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Abstract: On the brink of sophisticated generations of mobile starting with the fifth-generation
(5G) and moving on to the future mobile technologies, the necessity for developing the wireless
telecommunications waveform is extremely required. The main reason beyond this is to support
the future digital lifestyle that tends principally to maximize wireless channel capacity and number
of connected users. In this paper, the upgraded design of the multi-carrier orthogonal generalized
frequency division multiplexing (OGFDM) that aims to enlarge the number of mobile subscribers
yet sustaining each one with a high transmission capacity is presented, explored, and evaluated.
The expanded multi-carrier OGFDM can improve the performance of the future wireless network
that targets equally the broad sharing operation (scalability) and elevated transmission rate. From a
spectrum perspective, the upgraded OGFDM can manipulate the side effect of the increased number
of network subscribers on the transmission bit-rate for each frequency subcarrier. This primarily can
be achieved by utilizing the developed OGFDM features, like acceleration ability, filter orthogonality,
interference avoidance, subcarrier scalability, and flexible bit loading. Consequently, the introduced
OGFDM can supply lower latency, better BW efficiency, higher robustness, wider sharing, and
more resilient bit loading than the current waveform. To highlight the main advantages of the
proposed OGFDM, the system performance is compared with the initial design of the multicarrier
OGFDM side by side with the 5G waveform generalized frequency division multiplexing (GFDM).
The experimented results show that by moving from both the conventional OGFDM and GFDM
with 4 GHz to the advanced OGFDM with 6 GHz, the gained channel capacity is improved. Hence,
Because of the efficient use of Hilbert filters and improved rate of sampling acceleration, the upgraded
system can gain about 3 dB and 1.5 increment in relative to the OGFDM and GFDM respectively.
This, as a result, can maximize mainly the overall channel capacity of the enhanced OGFDM, which
in turn can raise the bit-rate of each user in the mobile network. In addition, by employing the
OGFDM with the dual oversampling, the achieved channel capacity in worst transmission condition
is increased to around six and twelve times relative to the OGFDM and GFDM with the normal
oversampling. Furthermore, applying the promoted OGFDM with the adaptive modulation comes up
with maximizing the overall channel capacity up to around 1.66 dB and 3.32 dB compared to the initial
OGFDM and GFDM respectively. A MATLAB simulation is applied to evaluate the transmission
performance in terms of the channel capacity and the bit error rate (BER) in an electrical back-to-back
wireless transmission system.

Keywords: orthogonal generalized frequency division multiplexing; generalized frequency division
multiplexing; Hilbert filter; oversampling factor; adaptive modulation; future mobile waveforms;
wireless networks; physical layer; bit error rate
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1. Introduction

The upcoming generations of mobile networks tend broadly to keep up the growing requirements
of future transmission [1]. This is, therefore, motivating the wireless research community to investigate
new techniques for accommodating the key predicated scenarios of modern wireless networks like the
bit-pipe communication [2], machine type communication [3], tactile Internet [4], and wireless regional
area network [5]. From the physical layer (PHY) perspective, the currently employed orthogonal
frequency division multiplexing (OFDM) waveform cannot be able to achieve the future mobile market
demands [6]. This mainly results from some significant issues with the OFDM design that makes
waveform suffers from the out of band emission, high peak to average power ratio, frequency offset
sensitivity, and partially lost bandwidth (BW) [7].

As a result, filtered candidate waveforms with developed features have been introduced recently
for the next generations of mobile. For example, the filter bank multi-carrier (FBMC) [8], the universal
filter multi-carrier (UFMC) [9], the filtered OFDM (F-OFDM) [10], and the generalized frequency
division multiplexing (GFDM) [11]. Consequently, the forthcoming generation of mobile networks can
be described as a filtration era. For more clarification, the digital filtration has been applied on different
levels of subcarrier allocation. Thus, waveform developers have utilized the filtration either for each
orthogonal subcarrier as in the FBMC [12], or for each fixed group of orthogonal subcarriers like in the
UFMC [13], or for each flexible group of orthogonal subcarriers as in the F-OFDM [14]. Furthermore,
because of the confliction between the employed digital filters and the orthogonal subcarriers, the
filtration is applied for each un-orthogonal subcarrier like in the GFDM that has been considered
recently for the 5G mobile networks [15]. However, because of removing the orthogonality with the
GFDM waveform, the BW efficiency has been influenced severely.

