until 2018. Finally, the most similar architecture towards ours proposed by Yadav et al. in 2018 [25].
They combined affix-level features along with frequently explored word + character models. They
considered the frequent affixes in the training data as the true morphemes of the language. These
affixes were randomly initialized to embedding vectors and were learned during training. Their model
reports a new benchmark on CoNLL Spanish, Dutch and German data sets.

Deep learning models were also explored for Indian languages. Nagesh Bhattu et al. reported a
two-stage architecture utilizing the character-level and word-level features associated with words [53].
The second stage of their architecture makes use of a Bi-LSTM layer to disambiguate the tags. The model
achieved an average accuracy of 97.45% on IECSIL (Information Extractor for Conversational Systems
in Indian Languages) test data. Thenmozhi et al. reported a neural machine translation architecture
to accomplish the task of NER [13]. Instead of using the pre-trained word embeddings, they used an
embedding layer to create the vector representation of words. They achieved an overall accuracy of
96.11% on the same dataset. Sagar et al. implemented an end to end language-independent system
for entity extraction [14]. They used pre-trained word embedding created using word2vec to obtain
semantic information about words. The character-level features about words are generated using
two successive convolutional layers. Finally, both the representations are concatenated to obtain the
final word representation. This representation is passed through a Bi-LSTM network to generate the

Information 2019, 10, 186 6 of 20

required tag sequence. Khushleen [12]used a Bi-LSTM network with subword aware representation
for words reported by Bojanowski et al. [54]. They could obtain an overall accuracy of 96.53% on
IECSIL test data.

3. Dataset Details

We evaluate our system on ARNEKT-IECSIL 2018 shared data https://github.com/
BarathiGanesh-HB/ARNEKT-IECSIL (accessed on 12 June 2018) [55]. ARNEKT-IECSIL was a track in
FIRE-2018 with the objective of improving the information extraction systems on Indian languages.
FIRE, Forum for Information Retrieval and Evaluation is a South Asian counterpart of TREC and
CLEF started in the year 2008 intending to meet the challenges in multilingual information access [56].
The data set contains training and testing data for five Indian languages, namely Hindi, Tamil,
Kannada, Telugu and Malayalam. The training data contain words and their corresponding labels
in a two column format. The sentences are separated using a ‘newline’ keyword. Similarly, test data
contains words without labels separated using ‘newline’ keyword between sentences. Except for
Kannada, all the other language datasets contain a sufficient number of sentences (more than 60,000).
The training data for each language contain nine tags including name, location, organization, event,
things, occupation, number, date/time and other. Table 1 gives details about the dataset used.

Table 1. Data set details.

Dataset Filetype FileLength # Sentences # Words # Unique Words

Hindi
Train
Test

1,548,570
519,115

76,537
25,513

1,472,033
493,602

87,842
43,797

Kannada
Train
Test

318,356
107,325

20,536
6846

297,820
100,479

73,712
34,200

Malayalam
Train
Test

903,521
301,860

65,188
21,730

838,333
280,130

143,990
67,361

Tamil
Train
Test

1,626,260
542,225

134,030
44,677

1,492,230
497,548

185,926
89,529

Telugu
Train
Test

840,904
280,533

63,223
21,075

777,681
259,458

108,059
51,555

4. Proposed Method

Our objective is to build a deep learning-based entity extraction system for Indian languages.
Traditional neural networks have shown outstanding performance over the last decade. Still, they
have limitations. They are not up to the mark for capturing the sequential information, where the
current state is affected by its previous states. They assume all its inputs and outputs as independent
of each other. But if we want to predict the next word in a sequence, it is better to know the preceding
words in the sequence. Sequence to sequence learning in deep learning is a promising solution for that.
The sequence to sequence learning models try to find the optimum output sequence corresponding to
the input sequence, as shown in Figure 1. Deep neural networks are powerful tools in various fields of
NLP like language modelling, speech recognition, machine translation, caption generation and so forth.
Hierarchical feature learning is the main characteristic of deep neural networks [57]. Higher level
features are learned automatically from lower level features. The entire network can learn complex
functions that can map the input to output directly. Through this paper, we also want to explore the
effectiveness of affix embeddings for Indian language NER.

https://github.com/BarathiGanesh-HB/ARNEKT-IECSIL
https://github.com/BarathiGanesh-HB/ARNEKT-IECSIL

Information 2019, 10, 186 7 of 20

Figure 1. “XYZ” is the input sequence and “PQR” is the output sequence [58].

In Indian languages, a word often consists of various morphemes due to their agglutinative
characteristics. Hence, it is not desirable to consider only the complete word as a processing unit.
Instead, we consider affixes at both ends of the word as additional features for NER. Our base model
is similar to Reference [25], where we apply the combined representation of character-level, word-level
and affix-level features over Bi-LSTM-CRF stack. Our model differs from their architecture in how
the character-level and affix-level features are generated. In their architecture, they have used an
LSTM layer over the embedded representation of characters to generate the character-level word
embedding. The affix-level embeddings are created by identifying the frequent affixes from the
training data. But in our model, we have used convolutional neural networks with various kernel
sizes to generate the character-level representation of words. Moreover, the affix-level features are
generated from a general corpus (not labelled) quite bigger than the NER training corpus. Without loss
of generality, the proposed word representation model can be straightforwardly applied for any
agglutinative languages.

