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Abstract: In this paper, the viability of neural network implementations of core technologies (the
focus of this paper is on text technologies) for 10 resource-scarce South African languages is evaluated.
Neural networks are increasingly being used in place of other machine learning methods for many
natural language processing tasks with good results. However, in the South African context,
where most languages are resource-scarce, very little research has been done on neural network
implementations of core language technologies. In this paper, we address this gap by evaluating
neural network implementations of four core technologies for ten South African languages. The
technologies we address are part of speech tagging, named entity recognition, compound analysis
and lemmatization. Neural architectures that performed well on similar tasks in other settings
were implemented for each task and the performance was assessed in comparison with currently
used machine learning implementations of each technology. The neural network models evaluated
perform better than the baselines for compound analysis, are viable and comparable to the baseline
on most languages for POS tagging and NER, and are viable, but not on par with the baseline, for
Afrikaans lemmatization.

Keywords: resource-scarce languages; core technologies; South African languages; neural networks;
machine learning

1. Introduction

South Africa is a linguistically diverse country with at least 35 spoken languages, 11 of which are
granted official status in terms of the Constitution of South Africa. Based on their orthographies, these
official languages are all either Southern Bantu languages or West-Germanic languages, and can be
categorized on a conjunctive-disjunctive scale into three groups:

(1) Conjunctive languages (four Nguni languages, viz. isiZulu, isiXhosa, isiNdebele, and Siswati);
(2) Disjunctive languages (Tshivenda, Xitsonga, and three Sotho-Tswana languages (Sesotho, Sepedi

and Setswana)); and
(3) Middle of the scale (two West-Germanic languages, viz. Afrikaans and English.

The following example provided by [1] illustrates the difference between conjunctive and
disjunctive languages: the phrase “I love him/her” is written as a single word, ngiyamthanda, in isiZulu,
while it is written as four separate words in Sepedi, ke a mo rata.

Several legislative frameworks such as the National Language Policy Framework (https://www.
gov.za/documents/national-language-policy-framework-final-draft), Language in Education Policy
(https://www.gov.za/documents/language-education-policy-0), Language Policy Framework for South
African Higher Education (https://www.gov.za/documents/language-policy-framework-south-african-
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higher-education), and the use of Official Languages Act (12/2012) promote the use and development
of the official languages, especially the previously marginalized Southern Bantu languages. The
development of human language technologies (HLTs) for these languages could contribute significantly
to multilingualism and language development and ensure that South Africans are not excluded from
benefits of improved human-machine interaction. Over the past two decades the South African
government, specifically the Department of Arts and Culture, and the Department of Science and
Innovation, have continuously supported the development of HLTs through various projects that
entailed the development of natural language processing (NLP) resources in the form of data, core
technologies, and software (most of these resources are available from the South African Centre for
Digital Language Resources (www.sadilar.org)).

Even though considerable effort from government, universities, and several private institutions
and individuals have been made to develop HLT resources for South African languages, all of them
(with the exception of English) are still considered resource-scarce with relatively little data that can
be used to develop NLP applications and technologies. Most available datasets are limited to circa
40,000 to 60,000 tokens for a specific task. In addition, several core technologies using rule-based
approaches as well as supervised machine learning [2] have been developed. The ongoing development
and improvement of core technologies is an important step towards reaching the goals set by the
abovementioned policies, while also being a prerequisite for downstream NLP systems, such as machine
translation. It is, therefore, important that these development efforts are in line with international best
practices and trends.

Internationally, the trend in language technologies has shifted from rule-based systems, which
prevailed until the 1990s [3,4], to data-driven, statistical, or supervised machine learning (for ease of
reference in this paper, “machine learning” will be used to refer to sequential machine learning methods,
thus excluding neural networks) based methods such as Hidden Markov Models (HMMs), decision
trees, and memory-based learning [5,6], and over the last decade has shifted again from machine
learning systems to parallel processing using neural networks [6–8]. As early as 2011, Collobert et al. [7]
demonstrated that neural networks could outperform other machine learning methods available at that
time on POS tagging, phrase chunking, NER, and semantic role labelling. Since 2013, Neural Machine
Translation (NMT) [9–11] has established itself as the new state-of-the-art machine translation. NMT
systems have achieved improvements of up to 20 BLEU points [12] over statistical machine translation
systems [13], and is in use by technology giants like Google [14] and Facebook [15]. Neural models
similar in architecture to NMT models have been used for other NLP tasks, such as lemmatization [16]
and morphological reinflection [17]. For all NLP tasks, the main advantage of neural methods is that
they learn feature representations internally, thereby precluding the necessity for task specific feature
engineering [18].

Work on core technologies for South African (SA) languages has followed the same trend from
rule-based to machine learning based systems. For example, a rule-based lemmatiser for Afrikaans,
developed in 2003, was supplanted in 2007 by a memory-based machine learning model [19]. For
isiXhosa, a machine learning based lemmatiser was developed in 2015 [20] using data annotated by a
rule-based lemmatiser, developed in 2014 [2]. A rule-based compound analyser was developed in
2004 [21], followed by a machine learning based method in 2008 [22]. Several other machine learning
algorithms are currently in use in core technologies for SA languages. HMMs were implemented for
POS tagging for all ten SA languages [2,23], and a transition-based tagger was also evaluated [24].
Conditional Random Fields (CRFs) have been employed with reasonable success (average F1-score of
0.73) for NER for all ten SA languages [25]. Decision trees were used for automatic compound analysis
of Afrikaans in [21]. Later work on compound analysis used TiMBL, a memory-based learner which
employs the k-Nearest Neighbor (k-NN) algorithm [22]. The k-NN algorithm was also used to develop
the Lemma Identifier for Afrikaans (Lia) [19,26]. A similar k-NN lemmatiser was tested for Setswana [27].