To address this problem, lately, a single carrier candidate waveform named as orthogonal
generalized frequency division multiplexing (OGFDM) is proposed [16]. The presented waveform has
obtained the orthogonality for the un-orthogonal subcarriers of a single frequency center (fc) of the
GFDM. This, as such, comes up with achieving the orthogonality in the filtration level rather than the
subcarriers level. The core idea beyond these advanced filters is the phase change which makes them
executed simultaneously. As a result, the developed Hilbert filters can be considered as an emerging
solution for the degraded BW efficiency of the GFDM.

From the single carrier transmission perspective, the introduced OGFDM doubled the wireless
channel capacity of mobile in comparison with the GFDM [16]. Nevertheless, the single carrier scenario
cannot be recommended for the higher wireless channel capacity of future mobile communication
(Gb/s). The main reason beyond this is the single carrier with a high transmission rate can be higher
impacted by the ISI than the low bit-rate since the maximum expected delay of spread is higher than
the specified time for each symbol duration [17]. Thus, the system performance in terms of the channel
capacity and bit error rate (BER) can be highly influenced by the utilized way of channel participation.
To mitigate such an issue, very recently, the single carrier of the OGFDM has been promoted to the
multi-carrier system [18]. The preliminary multi-carrier OGFDM has been launched, as the first stage,
with sixteen filtered subcarriers and a sampling frequency is equivalent to 4 GHz.

In this paper, an extended version of the multi-carrier OGFDM with a double number of filtered
subcarriers (thirty-two) and enlarged size of the FDAC equals to 6 GHz is experimentally demonstrated.
The developed design of the OGFDM with the multi-carrier system involves five important levels of
processing which are known as the acceleration level, filtration level, oversampling level, allocation
level, and modulation level.

Regarding the acceleration level, the upgraded design of the OGFDM is extra accelerated to
provide a wider BW usage and better transmission rate than the initial OGFDM. Concerning the
filtration level, the advanced Hilbert filters [19] are applied proficiently on the multi-carrier system
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ensuring an orthogonal transmission with the upgraded design of the OGFDM. As regards to the
oversampling level, the flexible oversampling process [20] is adopted to accommodate any probable
interference among the increased filters, that in turns can improve the attained BW efficiency. Relating
to the allocation level, a dual number of frequency subcarriers are utilized to extend the scalability
of the mobile network. About the modulation level, the adaptive modulation scheme [21] is widely
utilized with the progressive multi-carrier OGFDM system to achieve an extra enhancement for the
capacity of the transmission channel. Hence, depending on the transmission conditions, the frequency
subcarrier with the resilient modulation scheme can be reused in a more efficient way than the fixed
modulation system [22].

The performance in terms of the channel capacity and the BER of the promoted OGFDM waveform
is fundamentally deliberated in the PHY of an electrical back-to-back wireless transmission system.
The rest of the paper is organized as follows: Section 2 discusses the key concepts of the proposed
system physically and mathematically. Section 3 evaluates experimentally the system performance
utilizing a MATLAB simulation. Section 4 summarizes the outlines of the paper.

2. System Model of Upgraded Multi-Carrier OGFDM

Following the successful launch of the multi-carrier OGFDM system [18], in this paper, an
extended design of the OGFDM waveform is explored physically and mathematically. The developed
system aims to increase the number of subscribers yet keeping each user with a high level of channel
capacity. As such, despite the enlarged number of the subcarriers, the introduced system aims to
sustain the specified bit-rate for each client by expanding the utilized BW, particularly, after achieving
good progress in terms of the BW efficiency of the OGFDM [16,18,20,21].

As is clear in Figure 1, on the transmitter side of the multi-carrier OGFDM system, mainly, at
the modulation level, the complex numbers of the frequency domain can be generated via applying
different sizes of bit token (N) on an input stream of digital data. By adopting such a hybrid modulation
with an enhanced channel state, an extra number of bits can be allocated for each employed subcarrier
at the acceptable limit of errors. Consequently, the key downside of the conventional bit loading
schemes can be mitigated by alternatively employing an adaptive modulation format.
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After that, at the allocation level where the first part of upgrading is applied, the obtained
complex numbers are distributed among the utilized frequency subcarriers in accordance with their
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variance ability to carry data. It is worth noting that, the number of used frequency subcarriers is
doubled at this level of processing which in turn can increase the number of network subscribers at the
upgraded OGFDM.