4.1. Generalized Word Representation

The pre-trained word embedding models may not contain word vectors for all the words present
in the training data. Table 2 demonstrates this point, where it shows the presence percentage of
different named entities in the training data over the FastText word embedding file. We observe an
overall missing (OOV) of 4.17% words from training data. Here comes the necessity of a generalized
word representation, which can effectively alleviate the OOV problem faced by the pre-trained word
embedding models. Even though the OOV words are replaced by dummy vectors, the additional
vector representations can give a clue about the actual class of the word.

Table 2. Presence percentage of the training set entities in FastText word embedding files.

Language Event Things Org Occupation Name Location Other Average Presence

Hindi 99.69 99.33 99.23 99.48 94.96 98.91 96.38 98.28
Kannada 98.85 97.11 96.85 96.92 89.17 96.94 89.4 95.03

Malayalam 94.86 96.65 97.17 95.72 90.71 96.52 86.14 93.96
Tamil 98.34 98.3 97.95 96.93 91.72 95.13 93.05 95.91

Telugu 98.9 99.16 98.72 98.72 83.65 99.15 93.48 95.96

Class Avg. 98.12 98.11 98.00 97.55 90.04 97.33 91.69 95.83

Figure 2 shows the generalized representation of a word using a compositional approach. This
representation combines features from different aspects of a word, namely character-level, word-level
and affix level. The character-level features are generated using Convolutional neural networks with
various kernel sizes. The word-level features are identified using pre-trained word embeddings.
And the last component is the affix-level feature corresponding to the most frequent affixes in a
language. All these features are concatenated to form the final vector representation of a word.

Information 2019, 10, 186 8 of 20

Figure 2. Generalized word representation.

4.2. Convnet Based Character Level Word Representation

Systems combining character-level features of the word, to the word-level features proved to be
strong for NER [47,59,60]. The first successful work on character-based compositional word embedding
was proposed by Dos Santos and Zadrozny in 2014 [23]. They used convolutional neural networks
to constitute word vectors from character embeddings encoded by column vectors in an embedding
matrix. Here, we augment the system developed by Ma et al. with a slight variation [20]. We have used
convolutional kernels with various filter sizes (ranging from 1 to 6) to capture subword information.
The length of meaningful subword units in Indian languages appears to be larger than that of the
same in western languages. That is the reason why we decided to go with convolutional filters of
various (comparably larger) kernel sizes. The concatenated output of different convolutional filters
through max pooling layer act as the character-based word embedding vector. Figure 3 demonstrates
the architecture of the character-based word vector generation model.

Given a word ‘w’ composed of ‘m’ characters c1, c2, c3, ...cm, where ci ∈ Vc is the character
vocabulary set. Let C1, C2, C3, ...Cm be the character embedding vectors that encode the characters
c1, c2, c3, ...cm present in a word ‘w’. The character embeddings are obtained by matrix-vector product
as given in Equation (1).

C1 = WcVc (1)

where Wc is the embedding matrix, Wc ∈ Rdc∗|Vc | and Vc is the one-hot vector representation of a
particular character. ‘dc’ is a hyperparameter corresponding to the size of the character embedding.
Hence, each word is transformed into a sequence of character embeddings C1, C2, C3, ...Cm. We apply
convolutional kernels to each of the sliding context window of size k. The resulting vectors are passed
through a max-pooling layer to generate the maximum value. We then concatenate these vectors from
different convolutional kernels to produce the required word embedding vectors. These vectors are
expected to capture information from different n-grams of the same word.

Formally, the character-level embedding of each word ‘w’ is calculated as follows,

Vc = max
1<i<m

[WconvZm + bconv] (2)

where Wconv and bconv are parameters of the model and Zm is the concatenation of character embeddings
expressed as

Zm =

(
Cm−(k−1)/2,, Cm+(k−1)/2

)
(3)

Information 2019, 10, 186 9 of 20

Figure 3. Architecture of the character-based word composition model.

The convolution operation is applied to find the simple patterns of embedding vectors of different
n-grams over the character sequence. Among different n-grams the following maxpooling layer try to
extract position invariant n-gram features. Therefore, the character-based word composition model is
expected to detect unvarying local spelling features from the character sequence.

4.3. Pre-Trained Word Representation

Word embeddings are proven tools for capturing the context of a word along with its syntactic
and semantic similarities. They are the representation of words in n-dimensional space. They are
also well known for modelling the relationship with other words in a corpus. They are typically
created by applying a large collection of unannotated text over shallow neural networks through an
unsupervised process such as CBOW model. In our study, we have used FastText 300-dimension word
embeddings for each language in the training set [61]. FastText, an extension to word2vec by Facebook,
can efficiently represent words from their n-gram units. The embedding vector for a particular word is
generated as the sum of all its n-gram vectors.

Information 2019, 10, 186 10 of 20

4.4. Affix Level Word Representation

To approximate the true affixes of a language, we identified the most frequent n-gram prefixes
and suffixes of words in each language from an unannotated corpus (specific to each language). Since
the most frequent n-gram affixes likely to behave like the true morphemes of the language, we decided
to learn a task-specific representation for them. To identify the n-gram size and the threshold frequency
of affixes, we experimented with various combinations of n (n-gram size) and T (threshold frequency)
such as n = 2, 3, 4, 5 and T = 100, 300, 500, 750, 1000. The best results from the experiments were
obtained, when the n-gram size was 3 and the threshold frequency was 500. Before training, the true
affixes present in the training data are identified using a dictionary lookup method with the identified
affixes (from unannotated corpus). During training time, the affix embeddings are initialized randomly
and later tuned to learn a task-specific semantic representation. Finally, the individual representations
are concatenated to construct a full vector representation for each word.