While much work has been done in moving from rule-based to machine learning-based systems
for South African languages’ technologies, almost no work (to the best of our knowledge, the only
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exceptions are Fick, 2003 [28] and 2013 [29]) has been done on using neural networks instead of machine
learning methods for core language technologies. A disadvantage of neural networks is that they
generally require large amounts of data to work well [30], meaning that research on neural methods
for mainstream languages like English cannot be assumed to apply directly to low-resource contexts.
Research on neural networks for NLP in low-resource settings has recently gained some momentum
(e.g., [31–33]), but South African languages have not been among those included in these studies.
However, the promising performance of neural methods for core technologies like POS tagging and
NER in high resource settings [7] and in low-resource settings for other languages [32,33] suggests that
it is worth assessing their performance in the South African context.

To establish the viability of neural network methods for core language technologies for ten
low-resource South African languages, we consider two sequence tagging tasks, POS tagging, and
NER, and two sequence translation tasks, compound analysis and lemmatization (described in the
next section). We select neural architectures that show most promise for each task and perform
hyper-parameter optimization for each task. Neural network models are trained for each task and
each applicable language (for compound analysis, this is limited to Afrikaans) and the neural models’
performance is compared with that of the current machine learning based technologies.

2. Neural Network Architecture

All the tasks considered in this paper involve modelling sequential data. POS tagging and NER
are sequence tagging tasks, while compound analysis and lemmatization can both be modelled as
sequence-to-sequence (or sequence translation) tasks. Sequence tagging is a classification task, where
the set of possible tags is discrete, and each token requires exactly one tag. Sequence translation requires
the prediction of an output sequence based on the input sequence, where the input and output sequences
could use different vocabularies and be of different lengths. The neural architectures considered in this
paper are, therefore, limited to those aimed either at sequence tagging or sequence-to-sequence tasks.

2.1. Embeddings

For both sequence-to-sequence and sequence tagging tasks, feature representation for real-world
machine learning models is challenging. One-hot encoding (for example, to represent the subsequent
letter in a word, a one-hot encoded feature vector would represent all letters in the alphabet, and in
every column except the one representing the subsequent letter, the value for those features would
be zero. Hence, one-hot encoded vectors are sparse vectors) linguistic features like prefixes, suffixes,
or sentence context as discrete features in a fixed-length vector results in sparse, high-dimensional
input vectors [34]. The advantage of neural sequence tagging and sequence translation models is that
they can learn feature representation internally, using word or character embeddings [35,36]. Word
embeddings are continuous dense vector representations of words learned from the context in which
a word appears in a large, monolingual corpus. Word embeddings can encode both semantic and
syntactic similarities, such that simple algebra with the learned vectors yields meaningful results [37].
Character embeddings [38] can be learned with a similar approach, using characters as the individual
tokens to be represented and thus capturing morphological information [8]. They can be used by
themselves or in conjunction with word embeddings [39–41]. Character and word embeddings can
be pre-trained using independent networks or learned as part of a task-specific model. The encoder
portion of a neural machine translation model is one example of a model whose first layers learn word
embeddings. For our experiments, we use pre-trained word embeddings to train models for NER and
POS tagging.

2.2. Sequence Tagging

Sequence tagging neural networks for POS tagging and NER require only an encoder and a
classifier. Many studies focus on the encoder portion of the model. Approaches include using
convolutional neural networks (CNNs) [42], biLSTM’s [43,44], and combinations of the two [40,45,46].
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Using a combination of character and word-level word embeddings was found to improve performance
on POS tagging [40] and NER [47]. Dos Santos and Guimarães [47] additionally found that the same
network architecture and hyperparameters can be used to achieve state-of-the-art performance on both
POS tagging and NER. Several studies looking at neural sequence tagging in a low-resource setting
use some form of cross-lingual transfer learning, where the tags from a high-resource language are
used to infer tags for a low-resource language using a parallel corpus [48] or bilingual dictionary [49].
The addition of only a small amount of tagged monolingual data in the target language results in a
large boost in performance to transfer-learning models [48,50] suggesting that using monolingual data
remains preferable, if at all possible. Plank et al. [51] tested their implementation of a character-sensitive
biLSTM tagger, biLSTM-aux, in a low-resource setting without transfer learning and found that their
model performed better than expected even with only 500 tagged sentences of training data. Their
model outperformed HMM-based and CRF-based POS taggers on twenty-one languages (none of
which are South African languages), including Slavic and Nordic languages. However, they only
included languages with more than 60,000 tokens, which is more than is available for most South
African languages. Our work in this paper follows on theirs as we evaluate the viability of their model
for POS tagging and NER for South African languages.