At the oversampling level, a dual set of the modulated subcarriers is flexibly handled. Thus, the
working frequency subcarriers can be up-sampled by a factor of K, or 2K according to the system
requirements that always tend to achieve a high channel capacity even in worse transmission statuses.
The number of assigned copies for each frequency subcarrier is decided by the oversampling stage
which represents a significant base for the upcoming stage (filtration level).

Moving to the filtration level where a double assembly of the up-sampled subcarriers is efficiently
managed. At this vital stage of processing, every two adjacent subcarriers of frequencies are filtered by
the shaping filters of the Hilbert pair and perpendicularly assigned for a similar fc. Thus, the cosine
and sine parts of the Hilbert filters are employed effectively to orthogonally multiplex the processed
subcarriers. The convoluted subcarriers are collected digitally employing a proper electrical adder and
input as one sequence of data to the digital-to-analog converter (DAC).

At the acceleration level where the second part of upgrading is applied, the promoted FDAC size is
utilized to mitigate the impact of system expansion where doubled subcarriers participate in the same
resource space. Hence, to avoid sharing limitations, the BW size is amended herein to be compatible
with the developed system requirements. Accordingly, the FDAC limit should be expanded to keep
supplying a high level of bit-rate for each utilized subcarrier. The output of this operation is an analog
signal that is ready for transmission by a suitable antenna.

As is seen in Figure 2, on the receiver side of the multi-carrier OGFDM system where the wireless
signal is recognized, inverse processes are performed to recover the originally transmitted data. At
the acceleration level (the second part of upgrading), the promoted analog-to-digital converter (ADC)
is used to convert the analog signal to the digital domain with extra accelerating the transmission
rate. Then, at the filtration level, the doubled set of the matching filters are employed to extract each
intended subcarrier of every elected fc. After the de-multiplexing process, the convoluted subcarriers
are transferred to the oversampling level where each utilized frequency subcarrier is down-sampled by
K or 2K according to the oversampling factor of the transmitter. At the allocation level (the first part of
upgrading), the doubled set of the complex numbers that belong to the down-sampled subcarriers are
gathered in one stream. At the modulation level, where diffident shapes of modulation are applied, the
complex numbers of the frequency subcarriers are converted dynamically into a stream of binary digits.
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From a mathematical perspective, the multi-carrier system can be expressed as follows:
In the filtration level, the impulse responses of each employed hth pair of the Hilbert filters for

shaping filters (sf ) are represented as follows [23]:

S f h
A(t) = g(t) cos(2π f ch t)

S f h
B(t) = g(t) sin(2π f ch t)

(1)

In addition, the impulse responses of matching (mf ) are represented as follows [23]:

MfhA(t) = SfhA(−t)
MfhB(t) = SfhB (2)

where fch indicates the frequency center of the hth orthogonal pair and, the superscripts A and B refer
to the in-phase and out-phase of the applied filter.

Besides, the g(t) signifies the baseband pulse as follows [23]:

(t) =
sin[π(1 − α)Υ] + 4αΥ cos[π(1 + α) Υ]

πΥ
[
1 − (4αΥ)2

] (3)

where Υ = t/∆t, roll-off (α) specifies the filter excess and ∆t denotes the sampling interval prior to the
oversampling process.

Moreover, the output signal of the convolution operation between the shaping and matching
filters is expressed as follows [23]:

M f j
C(t) ⊗ S f i

D(t) =

{
δ(t− t0), i f C = D and j = i

0, i f C , D or j , i

}
(4)

where t0 states the probable delay, the subscripts i and j represent to the order of the fc, and the
superscripts C and D indicates either the in-phase or out-phase.

Considering that the expanded frequency sampling is equivalent in both sides (transmitter and
receiver), the fc of each filter pair is allocated as follows [24]:

fch = (2h − 1) (BW/K) (5)

where, h denotes the position of the Hilbert pair and BW equals to FDAC/ADC/2.
Since every applied fc is optimally selected, the utilized Hilbert filters are accommodated

orthogonally and distributed sequentially in the available spectrum.
The specified BW of each employed filter (FBW) can be expressed as follows [25]:

FBW = SubS ∗ (1 + α) (6)

where 1 >= α >= 0, and the frequency sampling of subcarrier (SubS) represents the size of generated
copy for each oversampled subcarrier.