Formally, assume we are given a Malayalam sentence S[1:n] that is a sequence of n words,
where ‘n’is the maximum length of the sentence. In our case, we have limited it to 30 for the
ease of computation. Each word ‘w′i in the sentence is converted into a composition of vectors
corresponding to that word. These vectors include character-level word composition vector,
pre-trained word embedding vector and affix embedding vectors. Hence each word in the sentence
is replaced by a vector of d-dimension, where d = dc + dw + da such that dc = dimensionality
of character-level word embedding, dw = dimensionality of pre-trained word embedding and
da = ds + dp is the dimensionality of affix embeddings, where ds = dimensionality of suffix embedding
and dp = dimensionality of prefix embedding. Equations (4) and (5) show the mathematical
representation of a single sentence.

S = [w1, w2, w3, w4,wn] (4)

S = [[vc1, vc2, vc3.....vcc, vw1, vw2, vw3.....vww, va1, va2, va3.....vas]1,

[vc1, vc2, vc3.....vcc, vw1, vw2, vw3.....vww, va1, va2, va3.....vas]2,]
(5)

where vc1, vc2, vc3.....vcc corresponds to character-based word vector, vw1, vw2, vw3.....vww corresponds
to pretrained word vector and va1, va2, va3.....vas corresponds to affix embedding vector.

Figure 4 demonstrates the complete architecture of our entity recognition model. The model
accepts sequences of length ‘n’. ‘Wp’, ‘Wc’, ‘Wa’ are pre-trained word embedding, character-based
word embedding and affix embedding respectively. P0, P1, P2 and so forth, are the emission scores
coming from the Bi-LSTM layer. Each of them indicates the probability of a particular tag for a
particular word. Hence, ‘m’ corresponds to the maximum number of tags in the tag set. Final
predictions are made by the CRF layer based on these probabilities.

We have used two Bi-LSTM layers to learn the input sequence since they are capable of learning
long-term dependencies. Bi-LSTMs are a bidirectional variant of LSTMs. They are well known for their
ability to capture all the past and future input features through two RNNs in forward and backward
directions. RNNs are special kind of artificial neural networks designed to process sequences. LSTMs
are a variant of RNN intended to stay away from the long-term dependency problem. Remembering
information for long intervals of time is their default behaviour. They are designed by adding the
special type of gates to RNNs. RNNs can use their contextual information when mapping between
sequences. But the major drawback of RNN is that range of context in practice is quite limited. LSTM
overcomes this drawback through a set of gates namely input gate, output gate and forgets gate. These
gates help LSTM cells to store and access information over long periods.

Information 2019, 10, 186 11 of 20

Figure 4. Architecture of the proposed system.

Both RNN and LSTM can preserve information in only one direction. But Bi-LSTM can preserve
information from both the directions(front and back) simultaneously. The block diagram of a single
layer of Bi-LSTM is shown in Figure 5. The Equations (6) and (7) calculates the forward function
of Bi-LSTM.

at
h =

K

∑
k=1

yt
kWkh +

H

∑
h′=1,t>0

bt−1
h′ Wh′h (6)

bt
h = Θh(at

h) (7)

where yt is a sequence input, at is the input to the LSTM unit h at time t, bh is the activation function
at time t, wkh is the weight of the input k towards h. whh’ is the weight between the hidden layers
h and h’. While the Equations (8) and (9) calculates the backward function of Bi-LSTM.

δO
δWhl

=

(
T

∑
t=1

δO
δat

h
bt

h

)
(8)

δO
δat

h
= Θh(at

h)

(
L

∑
l=1

δO
δat

h
Whl +

H

∑
h′=1,t>0

δO
δat+1

h′
Whh′

)
(9)

Information 2019, 10, 186 12 of 20

Figure 5. Bi-LSTM layer architecture.

Bi-LSTM-CRF, an extension to bidirectional LSTM models, can also model the dependency
between the output layer labels in addition to the input feature dependencies. The CRF layer used
here is to make the final predictions, given the probabilities for various tags for each word. The CRF
layer can incorporate some additional constraints to the predicted probabilities from the Bi-LSTM
layers. These constraints are learned by the CRF layer automatically from the training dataset during
the training process. These constraints could be like the first tag in the sentence can’t be a ‘datenum’,
the last tag in the sentence can’t be a ‘organization’, ‘locations’ do not follow ‘numbers’ and so forth.
Hence CRF layer ensures the final predicted POS label sequences are valid. The loss function for CRF
layer considers two types of scores namely-emission score and transition score. Emission score is the
probability values coming from the Bi-LSTM layers and the transition score is taken from a probability
matrix stored in CRF layer, which indicates the transition probability among different tags. These two
scores are used in the calculation of path scores of different sentences. The calculation of path score for
a complete sentence of length 5 is shown in Equations (10)–(12).