2.3. Sequence-to-Sequence

Sequence-to-sequence neural networks were first proposed for neural machine translation
(NMT) [11] using an encoder-decoder architecture as described in [9,10]. The now well-established
basic model for NMT consists of a bidirectional Recurrent Neural Network (bi-RNN) to encode the
sequence into a fixed-length vector representation and a decoder RNN that predicts the probability of
a target sequence based on that representation. The decoder uses both the state in the decoder RNN
and a context vector, which serves as an alignment or attention mechanism [11] to predict the output
sequence. A significant improvement to this model was the substitution of the RNNs with Long-Short
Term Memory (LSTM) cells, which are better suited to dealing with long range dependencies [10].
The massive success of encoder-decoder models for NMT led to research on their application to
character sequence translation tasks. Faruqui et al. [52] and Kann and Schütze [17] used variations
on encoder-decoder architectures for morphological inflection generation. In both studies, the neural
models achieved results comparable or superior to non-neural state-of-the art methods. Schnober
et al. [53] evaluated the encoder-decoder approach for four-character sequence translation tasks and
found that non-neural algorithms outperformed sequence-to-sequence encoder-decoder models on
three of the four tasks, except for lemmatization. They hypothesized that neural sequence-to-sequence
models are well suited to lemmatization precisely because of the presence of long-range dependencies,
which are mostly absent in the other three tasks (OCR post correction, spelling correction, and
grapheme-to-phoneme conversion). A context-sensitive neural lemmatiser, Lematus [16], achieved an
average accuracy of 94.9% across 20 languages in a high-resource setting, and 87.8% accuracy in a
simulated low-resource setting. A point of interest in this study is their finding that lexical ambiguity,
morphological productivity, and morphological regularity are better predictors of performance than
the amount of training data available for a given language. This is relevant for the experiments in this
paper since several South African languages are agglutinative and highly morphologically productive.
For our lemmatization experiments, we use an implementation of Lematus.

There exists only limited published research on neural models for compound analysis. Fick [29]
used a windowing approach and a multilayer-perceptron (MLP) network for compound splitting in
Afrikaans, modelling the task as a classification problem. Their MLP network achieved a maximum
accuracy of 86% at the word level. Hellwig [54] used RNNs to model compound analysis and Sandhi
resolution in Sanskrit as a sequence tagging task, where the target tags are transformation rules. Dima
and Hinrichs [55] used deep neural networks for compound interpretation in English, which is a
semantic task, unlike compound analysis. To the best of our knowledge, there has not been any work
done on compound analysis as a sequence-to-sequence problem, but work on the similar tasks of
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morphological analysis and lemmatization suggest that encoder-decoder networks are a valid approach
to the problem. For our compound analysis experiments, we use a straightforward character-based
biLSTM sequence-to-sequence model.

3. Method

3.1. Languages and Data

The four technologies addressed in this paper were selected partly because they represent two
categories of tasks—sequence tagging and sequence translation—and partly because annotated data is
available for them. The availability of data and machine learning systems for comparison likewise
determined which languages were included for each task. Even though the scope of this study is
restricted to South African languages, the results should not only be applicable to them, but also to
other languages from similar language families.

3.1.1. Sequence Tagging

Training data statistics for the sequence tagging tasks are given in Table 1. POS-tagging models
were trained for all ten languages using the data from the NCHLT Text project [2] (datasets and tagging
protocols are available at https://repo.sadilar.org/handle/20.500.12185/1). The datasets were split into
training and validation sets (90% and 10%, respectively) for hyper-parameter selection, and the separate
5000-token test sets were held out for final model evaluation. For Afrikaans, one model was trained
using only the NCHLT data and another was trained using an additional 50,000 tokens from [56]. The
number of tokens available for a language partially depends on the writing system of that language.
All datasets are parallel, based on the same English dataset, but conjunctively written (henceforth
conjunctive) languages by nature use fewer orthographic words (tokens) to express the same idea as a
disjunctively written (henceforth disjunctive) language. Therefore, the disjunctive languages have
around 60,000 tokens available each, while conjunctive languages only have around 40,000. See [57]
for a more detailed discussion of disjunctively vs. conjunctively written Bantu languages. The number
of unique tags refers to the number of unique tags found in the training data for each language.

Table 1. POS tagging and NER training data statistics.

Language Writing
System

Tokens
(POS)

Types
(POS)

Unique Tags
in Data (POS)

Tokens
(NER)

Types
(NER)

Named Entities
(NER)

Afrikaans (af) Mixed 55,483 7108 98 206,614 22,657 12,543
Af-100k Mixed 100,423 12,470 113 – –

IsiNdebele (nr) Conjunctive 38,426 13,558 95 145,190 40,046 15,854
IsiXhosa (xh) Conjunctive 42,061 15,008 75 108,766 35,622 12,260
IsiZulu (zu) Conjunctive 41,714 14,125 99 180,751 52,628 18,592
Siswati (ss) Conjunctive 39,486 13,628 92 157,412 45,013 16,429
Sepedi (nso) Disjunctive 62,841 5782 137 181,299 16,822 10,583
Sesotho (st) Disjunctive 62,929 5831 165 242,148 16,817 12,530

Setswana (tn) Disjunctive 62,842 6024 139 209,085 17,234 11,498
Xitsonga (ts) Disjunctive 62,961 5828 143 240,937 16,600 14,770

Tshivenda (ve) Disjunctive 59,818 5340 220 211,694 15,059 10,701

The data for the NER task consists of data from the NCHLT Text Project and additional
government-domain data as described in [25]. The data is tagged according to the CoNLL-2003
shared task protocol, which specifies that tokens are either at the beginning of (B), inside (I), or outside
(O) a named entity and also specifies whether the entity is a person (PERS), organization (ORG) or
location (LOC) [58]. The NER datasets were each split into training (80%), validation (10%), and test
(10%) sets. NER models were trained for all ten languages.