In the oversampling level, a flexible oversampling process is applied to decide the required
sampling frequency for each frequency subcarrier as follow [25]:

SubS = FDAC/OV (7)

where OV refers to the oversampling factor that mostly equals to the number of used subcarriers (K).
Besides, this important factor (OV) can be employed to determine the number of generated copies

for each utilized subcarrier. Occasionally, the OV factor is doubled (2K) to give extra support for
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the employed filters, nevertheless, this kind of manipulation can impact the overall channel capacity
according to Shannon theorem as follows [26]:

Capacity = (BW) ∗ log2 (1 + SNR) (8)

3. Experimental Work

In this part, the expanded multi-carrier OGFDM system is experimentally demonstrated to
evaluate the performance in terms of the channel capacity and BER. Therefore, a numerical simulation
(MATLAB code) is achieved for the developed design of the OGFDM including five levels of processing
(acceleration, filtration, oversampling, allocation, and modulation). Furthermore, to highlight the
key advantages of the upgraded OGFDM, the performance is compared with 5G waveform (GFDM).
Moreover, the enhanced PHY of the OGFDM is investigated in an electrical back-to-back wireless
transmission system.

Prior to generating the extended design of the OGFDM, two different design trials are introduced
and compared with the initial design case [18]. The main reason behind these tests is to select the
optimal PHY that can be favorable to the predicated requirements of future mobile networks. The
introduced attempts show that neither an increasing number of subscribers nor supplying higher
channel capacity alone can be suitable for the upcoming generations of mobile. Hence, the hybrid
solution that combines both the scalability and high transmission rate should be adopted.

To clarify more about the OGFDM expansion and how the developed scenario is nominated, the
following experimental cases discuss, from a spectrum perspective, the assigned BW for one selected fc
in the examined multi-carrier OGFDM system.

In case 1 (initial state), as is seen in Figure 3, with 16 frequency subcarriers and FDAC corresponds
to 4 GHz, the specified sampling frequency (FDATA) for one fc is equivalent to 250 MHz. As a result,
the achieved bit-rate of each frequency subcarrier equals to 875 Mb/s with aggregated channel capacity
equals to 14 Gb/s.
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Figure 3. Case 1 (initial): FDAC = 4 GHz, K = 16.

In case 2 (subcarriers number increment), the test proposes to increase the number of frequency
subcarriers yet leaving the sampling frequency without a change in comparison with case 1. As is
clear in Figure 4, with a steady level of sampling frequency (FDAC = 4 GHz) and a dual number of
subcarriers (K = 32), the assigned sampling frequency for one fc is affected badly (FDATA = 125 MHz).
Thus, the subcarrier BW is reduced to half of its initial case because of doubling the applied subcarriers
without expanding the speed of FDAC. Despite the overall channel capacity is still compatible with
case1, the bit-rate of each applied subcarrier is descended to 437.5 Mb/s (50% decrement).
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Figure 4. Case 2: FDAC = 4 GHz, K = 32.

In case 3 (sampling frequency and number of subcarriers increment), in comparison with case
1, the test introduces a suitable enhancement for both the sampling frequency and the number of
frequency subcarriers. As is obvious in Figure 5, an advanced case of transmission is gotten herein
by expanding the utilized sampling frequency from 4 to 6 GHz and updating the applied number
of subcarriers into 32 (double). Worth noting that, the FDAC of this case can be further enlarged, but
since the multi-carrier OGFDM system tends currently to work at the 6 GHz band radio frequency,
the employed FDAC is upgraded by only 50% of the initial case. In comparison to the second case,
a better sampling frequency (187.5 MHz) is obtained herein which in turn can increase the bit rate
of transmission for each utilized subcarrier to 656.25 Mb/s side by side with escalating the overall
channel capacity to 21 Gb/s. Since the future applications of mobile tend to increase the number
of subscribers yet keeping the bit-rate of each one at a high level, this case that combines both the
improved bit-rate and the enlarged number of subcarriers is highly recommended for the expanded
design of the multi-carrier OGFDM waveform.
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Figure 5. Case 3: FDAC = 6 GHz, K = 32.

The following Table 1 can summarize the introduced cases for the OGFDM expansion including
the initial case.