EmissionScore = x0,START + x1,name + x2,other

+x3,location + x4,other + x5,other + x6,END
(10)

TransitionScore = tSTART−>name + tname−>other+

tother−>location + tlocation−>other

+tother−>other + tother−>END

(11)

PathScore = EmissionScore + TransitionScore (12)

Here ′x′0 and ′x′6 are the start and end markers which will be considered for all the sentences.
The loss function calculates the real path score and the total score for all possible paths in the label
sequences. The real path score is the score of the correct label sequence and the total score is the sum
of all possible path scores for a particular sequence. During the training process, the parameters of the
BiLSTM-CRF model will be updated again and again to minimize the following measurement.

LossFunction =
PRealPath

P1 + P2 + + PN
(13)

Information 2019, 10, 186 13 of 20

The entire Bi-LSTM-CRF network is constituted of three modules. The first module is the input
module, which receives the vector representations of words as a concatenation of different features.
A set of hidden layers constitutes the second module. The output of each hidden layer is provided to
the successive hidden layer and finally to the output layer. ‘Tanh’ activation is used in the hidden layers.
The calculation of ‘Tanh’ value for a particular input ‘x’ is shown in Equation (14). The output layer is a
CRF layer which generates the maximum probable tag sequence corresponding to the word sequence.
Dropout is used to prevent overfitting [62]. The network is coded in python using Tensorflow in
the backend.

tanh(x) = (2σ(2x)− 1), where

σ(2x) =
e2x

(1 + e2x)

(14)

5. Experiments and Results

Experiments were conducted to assess the effectiveness of different word representation models.
Simply adding the pre-trained word vector to the target feature vector (word representation
vector) during training was not promising. One solution suggested for this problem is adding
character-based word embedding and affix embedding to the pre-trained word embedding. We adopt
this solution by concatenating 150-dimensional character-based word embeddings and 60-dimensional
affix embeddings to 300-dimensional pre-trained word vectors. To evaluate the proposed word
representation model, we have employed the standard NER datasets provided by ARNEKT solutions.
Training data for each language contains 80% of the total data. Evaluation is performed using the
metric accuracy. Different word representation models and existing methods that we have used in our
comparison are given below.

- Baseline: Since one of the best results in the shared data competition is reported by CRF, we
considered it as the baseline.

- Pre-trained + Bi-LSTM-CRF: The method using pre-trained word embedding on
Bi-LSTM-CRF model.

- Pre-trained + char_Convnet + Bi-LSTM-CRF: The technique using the concatenation of pre-trained
word embedding and character-based word composition vector on Bi-LSTM-CRF model.

- Pre-trained + char_Convnet + affix embedding + Bi-LSTM-CRF: The method using the
concatenation of pre-trained word embedding, character-based word embedding and affix
embedding on Bi-LSTM-CRF model.

- Deep learning in the competition: The best reported deep learning methods (based on the results)
from the competition.

To generate the pre-trained word embeddings, we have used FastText (https://fasttext.cc/docs/
en/crawl-vectors.html (accessed on 12 June 2018)) embeddings corresponding to each language.
To construct the character-based word composition vector, we fix the input size as 32 for each word
as in Reference [63]. Six convolutional filters with kernel sizes of 1, 2, 3, 4, 5 and 7 were used. ‘ReLu’
was used to bring nonlinearity between the input vectors and response variables. ‘ReLU’ stands
for Rectified Linear Units found to be the best activation in our case because they can alleviate the
vanishing gradient problem, a matter in which lower layers of the network train very slowly due to
the exponential diminishing of gradient through the lower layers. Each convolutional filter provides
an output vector of 25 dimensions. Hence, the total size of the character-based word compositional
vector is 150.

To generate the affix embeddings, we randomly initialized the prefix and suffix embedding matrix.
Both prefix and suffix embedding sizes are fixed as 30 and allowed to learn during the Bi-LSTM-CRF
training process. The remaining hyper-parameter settings are given as follows:

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html

Information 2019, 10, 186 14 of 20

- Bi-LSTM hidden size = 300
- Maximum number of epochs = 100
- early stopping = 30
- drop_out = 0.5
- Pre-trained word embedding size = 300
- Optimizer = Adam
- Batch siz = 100
- Initial learning = 10−4

- Total word representation size = 510.

Keras functional API is used to build the seq2seq network since they can build complex models.
We evaluated our model on all languages available in the training set. Our system achieved
state-of-the-art performance on all languages, outperforming Bhattu et al. by 0.76% on overall
accuracy [53]. Table 3 shows the comparison of performance between the proposed word representation
model (in bold style) over the existing methods (methods from the competition). This includes the
results from the deep learning based systems reported in the competition as well as the baseline CRF
method. Combining the character-based and affix-based embeddings to the pre-trained embedding
vector seems to be beneficial since they can capture different components of word similarities.
The baseline CRF system reported an overall accuracy of 97.44% without any dictionary features.
The proposed system could improve the overall accuracy by 0.77% over the baseline system [64]. This
demonstrates the power of combined word representation over the individual ones. Figure 6 depicts
the class-wise accuracy scores for all the languages in the testing data. The accuracy rate of ‘number’
class for all the languages is near to 100% due to the digit recognizing capability of the network. On the
other hand, the ‘datenum’ class for most of the languages get a lot of misclassification due to the same
reason, where most of them get classified into ‘number’ class. Hence, a suitable strategy should be
adapted to recognize the ‘datenum’ class.

Figure 6. Class-wise accuracy scores for all the languages present in the shared data.