3.1.2. Sequence Translation

Compound analysis experiments were carried out for Afrikaans only, since neither annotated
data nor automatic compound analysers are available for languages besides Afrikaans. The CKarma

https://repo.sadilar.org/handle/20.500.12185/1


Information 2020, 11, 41 6 of 16

dataset [21], consisting of 77,850 Afrikaans words annotated with compound boundaries, was used for
these experiments. The data was split into training, validation, and test splits (80%, 10%, and 10%,
respectively) and the test split was held out for final model evaluation.

Lemmatisation experiments were carried out for all ten languages. The lemmatization models
were trained using the training data from the NCHLT Text Project. For Afrikaans, the data annotated
during the development of Lia [19] (see Section 2) was also used. The neural lemmatization model
is context sensitive if context is provided, as it is in the NCHLT corpora. On the other hand, Lia is a
context-insensitive lemmatiser and the data annotated for that project consists of a list of unique words
without context. Therefore, to permit both direct comparison with Lia and evaluate the effect of using
sentence context, a context-sensitive model was trained using the NCHLT data and a context-insensitive
model was trained using the training data from Lia. The NCHLT data was split into training and
validation sets (90% and 10%, respectively) and the validation set was used for hyper-parameter
selection. The test set developed during the NCHLT Text Project was held out for final evaluation of
both models. Training data statistics for lemmatization are given in Table 2.

Table 2. Train and test data statistics for lemmatization.

Language Tokens Types Lemmas Tokens Types Lemmas

af-lia 72,226 61,881 – –
af-nchlt 55,483 7108 5515 5834 1675 1450

nr 38,426 13,558 3595 3904 2323 1636
nso 62,841 5782 2866 7153 1485 1042
ss 39,486 13,628 7162 4075 2364 1813
st 62,929 5831 2810 6847 1563 1080
tn 62,842 6024 2970 6803 1588 1144
ts 62,961 5828 4542 6518 1450 1243
ve 59,818 5340 3606 6646 1493 1245
xh 42,061 15,008 3577 4409 2547 1707
zu 41,714 14,125 2830 4343 2415 1647

3.2. Models

For each task, we use the same hyperparameters which were tuned using the Afrikaans validation
data. Although it would be ideal to tune hyperparameters per task and language, time, and resource
constraints did not allow for this. However, experiments using Setswana and isiZulu data and varying
the hyperparameters for POS tagging indicated that very similar hyperparameters performed well
across languages. When training a model for each language, the number of epochs (iterations) trained
through was adjusted using early stopping based on performance on the validation set. When the
score for the model’s predictions on the validation set do not improve for a certain number of epochs,
training stops and the model from the last epoch is saved. The final model for each language and task
was trained using both the training and validation data and was evaluated on the held-out test set.

3.2.1. Sequence Tagging

We followed [47] in using the same model architecture and parameters for both POS tagging
and NER. The sequence tagging models used Plank et al.’s [51] implementation of a hierarchical
bidirectional LSTM with an auxiliary loss function which they called bilstm-aux (https://github.com/

bplank/bilstm-aux). The first level learns word embeddings and sub-token embeddings, and these
vectors are concatenated to form the input to the higher-level LSTMs. The model is trained to predict
both tags and the log frequency of the source token, a strategy intended to discourage learning
shared representations between rare and common words, thus improving the handling of rare words.
bilstm-aux deals with token and sub-token representation internally given a file in CoNLL-U format [59].
Word vector size, hidden layer size and number, and learning rate were tuned by varying one parameter
at a time, starting with number of hidden layers and using Plank et al.’s reported settings as start
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values. The final model had four layers and word vectors in dimension 200 (except when pre-trained
embeddings were used), character vectors in dimension 100, and 400 hidden units. The model was
trained using a learning rate of 0.1, the SGD optimizer, and regularization by word dropout of 0.25.
We also trained models using the fasttext (https://fasttext.cc/docs/en/pretrained-vectors.html) [39],
embeddings trained on a Wikipedia Corpus (XML Wikipedia dumps: 11 September 2017) [60], in
dimension 300, to initialize the word embeddings for all languages except isiNdebele, for which fasttext
embeddings are not available.