After selecting the required scenario (case 3) for the developed OGFDM design, the main system
parameters are updated accordingly. The impact of the upgraded PHY on the system performance
(channel capacity and BER) is explored for the five levels of manipulation. Thus, such important
parameters like the number of subcarriers and sampling frequency size can directly influence the
acceleration, filtration, oversampling, allocation, and modulation levels of manipulation.
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Table 1. Comparison of expansion trials for multi-carrier OGFDM system.

FDAC (GHz) N.Sc FDATA (MHz) fc (MHz) Sc-Cap (Mb/s) T-Cap (Gb/s)

Case 1 4 16 250 125 875 14
Case 2 4 32 125 62.5 437.5 14
Case 3 6 32 187.5 93.75 656.25 21

Regarding the acceleration and filtration levels, the developed multi-carrier OGFDM with 6 GHz
is mainly compared with the 5G waveform (GFDM) exploring the impact of Hilbert filters on the
transceiver process. In addition, despite that the expanded sampling frequency is set to 6 GHz, the
effect of extending the initial case of the FDAC from 4 to 6 GHz is also considered for the overall
performance. Thus, investigating how the change in sampling frequency can impact the bit-rate
of transmission in cooperating with the orthogonal filters that play a big role in improving the BW
efficiency and then supporting the channel capacity of the upgraded system.

As is seen in Figure 6, in this experiment, a stable 2 dB gain is obtained between the aggregated
channel capacity of the OGFDM and the GFDM because of the orthogonality impact of the utilized
Hilbert filters on the OGFDM waveform. Thus, a higher channel capacity (double) is achieved with
the orthogonal OGFDM than the non-orthogonal GFDM with that root-raised-cosine (RRC) for an
equivalent level of the sampling frequency. In addition, because of expanding the applied FDAC, 3 dB
improvement can be achieved between the OGFDM and the GFDM. The main reason beyond this
increment is the combined influence of both the advanced Hilbert filters and the improved sampling
frequency. As such, the high channel capacity can be acquired by either improving the BW efficiency
(Hilbert pair) or by extra extending the used sampling frequency.
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(GFDM) with FDAC = 4 and 6 GHz.

Regarding the oversampling level, with the normal oversampling (NOV), where the oversampling
factor (OV) equals to the number of the subcarriers (K), the interference between filtered subcarriers
is decided according to the roll-off (α) value. To mitigate such an issue, a dual oversampling
(DOV) is adopted where the number of produced copies for each utilized subcarrier can be doubled
(OV = 2K) for the same utilized centers of frequencies. Therefore, the negative effect of the α can
be accommodated counting on the offered band intervals, which in turn, can remove any possible
intra-channel interference.

The upgraded OGFDM is compared with the initial OGFDM and GFDM considering the impact
of the hybrid treatment (NOV and DOV) on the system performance (channel capacity and BER) at
6 GHz sampling frequency.
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As is shown in Figure 7, the experimental work indicates that by utilizing the DOV with the
upgraded OGFDM at worst transmission states (0.5 ≤ α ≤ 1), the channel capacity is extremely
improved. Thus, 6 dB and 12 dB gains are obtained for the channel capacity of the extended OGFDM
with the DOV higher than the conventional OGFDM and GFDM with the NOV.
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Nevertheless, at a good transmission condition (0 ≤ α ≤ 0.4), the NOV mode can supply a better
transmission rate than the DOV. As such, by employing the NOV with the developed OGFDM at the
optimum value of the rolling (α = 0.1), around 2.6 dB and 5.25 dB gains are recorded for the OGFDM
with the NOV in comparison with the initial OGFDM and GFDM at DOV mode. As a result, for a robust
transmission scenario of the OGFDM, a combination of both the NOV and DOV is utilized, where the
NOV is highly advised to the good transmission cases while the DOV is strongly recommended for the
bad transmission conditions.

Regarding the allocation level, as is seen in Figure 8, three vital areas, that are known herein as low
boost (LB), medium boost (MB), and high boost (HB), are elected between the 128 QAM and 256 QAM
with minimum SNR edges equal to 23 dB and 26 dB correspondingly.
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The first case (LB) is calculated for a 25%-bit-rate improvement with the SNR threshold equals to
24.1 dB where different possible arrangements of the bit loading map can be shown for this ratio of
the enhancement. Worth noting that, compared with the initial OGFDM and GFDM, the number of
improved subcarriers that can carry extra bit is doubled and quadrupled respectively. The core idea
beyond the LB case is that a quarter of the subcarriers is improved gradually by loading 8 bits rather
than 7, which in turns, results in a minor channel capacity increase.