Information 2019, 10, 186 15 of 20

Table 3. Performance (Accuracy %) of our model in comparison with the deep learning results from
the competition.

Model Hindi Kannada Malayalam Tamil Telugu Average

Baseline (CRF) [64] 97.67 97.03 97.44 97.36 97.72 97.44
Bhattu et al. [53] 97.82 97.04 97.46 97.41 97.54 97.45

Khushleen Kaur [12] 96.84 96.38 96.64 96.15 96.63 96.53
Thenmozhi et al. [13] 96.73 95.63 95.87 95.55 96.77 96.11

Sagar et al. [14] 94.44 92.94 92.92 92.48 92.42 93.04
Gupta et al. [15] 91.52 92.14 90.27 87.72 90.02 90.33

Our model 98.44 97.62 98.25 98.35 98.41 98.21

5.1. Impact of Character-Based Word Embedding

In order to assess the effectiveness of the proposed combined word representations, we compared
the same system on different individual word representations. Combining the character-level word
composition vector to pre-trained word vector seems to capture character-level features of the word
in addition to word-level features. Table 4 presents the impact of different word representations
on Bi-LSTM-CRF tagger. This includes the performance of the tagging model on individual word
representations and combined word representations (in bold style). The character-based word
representations could improve the accuracy of word-based models by 1.12%. This indicates the
significance of character-based word representations.

Table 4. Impact of different word representations on BiLSTM-CRF tagger Accuracy(%).

Representation Hindi Kannada Malayalam Tamil Telugu Average

FastText 96.87 96.41 96.68 96.22 96.66 96.57
FastText+char_ConvNet 97.98 97.30 97.76 97.61 97.84 97.69

FastText+char_ConvNet+Affix 98.44 97.62 98.25 98.35 98.41 98.21

5.2. Impact of Affix Embeddings

Since Indian languages are morphologically rich, the use of affix-level features seems to be
very effective in improving the overall performance of NER systems. Our analysis implies that
appending affix-level features to the word-level features can capture the inflectional characteristics
of agglutinative words. From Table 4, it is clear that affix-based features can improve the overall
performance. When added to the word-level features, the affix-level features could improve the
results by 0.52%. An example sentence tagged using the proposed Bi-LSTM-CRF model is shown in
Figures 7 and 8. Here the correct tag for the second word is ‘location’, which is obtained only after
incorporating the affix-level features to word-level features (Figure 8).

Figure 7. Sample tagged text without incorporating the affix-level features.

Figure 8. Sample tagged text by incorporating the affix-level features.

5.3. Impact of Training Data Size

Training data size has a considerable impact on improving the performance of NER models.
Experiments were conducted with various sizes of training data on different word representations. We
obtained different results with different sizes of the training data. The performance of the model gets
increases with the increase in training data size. Table 5 illustrates the performance of various word

Information 2019, 10, 186 16 of 20

representations on different sizes of the training data. Here at first, the complete training data (80% of
the total data) is used for training using different word representations. Afterwards, 20% reduction is
made to each of the training data files and repeated the same experiments.

Table 5. Comparing the performance of different word representations on Indian Named Entity
Recognition (NER) tasks by varying the training data size.

Training Data Size Representation Average Accuracy (%)

Complete (100%)
FastText

FastText+char_ConvNet
FastText+char_ConvNet+Affix

96.57
97.69
98.21

80%
FastText

FastText+char_ConvNet
FastText+char_ConvNet+Affix

95.83
96.87
97.51

60%
FastText

FastText+char_ConvNet
FastText+char_ConvNet+Affix

95.61
96.70
97.31

40%
FastText

FastText+char_ConvNet
FastText+char_ConvNet+Affix

95.29
96.44
96.98

5.4. Analysis

In this section, we present a qualitative analysis of the results from the NER system that use
affix embedding features. We observed various instances where the affix-level features improving
NER performance. Significant improvements were observed for Malayalam and Tamil, where the
agglutination of words is more severe. By identifying the frequent affixes in a language, we are better
approximating the true affixes of the language. This should benefit the tag disambiguation layer
(Bi-LSTM-CRF) to learn the named entity characteristics effectively. Moreover, identifying the frequent
affixes from an unannotated corpus (big) yields a better vocabulary of affixes in a particular language.
Experiments were also conducted to determine whether the performance improvements were truly
due to affix-level features. We changed the character-based word embedding size from 150 to 210 to
match with the total word representation size in the absence of affix embedding. This model failed to
score as much as the proposed combined word representation model.

Further, the effectiveness of filtering affixes from a general corpus rather than the training corpus
is also verified. We ran our model with frequent affixes selected from the training set as well as those
from a general corpus (unannotated big in size). The performance of the tagger without using the
general corpus (97.98%) was even lower than the best-recorded results (98.21%) but still giving an
improvement over baseline systems (97.44%). Hindi, which is the official language of India, gives
the best results in all the approaches due to the availability of more training data as compared with
other languages.