3.2.2. Sequence Translation

The framework for our compound analysis model is an LSTM-RNN encoder-decoder model [9,10]
with two layers in the encoder and decoder, using global attention and beam-search in translation [61].
The input is a sequence of characters and the target output is a sequence of characters interpolated
with compound boundaries (+) and valence morpheme boundaries (_) as seen in Table 3. This format
is similar to that described in [22], with the exception that the sequence is space separated and is
appended with an end-of-sequence (.) marker, which preliminary experiments indicated improved
the accuracy of sequence length prediction. As with morphological inflection generation [52], the
compound analysis task differs from neural machine translation in that the output sequence is very
similar to the input sequence, except for the boundary markers. Therefore, we also incorporated a
copying mechanism [62] by which infrequently seen tokens in the input are copied directly to the
output sequence. The frequency limit below which copying is required was tuned as one of the
hyperparameters of the model. Although [10] found that reversing the input helped, preliminary
experiments with the compound analysis data did not indicate any increase in performance by doing
so. The model was implemented in OpenNMT, an open-source neural machine translation toolkit [63].
Hyperparameters were selected by varying one at a time while holding others constant, using the
guidelines suggested in [64]. The hyperparameters varied during hyper-parameter optimization
included: the learning rate, decay rate, word vector size, number of hidden units, optimization
algorithm, the minimum token frequency below which the source token would be copied to the
predicted sequence, and the settings for scheduled sampling [65]. Scheduled sampling allows the
decoder to use the gold reference token instead of the previously generated token according to a
probability that decreases (decays) over training epochs, so that errors in the beginning of a prediction
will not be propagated to the rest of the sequence during early epochs. It was found that a learning
rate of 0.001 using the Adam optimization algorithm and a decay rate of 0.9 with a word vector size
of 500 and 500 hidden units yielded the best results. It was further found that applying scheduled
sampling with an initial probability of 0.5 and a linear decay rate of 0.01 increased the performance of
the trained model.

Table 3. Input and Target format for the compound analysis model for the word “regeringsbeleid”
(“government policy”).

Input Sequence Target Sequence

r e g e r i n g s b e l e i d r e g e r i n g _ s + b e l e i d.

Our lemmatization model is based on the Lematus lemmatiser described in [16]. The network is a
two-layered attentional bidirectional encoder-decoder network using GRU cells in all layers; the only
adaption we made to the Lematus architecture is that a non-conditional GRU was used in both layers of
the decoder. The input to the model is a space separated character sequence of the target word and its
left and right sentence context of size n. No padding characters are used when there are less than n
characters in the sentence context to the left or right of the word. The left and right context, word, and
beginning and end of phrase boundaries are marked with the tokens (<lc> <rc>), (<s>) and (<w>

<\w>) respectively (see Table 4 for an example of how these markers are used). The model learns
representations for these markers exactly as it does for other characters. An example of the input and

https://fasttext.cc/docs/en/pretrained-vectors.html
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target sequence format is shown in Table 4 for a left and right context size of ten characters. If n =

0, the model is context-insensitive, and the input includes only the source token. Hyperparameters
were selected by varying one at a time while holding others constant, starting with the parameter’s
settings described in [16]. In the final model, a context size of 25 with length normalization of 0.7 was
used, 300 units in the hidden layer, word vectors in dimension 500 and scheduled sampling at an
initial probability of 0.5. The model was trained using the Adadelta optimization algorithm and word
dropout of 0.4 for regularization. Words appearing with a frequency less than 100 in the training corpus
were dealt with as unknown tokens. The lemmatization model was also implemented in OpenNMT.

Table 4. Input and target format for the lemmatization model with context size = 10 for the Afrikaans
sentence “Laai die elektroniese aansoekvorm af” (“Download the electronic application”)].

Input Sequence Target Sequence

<w> <lc> L a a i <rc> d i e <s> e l e k t r <\w> l a a i
<w> L a a i <lc> d i e <rc> e l e k t r o n i e <\w> d i e

<w> L a a i <s> d i e <lc> e l e k t r o n i e s e <rc> a a n s o e k v o r <\w> e l e k t r o n i e s
<w> e k t r o n i e s e <lc> a a n s o e k v o r m <rc> a f <s> <\w> a a n s o e k v o r m

<w> a a n s o e k v o r m <lc> a f <rc> <s> <\w> af

3.3. Evaluation

3.3.1. Sequence Tagging

The performance of the neural models is evaluated against baselines, as achieved by current
machine learning implementations of each technology. For POS tagging, the baseline system is the
Mate Tools POS tagger [66,67] which was found by [24] to achieve the highest average accuracy
across all ten languages. For NER, we compare results with those reported in [25] as a baseline, using
precision, recall, and F-score at named entity levels as metrics. NER entails both demarcation of named
entity boundaries and assigning a type to predicted named entities. Tokens are designated as either
at the beginning of (B), inside (I), or outside (O) of a named entity, and “B” or “I” tagged tokens are
further tagged as either a person (PERS), organization (ORG), or location (LOC). Several methods for
determining what counts as “correct” (true positive) classifications of NERs exist. For our evaluation,
the metrics are calculated as per the method defined for the CoNLL-2003 Shared Task [58], which
uses the strictest definition of a correct prediction to determine true positives, excluding any partial
predictions of named entities and errors in the type of named entity predicted.