In the second case (MB), the threshold of the required SNR that is equivalent to 25.1 dB can be
decided between the first (128 QAM) and the second (256 QAM) modulation formats. Consequently,
based on the amended channel conditions, half of the frequency subcarriers can carry an extra number
of bits. This, as a result, develops the transmission capacity of the channel by about 50% of the total
increment that is possibly achieved between the selected modulations. It is worth pointing that in
comparison with the previous multi-carrier systems (OGFDM and GFDM), the number of subcarriers
with extra bit ability is enhanced for the developed system of the OGFDM at the same power threshold.

In the third case (HB), the promoted threshold of the SNR can come up with 75%-bit-rate
development in comparison with the previously stated modes (MB, LB). Therefore, at the HB where the
recorded SNR equals to 25.1 dB, the number of frequency subcarriers with a further bit is enhanced to
24 improved cases with the developed OGFDM in comparison with only 12 and 6 amended subcarriers
with the initial OGFDM and GFDM respectively.

Concerning with the modulation levels, an extra BW efficiency is gained herein by applying
the adaptive modulation format on the updated system. Besides, the system performance (channel
capacity and BER) of the promoted OGFDM is compared with the conventional OGFDM and GFDM
under the fixed and adaptive modulation schemes.

As is shown in Figure 9, the findings of the experiment declare that the upgraded OGFDM with
adaptive modulation can extra improve the transmission bit-rate compared to the OGFDM and GFDM
with the fixed modulation format. Hence, in the LB case, the developed OGFDM can achieve about
1.5 dB and 3 dB gains in comparison with the initial OGFDM and GFDM respectively. Worth noting
that, these gained ratios can be maximized up to around 1.66 dB and 3.32 dB by moving to the HB. Such
a notable improvement is essentially acquired because of the powerful use of the adaptive bit loading
system, side by side with improving the sampling rate of the OGFDM waveform. The improved
channel capacity can play a big role in supplying a good transmission bit rate for each subscriber in the
wireless network.
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The key conditions of this experimented system are listed in Table 2.

Table 2. System parameters of multi-carrier OGFDM.

Parameter Value

No. of frequency centers 16
FDAC/ADC 6 GHz

SNR 23–26 dB
Roll-off 0–1

System mode Multi-carrier
Number of subcarriers 32

OGFDM symbols 2000
Filter length 32

Modulation format Fixed & Adaptive
Oversampling Normal (32) & Dual (64)

Filter type RRC & Hilbert filters

4. Conclusions

In this paper, extended version of the multi-carrier OGFDM system with 32 frequency subcarriers
and sampling frequency equals to 6 GHz is proposed, examined, and evaluated. The developed
scheme can further support a wider number of mobile network users and a higher overall channel
capacity than the initial multi-carrier OGFDM. Experimentally speaking, the upgraded OGFDM has
five levels of manipulation (acceleration, filtration, oversampling, allocation, and modulation) that
directly impacts the performance of the transmission system. Because of the close bonding between
the acceleration and filtration levels, the experiment shows 1.5 and 3 dB improvement via moving from
the preliminary OGFDM and GFDM to the developed OGFDM. In the oversampling level, mainly at
the bad transmission conditions, the channel capacity of the OGFDM with the proposed dual sampling
(DOV) far outweigh the transmission capacity of the OGFDM and GFDM at normal sampling (NOV)
by around 6 and 12 dB respectively. However, at good transmission cases, the findings indicate that by
using the NOV with the promoted OGFDM, the recorded bit-rate can be better than the transmission
rate of the OGFDM and GFDM with the DOV by about 2.6 and 5.25 correspondingly. As a result,
the hybrid solution (normal and dual) is recommended with the advanced OGFDM to extremely
support the high channel capacity at good and bad transmission conditions. In the allocation and the
modulation levels, the results declare that the improved OGFDM can achieve around 1.66 dB and
3.32 dB gains in comparison with the initial OGFDM and GFDM. By improving the overall channel
capacity of the upgraded OGFDM, a good transmission bit rate can be supplied for each subscriber in
the mobile network.
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