6. Conclusions

In this article, we have discussed a deep learning based Named Entity Recognition system for
Indian languages. The exclusive feature of the proposed system is the use of affix embeddings towards
the efficient representation of words as input features. The morphological features of the languages
are effectively utilized in this study by identifying the frequent affixes as well as character-level
features. Incorporating affix-level features in the entity extraction task appears to be helpful for Indian
languages. Our experiments show that the affix-level features are complementary to character-level
and word-level features in the NER task. The choice of threshold frequency and n-gram size are crucial,
since including the complete set of affixes from the training data set did not improve the performance.
Without using any form of external resources (like lexicon, POS feature, n-grams feature, etc.), our
system was able to achieve state-of-art performance in Indian language NER. Since the proposed

Information 2019, 10, 186 17 of 20

word representation model can efficiently represent the syntactic, semantic and orthographic features
of words, we hope to apply this method to represent words for other NLP tasks in low resource
languages. While our model proposes a simple idea of extracting frequent affixes of a language as an
approximate set of affixes of the language, we advice further improvements using some automated
neural mechanisms. Even though our experiments were mainly focussed on Indian languages, this
approach could be applied for any morphologically rich language.

Author Contributions: Formal analysis, M.K.; Investigation, M.K; Methodology, A.A.P.; Project administration,
A.A.P. and S.M.I.; Software, A.A.P.; Supervision, S.M.I.; Validation, M.K; Writing—original draft, A.A.P. and S.M.I.

Funding: The first author of this paper would like to thank University Grants Commission for providing
fellowship through UGC NET/JRF scheme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Patil, N.; Patil, A.S.; Pawar, B. Survey of named entity recognition systems with respect to Indian and foreign
languages. Int. J. Comput. Appl. 2016, 134, 21–26. [CrossRef]

2. Bindu, M.; Idicula, S.M. Named Entity Identifier for Malayalam Using Linguistic Principles Employing
Statistical Methods. Int. J. Comput. Sci. Issues 2011, 8, 185.

3. Wu, D.; Zhang, Y.; Zhao, S.; Liu, T. Identification of web query intent based on query text and web knowledge.
In Proceedings of the 2010 First International Conference on Pervasive Computing, Signal Processing and
Applications, Harbin, China, 17–19 September 2010; pp. 128–131.

4. Etaiwi, W.; Awajan, A.; Suleiman, D. Statistical Arabic Name Entity Recognition Approaches: A Survey.
Procedia Comput. Sci. 2017, 113, 57–64. [CrossRef]

5. Amato, F.; Colace, F.; Greco, L.; Moscato, V.; Picariello, A. Semantic processing of multimedia data for
e-government applications. J. Vis. Lang. Comput. 2016, 32, 35–41. [CrossRef]

6. Fantacci, R.; Gei, F.; Marabissi, D.; Micciullo, L. The Use of Social Networks in Emergency Management.
In Wireless Public Safety Networks 2; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–61.

7. Kokkinogenis, Z.; Filguieras, J.; Carvalho, S.; Sarmento, L.; Rossetti, R.J. Mobility network evaluation in
the user perspective: Real-time sensing of traffic information in twitter messages. In Advances in Artificial
Transportation Systems and Simulation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 219–234.

8. Barathi Ganesh, H.; Soman, K.; Reshma, U.; Mandar, K.; Prachi, M.; Gouri, K.; Anitha, K.; Anand Kumar, M.
Overview of arnekt iecsil at fire-2018 track on information extraction for conversational systems in Indian
languages. In Proceedings of the Proceedings of the 10th annual meeting of the Forum for Information
Retrieval Evaluation, Gandhinagar, India, 6–9 December 2018; pp. 18–20.

9. Zamora, J. Rise of the chatbots: Finding a place for artificial intelligence in India and US. In Proceedings
of the 22nd International Conference on Intelligent User Interfaces Companion, Limassol, Cyprus,
13–16 March 2017; pp. 109–112.

10. Murthy, R.; Khapra, M.M.; Bhattacharyya, P. Improving NER Tagging Performance in Low-Resource
Languages via Multilingual Learning. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2018, 18, 9.
[CrossRef]

11. Murthy, V.R.; Bhattacharyya, P. A deep learning solution to Named Entity Recognition. In International
Conference on Intelligent Text Processing and Computational Linguistics; Springer: Berlin/Heidelberg, Germany,
2016; pp. 427–438.

12. Kaur, K. Khushleen@IECSIL-FIRE-2018: Indic Language Named Entity Recognition Using
BidirectionalLSTMs with Subword Information. In Proceedings of the Proceedings of the 10th annual
meeting of the Forum for Information Retrieval Evaluation, Gandhinagar, India, 6–9 December 2018.

13. Thenmozhi, D.; Kumar, B.S.; Aravindan, C. SSN_NLP@ IECSIL-FIRE-2018: Deep Learning Approach to Named
Entity Recognition and Relation Extraction for Conversational Systems in Indian Languages; Department of CSE,
SSN College of Engineering: Chennai, India, 2018.

14. Sagar, S.P.; Gollakota, R.K.; Das, A. HiLT@ IECSIL-FIRE-2018: A Named Entity Recognition System for Indian
Languages; Indian Institute of Information Technology: Sri City, India, 2018.

http://dx.doi.org/10.5120/ijca2016908197
http://dx.doi.org/10.1016/j.procs.2017.08.288
http://dx.doi.org/10.1016/j.jvlc.2015.10.012
http://dx.doi.org/10.1145/3238797

Information 2019, 10, 186 18 of 20

15. Gupta, A.; Ayyar, M.; Singh, A.K.; Shah, R.R. raiden11@ IECSIL-FIRE-2018: Named Entity Recognition
For Indian Languages. In Proceedings of the Proceedings of the 10th annual meeting of the Forum for
Information Retrieval Evaluation, Gandhinagar, India, 6–9 December 2018.