3.3.2. Sequence Translation

For compound analysis, results are compared with those reported in [22] as a baseline, which
were achieved using a memory-based learner. They are additionally compared with those achieved
by CatBoost, a gradient-boosted decision tree (GBDT) implementation [68], which was found to be
the best-performing machine learning algorithm of those evaluated by the authors (machine learning
methods tested included kNN’s (IBk), non-boosted decision trees, Random Forest, SVM’s, One Rule,
and Naïve Bayes). The comparison metrics for compound analysis are accuracy at word-level and
F1-score at the compound boundary level. For the lemmatization task, the baseline for Afrikaans is Lia
(see Section 2) [19] and precision, recall, F1 and accuracy are reported. Tokens consisting of punctuation
or numbers were excluded from evaluation, and for systems trained using the Lia data, all tokens
were lowercased before prediction, since Lia does not predict capitalization. For languages other than
Afrikaans, the only available lemmatizers are rule-based. Therefore, the lemmatization experiments on
other languages lack a machine learning baseline for comparison and results are reported with the
rule-based scores alongside for interest only.



Information 2020, 11, 41 9 of 16

4. Results and Discussion

4.1. POS Tagging

Our results for POS tagging are given in Table 5. Overall, Mate achieves the highest average
accuracy, followed closely by biLSTM-aux with embeddings and biLSTM-aux alone. Although using
word embeddings slightly improved the average accuracy of the neural model, it outperformed
biLSTM-aux alone on only four languages, with the greatest improvement for Afrikaans. This result is
expected given the size and quality of the Wikipedia corpora used to train the fasttext embeddings.
Both neural models fall short of Mate on all languages except Afrikaans, Sepedi, and Sesotho. Notice
that the languages on which the neural models outperform Mate are all disjunctive languages, except for
Afrikaans (Afrikaans orthography falls between conjunctive and disjunctive), and the performance of
all models on conjunctive languages is lower than on disjunctive languages (cf. Table 1 for orthography
type). At first glance, this might appear to be related to the amount of training data or the number of
tags for each language.

Table 5. POS tagging accuracy; numerically highest scores per language are in bold font.

Mate Baseline bilstm-aux
bilstm-aux with

Fasttext
Embeddings

BiLSTM-aux with
40,000 Tokens

English * 92.66% (TnT) 92.10% 95.16% n/a
German * 92.64% (TnT) 90.33% 93.38% n/a

af-100k 91.50% 91.50% 92.00% n/a
af 93.90% 93.10% 94.30% 91.20%
nr 83.00% 79.90% n/a ** 79.90%

nso 94.80% 95.20% 94.90% 94.10%
ss 83.00% 81.40% 81.50% 81.40%
st 89.40% 89.10% 89.90% 88.20%
tn 90.10% 89.20% 88.90% 88.50%
ts 88.60% 88.30% 88.10% 87.30%
ve 87.40% 86.50% 86.00% 85.40%
xh 87.60% 84.90% 85.30% 84.90%
zu 85.90% 84.10% 84.00% 84.10%

Average
(SA languages) 88.37% 87.17% 88.10% 86.50%

* As reported in Plank et al. [51] for the Universal Dependencies v1.2 datasets. ** No pre-trained embeddings are
available for isiNdebele.

To assess the effect of training corpus size, biLSTM-aux models for the disjunctive languages
were also trained on reduced datasets of approximately 40,000 tokens, which is the amount available
for conjunctive languages. In this setting, accuracy was still an average of 6% higher for disjunctive
languages verses conjunctive languages. A likely explanation is that conjunctive languages’ words
are generally much longer and more morphologically complex, resulting in more word types, and
therefore less examples per type, for a corpus of the same size in comparison with disjunctively
written languages [57]. For disjunctive languages, despite having larger tag set sizes than conjunctive
languages, the ratio of tokens to types is more than 10:1; for conjunctive languages, the ratio is less
than 3:1. Orthography type is thus a significant factor for a data-driven POS tagging system, including
neural networks.

The accuracies reported in [51] for English and German POS models are recorded in Table 5 as
examples of results achieved for high-resource languages. The models were trained on more than
250,000 tokens and used the Polyglot pre-trained embeddings [69]. For Afrikaans, a larger dataset
of approximately 100,000 tokens was also available. The performance of biLSTM-aux trained on the
100,000 Afrikaans dataset is lower than for just the NCHLT dataset, a result which can be explained by
the domain of the extra data. While the NCHLT data comes from the government-domain only, the
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additional 50,000 tokens come from multiple domains, meaning more variation in training and testing
examples. The German results are most comparable with the Afrikaans 100,000 results, in terms of both
language type and domain of data. It is interesting that biLSTM-aux alone performs better on Afrikaans
100,000 than on German, while the addition of pre-trained embeddings is more helpful for German
than Afrikaans (3% and 0.5% improvement, respectively). This result suggests that the size and quality
of the pretrained embeddings is a significant factor in the performance of the neural POS tagger.

4.2. NER

Results for NER experiments are given in Table 6. The CRF baseline performs best on four
languages and the neural models outperform it on five languages, while the scores for Afrikaans
are almost identical (within 0.01%). There is no apparent trend according to language type. The
neural models’ largest problem is low precision, in contrast to the CRF model, whose weakness is low
recall, as noted in [25]. CRF outperforms both neural models on precision on eight languages and is
outperformed by biLSTM-aux on recall on seven languages. Both neural models’ performance on
Sesotho is significantly lower than on the other languages, falling short of the CRF model by more
than 18%. A closer analysis of the prediction output showed that most incorrect predictions were
false positives where the prediction of a named entity was entirely false, not just incorrect in type or
boundary. The predominance of this kind of error is in line with the trend across all languages, but it is
not clear why the rate is so much higher for Sesotho, especially given that the CRF classifier performed
fairly well on it, suggesting that the data itself is not inherently the problem. If Sesotho is excluded as
an outlier, the neural models’ average F-score is 73.53%, which is slightly higher than the CRF baseline
at 73.24%.