16. Segura Bedmar, I.; Martínez, P.; Herrero Zazo, M. Semeval-2013 Task 9: Extraction of Drug-Drug Interactions
from Biomedical Texts (Ddiextraction 2013). In Proceedings of the Association for Computational Linguistics
(ACL), Sofia, Bulgaria, 4–9 August 2013.

17. Bossy, R.; Golik, W.; Ratkovic, Z.; Bessières, P.; Nédellec, C. Bionlp shared task 2013—An overview of
the bacteria biotope task. In Proceedings of the BioNLP Shared Task 2013 Workshop, Sofia, Bulgaria,
9 August 2013; pp. 161–169.

18. Uzuner, Ö.; South, B.R.; Shen, S.; DuVall, S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations
in clinical text. J. Am. Med Inf. Assoc. 2011, 18, 552–556. [CrossRef]

19. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

20. Ma, X.; Hovy, E. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv 2016, arXiv:1603.01354.
21. Santos, C.N.D.; Guimaraes, V. Boosting named entity recognition with neural character embeddings. arXiv

2015, arXiv:1505.05008.
22. Bharadwaj, A.; Mortensen, D.; Dyer, C.; Carbonell, J. Phonologically aware neural model for named entity

recognition in low resource transfer settings. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 1462–1472.

23. Santos, C.D.; Zadrozny, B. Learning character-level representations for part-of-speech tagging. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), Beijing, China,
21–26 June 2014; pp. 1818–1826.

24. Ling, W.; Luís, T.; Marujo, L.; Astudillo, R.F.; Amir, S.; Dyer, C.; Black, A.W.; Trancoso, I. Finding
function in form: Compositional character models for open vocabulary word representation. arXiv 2015,
arXiv:1508.02096.

25. Yadav, V.; Sharp, R.; Bethard, S. Deep affix features improve neural named entity recognizers. In
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, New Orleans,
LA, USA, 5–6 June 2018; pp. 167–172.

26. Nair, R.S.S. A Grammar of Malayalam. Available online: http://www.languageinindia.com/nov2012/
ravisankarmalayalamgrammar.pdf (accessed on 12 June 2018). (In India)

27. Hamada, A.; Nayel, H.L.S. Improvin NER for Clinical Texts by Ensemble Approach using Segment
Representations. In Proceedings of ICON 2017(NLPAI), Calcutta, India, 18–21 December 2017; pp. 197–204.

28. Cohen, W.W.; Sarawagi, S. Exploiting dictionaries in named entity extraction: Combining semi-Markov
extraction processes and data integration methods. In Proceedings of the Tenth Acm Sigkdd International
Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004; pp. 89–98.

29. Wang, X.; Jiang, X.; Liu, M.; He, T.; Hu, X. Bacterial named entity recognition based on dictionary and
conditional random field. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 439–444.

30. Eftimov, T.; Seljak, B.K.; Korošec, P. A rule-based named-entity recognition method for knowledge extraction
of evidence-based dietary recommendations. PLoS ONE 2017, 12, e0179488. [CrossRef]

31. Alfred, R.; Leong, L.C.; On, C.K.; Anthony, P.; Fun, T.S.; Razali, M.N.B.; Hijazi, M.H.A. A rule-based
named-entity recognition for malay articles. In Proceedings of the International Conference on Advanced
Data Mining and Applications, Hangzhou, China, 14–16 December 2013; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 288–299.

32. Wu, Y.; Jiang, M.; Xu, J.; Zhi, D.; Xu, H. Clinical Named Entity Recognition Using Deep Learning Models. In
Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 4–8November 2017.

33. Salini, A.; Jeyapriya, U. Named Entity Recognition Using Machine Learning Approaches. arXiv 2003,
arXiv:cs/0306050.

34. Zhang, L.; Pan, Y.; Zhang, T. Focused named entity recognition using machine learning. In Proceedings of
the 27th annual international ACM SIGIR conference on Research and development in information retrieval,
Sheffield, UK, 25–29 July 2004; ACM: New York, NY, USA, 2004, pp. 281–288.

35. Sienčnik, S.K. Adapting word2vec to named entity recognition. In Proceedings of the 20th Nordic Conference
of Computational Linguistics, Nodalida 2015, Vilnius, Lithuania, 11–13 May 2015; pp. 239–243.

http://dx.doi.org/10.1136/amiajnl-2011-000203
http://www. languageinindia. com/nov2012/ravisankarmalayalamgrammar. pdf
http://www. languageinindia. com/nov2012/ravisankarmalayalamgrammar. pdf
http://dx.doi.org/10.1371/journal.pone.0179488

Information 2019, 10, 186 19 of 20

36. Nita Patil, Ajay S Patil, B.P. HYbrid Approach for Marathi Named Entity Recognition. In Proceedings of the
ICON 2017(NLPAI), Calcutta, India, 18–21 December 2017; pp. 103–111.

37. Zhou, G.; Su, J. Named entity recognition using an HMM-based chunk tagger. In Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002;
pp. 473–480.

38. Malouf, R. Markov models for language-independent named entity recognition. In Proceedings of the
COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), Stroudsburg, PA, USA,
31 August 2002.

39. Carreras, X.; Màrquez, L.; Padró, L. Named entity extraction using adaboost. In Proceedings of the 6th
Conference on Natural Language Learning 2002 (CoNLL-2002) 2002, Stroudsburg, PA, USA, 31 August 2002.

40. Li, Y.; Li, W.; Sun, F.; Li, S. Component-enhanced chinese character embeddings. arXiv 2015, arXiv:1508.06669.
41. Yin, R.; Wang, Q.; Li, P.; Li, R.; Wang, B. Multi-granularity chinese word embedding. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA,
1–5 November 2016; pp. 981–986.

42. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015,
arXiv:1508.01991.

43. Chalapathy, R.; Borzeshi, E.Z.; Piccardi, M. Bidirectional LSTM-CRF for clinical concept extraction. arXiv
2016, arXiv:1611.08373.

44. Plank, B.; Søgaard, A.; Goldberg, Y. Multilingual part-of-speech tagging with bidirectional long short-term
memory models and auxiliary loss. arXiv 2016, arXiv:1604.05529.

45. Xu, K.; Zhou, Z.; Hao, T.; Liu, W. A bidirectional LSTM and conditional random fields approach to
medical named entity recognition. In Proceedings of the International Conference on Advanced Intelligent
Systems and Informatics, Cairo, Egypt, 9–11 September 2017; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 355–365.

46. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A.M. Character-Aware Neural Language Models. In Proceedings of the
Thirtieth AAAI Conference (AAAI-16), Phoenix, AZ, USA, 12–17 February 2016.

47. Dong, C.; Zhang, J.; Zong, C.; Hattori, M.; Di, H. Character-based LSTM-CRF with radical-level features for
Chinese named entity recognition. In Natural Language Understanding and Intelligent Applications; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 239–250.

48. Zhang, Y.; Yang, J. Chinese ner using lattice lstm. arXiv 2018, arXiv:1805.02023.
49. Yang, J.; Zhang, Y.; Liang, S. Subword encoding in lattice lstm for chinese word segmentation. arXiv 2018,

arXiv:1810.12594.
50. Kuru, O.; Can, O.A.; Yuret, D. Charner: Character-level named entity recognition. In Proceedings of the

COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka,
Japan, 11–16 December 2016; pp. 911–921.

51. Limsopatham, N.; Collier, N.H. Bidirectional LSTM for named entity recognition in Twitter messages. In
Proceedings of the 2nd Workshop on Noisy User-generated Text, Osaka, Japan, 11 December 2016.

52. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity
recognition. arXiv 2016, arXiv:1603.01360.

53. Bhattu, S.N.; Krishna, N.S.; Somayajulu, D. idrbt-team-a@ IECSIL-FIRE-2018: Named Entity Recognition of
Indian languages using Bi-LSTM. In Proceedings of Working Notes of FIRE 2018-Forum for Information
Retrieval Evaluation, Gandhinagar, India, 6–9 December 2018.

54. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information.
Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [CrossRef]

55. Barathi Ganesh, H.; Soman, K.; Reshma, U.; Mandar, K.; Prachi, M.; Gouri, K.; Anitha, K. Information
Extraction for Conversational Systems in Indian Languages-Arnekt IECSIL; In Proceedings of the Forum for
Information Retrieval Evaluation, Gandhinagar, India, 7–9 December 2018.

56. Forum for Information Retrieval Evaluation. Available online: http://fire.irsi.res.in/fire/2019/home
(accessed on 2 February 2018).

57. Skymind. A Beginner’s Guide to Neural Networks and Deep Learning, 2017. Available online: https:
//skymind.ai/wiki/neural-network (accessed on 14 November 2018).

http://dx.doi.org/10.1162/tacl_a_00051
http://fire.irsi.res.in/fire/2019/home
https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/neural-network

Information 2019, 10, 186 20 of 20

58. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings
of the Twenty-eighth Conference on Neural Information Processing Systems, Montreal, Canada,
8–13 December 2014.

59. Na, S.H.; Kim, H.; Min, J.; Kim, K. Improving LSTM CRFs using character-based compositions for Korean
named entity recognition. Comput. Speech Lang. 2019, 54, 106–121. [CrossRef]

60. Klein, D.; Smarr, J.; Nguyen, H.; Manning, C.D. Named entity recognition with character-level models.
In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4,
Edmonton, Canada, 31 May–1 June 2003; pp. 180–183.

61. Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. Learning Word Vectors for 157 Languages.
In Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 7–12 May 2018.

62. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

63. Yu, X.; Faleńska, A.; Vu, N.T. A general-purpose tagger with convolutional neural networks. arXiv 2017,
arXiv:1706.01723.

64. Ajees, A.; Idicula, S.M. CUSAT TEAM@ IECSIL-FIRE-2018: A Named Entity Recognition System for Indian
Languages. In Proceedings of Working Notes of FIRE 2018 - Forum for Information Retrieval Evaluation,
Gandhinagar, India, 6–9 December 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.csl.2018.09.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Dataset Details
	Proposed Method
	Generalized Word Representation
	Convnet Based Character Level Word Representation
	Pre-Trained Word Representation
	Affix Level Word Representation

	Experiments and Results
	Impact of Character-Based Word Embedding
	Impact of Affix Embeddings
	Impact of Training Data Size
	Analysis

	Conclusions
	References