Table 6. NER F1-scores; numerically highest precision, recall and F1 scores per language are in bold font.

CRF
Baseline * bilstm-aux bilstm-aux

emb
CRF

Baseline * bilstm-aux bilstm-aux
emb

CRF
Baseline * bilstm-aux bilstm-aux

emb
Precision Recall F1

af 78.59% 73.61% 73.41% 73.32% 78.23% 78.23% 75.86% 75.85% 75.74%
nr 77.03% 78.58% n/a ** 73.26% 79.20% n/a ** 75.10% 78.89% n/a **

nso 76.12% 75.91% 72.14% 72.88% 79.66% 77.63% 74.46% 77.74% 74.79%
ss 69.03% 70.02% 69.93% 60.17% 71.44% 72.82% 64.29% 70.72% 71.35%
st 76.17% 53.29% 50.31% 70.27% 55.56% 57.73% 73.09% 54.40% 53.77%
tn 80.86% 74.14% 73.45% 75.47% 77.42% 74.71% 78.06% 75.74% 74.07%
ts 72.48% 72.33% 71.03% 69.46% 71.44% 71.25% 70.93% 71.88% 71.14%
ve 73.96% 67.97% 63.82% 72.92% 65.91% 67.09% 73.43% 66.92% 65.41%
xh 78.60% 69.83% 69.08% 75.61% 73.30% 72.78% 77.08% 71.52% 70.88%
zu 73.56% 72.43% 73.44% 66.64% 72.64% 74.32% 69.93% 72.54% 73.87%

Average 75.64% 70.81% 68.51% 71.00% 72.48% 71.84% 73.22% 71.62% 70.11%

* As reported in [25] ** No pre-trained embeddings are available for isiNdebele.

4.3. Compound Analysis

Table 7 shows that the neural compound analysis model improved over previously published
results by a very large margin and outperformed the CatBoost model by a smaller margin on both
accuracy and F1 score. Precision and recall are fairly balanced.

Table 7. Afrikaans compound analysis accuracy (word level) and F1-scores (constituent boundaries);
numerically highest scores are in bold font.

Knn Baseline CatBoost * Neural Model

Accuracy 81.28% 92.50% 96.13%
Precision Not available 96.84% 98.05%

Recall Not available 96.22% 98.27%
F1-score 90.57% 96.53% 98.16%

* Results from 10-fold cross-validation.
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A qualitative analysis of the neural model’s output shows that it makes some unique errors not
made by classification algorithms, as seen in Table 8. Classification algorithms predict only one of a
closed set of the categories for an instance, leading to errors in presence, absence, kind, and position
of boundary markers. In the neural model, however, all items in the vocabulary are candidates for
prediction at every point in the sequence, leading to errors in word spelling. In total, such errors
were present in 21 predictions of the test set (less than 0.003% of instances). While infrequent, their
occurrence indicates a disadvantage of sequence-to-sequence learning for tasks where the target is
very similar to the input, or where only a closed class of changes to a sequence are possible.

Table 8. Examples of erroneous analyses made by the neural compound analysis model.

Error Word Predicted Analysis Correct Analysis

Adding a character Mosambiek Mosambbiek Mosambiek
Deleting a character teboekstelling te+oek+stelling te+boek+stelling

Substituting a character lintbebouing lint+bbbouing lint+bebouing

As per the findings in [53], neural networks have the greatest advantage over other machine
learning methods for sequence translation tasks when long-range dependencies are involved. Therefore
a probable explanation for the large improvement of the neural model over the baseline is that the use of
character embeddings to represent characters, and the automatic combination of these embeddings into
more complex features in the subsequent layers of the neural network, leads to a much more informative
representation of the sequence at hand than does the windowing approach used by the kNN baseline.
However, this benefit is not seen as clearly in the other tasks assessed. Two explanations present
themselves. Firstly, a fairly large amount of data was available for training the model, and this data
consisted only of informative examples, not running text with many non-compound words, in contrast
with the data available for the other tasks. Secondly, compound analysis is a comparatively simple
task. POS-tagging and NER are multiclassification tasks with many possible tags, and lemmatization
is an open-ended sequence translation task, while compound analysis requires only the placement
of two kinds of boundary markers. Establishing more firmly the reasons for the success of neural
networks on this task would be a worthwhile direction for further research.

4.4. Lemmatisation

The results for the lemmatization experiments (see Table 9) are not directly comparable across
models except for Afrikaans (see Section 3.3). For the models trained on the Afrikaans NCHLT data, the
context-insensitive model outperforms the context-sensitive model, which is in line with the findings
in [16].

Table 9. Lemmatisation results for Afrikaans.

Lia (Lia Data)
Baseline

Context-Insensitive
Neural Model

(Lia Data)

Context-Insensitive
Neural Model
(NCHLT Data)

Context-Sensitive
Neural Model
(NCHLT Data)

Accuracy 95.92% 94.84% 95.10% 93.68%
Precision 90.74% 78.39% 82.63% 77.75%

Recall 86.46% 88.99% 95.97% 95.83%
F1-score 88.55% 83.35% 88.80% 85.85%

The context-insensitive neural model trained on the Lia data falls roughly 5% short of Lia. This
gap is accounted for entirely by false positives (low precision). Just over half of the false positives
were cases where the model lemmatized the word by removing one or two letters from the front
or back of the word, a kind of error made by Lia, too, albeit less frequently, since the majority of
lemmatization rules are of that form. However, a few of the false positives are accounted for by errors
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of the kind seen in Table 8 for the compound analysis. These are difficult to quantify since not all
incorrect deletions, additions, or substitutions of characters in the middle of words are implausible or
unseen lemmatization processes, as they are with compound analysis. The clearest cases were eight
very long words (length > 20), such as “gemeenskapsveiligheidsforum” (community safety forum),
which the neural model shortened by removing several characters from the middle of the word (e.g.,
“gemeenskapsveidsforum”). Unsurprisingly, the context-insensitive model trained on NCHLT data
performs much better than the one trained on Lia data. This is most likely due to the ratio of training
examples per lemma present in the training data, which is much higher in the NCHLT data than in the
Lia data, and also due to the NCHLT data being in-domain relative to the test data, unlike the Lia data.

The scores for lemmatization on the other SA languages are reported in Table 10. As
with POS tagging, the neural models generally perform better on disjunctive languages than
conjunctive languages. With the exception of Xitsonga, the context-insensitive models outperform
the context-sensitive models. There is a large discrepancy between precision and recall for the neural
models. The average precision of the context insensitive model is 70.56%, while the average recall is
96.41%. Recall exceeded 99% on four languages. Thus, the major challenge for the neural model is
low precision.

Table 10. Lemmatisation F1 scores on 9 SA languages; numerically highest scores per language are in
bold font.

Rule-Based * Baseline Context-Insensitive
Neural Model

Context-Sensitive
Neural Model

nr 80.32% 73.17% 67.39%
nso 77.90% 91.16% 88.59%
ss 81.60% 79.61% 69.51%
st 76.43% 82.58% 80.86%
tn 74.86% 76.70% 73.76%
ts 76.09% 85.67% 86.50%
ve 77.54% 79.68% 79.34%
xh 79.82% 74.92% 74.10%
zu 81.56% 74.87% 74.08%

Average 78.46% 79.82% 77.13%

* As reported in [2].

5. Conclusions and Future Work

In this paper we trained and evaluated neural network implementations of core language
technologies for ten low-resource South African languages. For POS tagging, results show that the
neural model performs comparably with the baseline on Afrikaans and disjunctive languages (accuracy
within 1%), and slightly worse on conjunctive languages, falling short of the baseline by 2.3% on
average. In addition, the quality of the pretrained embeddings available significantly affects the
performance of the neural POS tagger, as their use improves performance only for Afrikaans. These
results indicate that the neural model evaluated is viable for POS tagging for SA languages, but is
not superior to the machine learning baseline. The neural NER model performs on par with or better
than the baseline on most languages, with no trend according to orthography type. There is, however,
considerable variation in performance per language, with one extreme outlier (Sesotho) which falls
short of the baseline by 18% (F-score). Thus, neural networks are a viable implementation for NER for
most SA languages, but further research on the variation in performance per language is needed to
ensure viability for all languages. For lemmatization, the best neural model is a context-insensitive
model. In the only directly comparable case (Afrikaans), the machine learning baseline outperforms
the neural model by 5%. However, the training data used significantly impacts the performance of
the neural model, indicating that the implementation itself is viable, but depends on the training data
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type. On the other nine languages, there is a strong trend in performance according to orthography
type, with higher performance on disjunctive languages than on conjunctive ones. Due to the lack of
machine learning baselines for the other languages, it is not possible to directly assess the viability
of the neural models in comparison to machine learning systems. The neural compound analysis
model outperforms both machine learning baselines on all metrics, achieving a word-level accuracy of
98%. Of the technologies assessed, the compound analysis task is the only one on which the neural
model evaluated is clearly superior to the baseline, probably because of the presence of long-range
dependencies, the amount and type of data available for the task, and the simplicity of the task in
comparison with lemmatization, POS tagging and NER.

Overall, our results demonstrate that neural networks can be viable implementations of core
language technologies for resource-scarce South African languages. However, the implementations
assessed in this paper are not generally superior to current machine learning baselines, except for
compound analysis.

The experiments in this paper evaluated only one neural architecture for each task. Therefore,
future work should consider alternative neural architectures, such as transformers, and parameters.
Given the unique errors introduced by modelling compound analysis and lemmatization as sequence
translation tasks, it would be worth investigating neural models for lemmatization and compound
analysis modelled as classification tasks. Another open question for future research is the viability
of the neural models in terms of computational resources and efficiency in the context of their
use in downstream tasks. Future research could also extend the assessment of neural network
implementations to other core technologies such as morphological analysis and phrase chunking.
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