
 information

Article

Dramatically Reducing Search for High Utility
Sequential Patterns by Maintaining Candidate Lists †

Scott Buffett

Research Centre for Digital Technologies, National Research Council Canada, Fredericton, NB E3B 9W4, Canada;
scott.buffett@nrc.gc.ca
† This paper is an extended version of our paper published in the 2018 IEEE International Conference on Big

Data (Big Data), Seattle, WA, USA, 10–13 December 2018.

Received: 29 October 2019 ; Accepted: 9 January 2020; Published: 15 January 2020
����������
�������

Abstract: A ubiquitous challenge throughout all areas of data mining, particularly in the mining of
frequent patterns in large databases, is centered on the necessity to reduce the time and space required
to perform the search. The extent of this reduction proportionally facilitates the ability to identify
patterns of interest. High utility sequential pattern mining (HUSPM) seeks to identify frequent
patterns that are (1) sequential in nature and (2) hold a significant magnitude of utility in a sequence
database, by considering the aspect of item value or importance. While traditional sequential pattern
mining relies on the downward closure property to significantly reduce the required search space,
with HUSPM, this property does not hold. To address this drawback, an approach is proposed that
establishes a tight upper bound on the utility of future candidate sequential patterns by maintaining
a list of items that are deemed potential candidates for concatenation. Such candidates are provably
the only items that are ever needed for any extension of a given sequential pattern or its descendants
in the search tree. This list is then exploited to significantly further tighten the upper bound on the
utilities of descendent patterns. An extension of this work is then proposed that significantly reduces
the computational cost of updating database utilities each time a candidate item is removed from the
list, resulting in a massive reduction in the number of candidate sequential patterns that need to be
generated in the search. Sequential pattern mining methods implementing these new techniques for
bound reduction and further candidate list reduction are demonstrated via the introduction of the
CRUSP and CRUSPPivot algorithms, respectively. Validation of the techniques was conducted on
six public datasets. Tests show that use of the CRUSP algorithm results in a significant reduction in
the overall number of candidate sequential patterns that need to be considered, and subsequently
a significant reduction in run time, when compared to the current state of the art in bounding
techniques. When employing the CRUSPPivot algorithm, the further reduction in the size of the search
space was found to be dramatic, with the reduction in run time found to be dramatic to moderate,
depending on the dataset. Demonstrating the practical significance of the work, experiments showed
that time required for one particularly complex dataset was reduced from many hours to less than
one minute.

Keywords: high utility sequential pattern mining; sequential pattern mining; frequent pattern mining;
candidate list maintenance

1. Introduction

High utility sequential pattern mining (HUSPM) [1,2] is a subfield of frequent pattern mining [3]
that assigns levels of relative magnitude or importance to objects with the goal of identifying more
impactful patterns. Frequent pattern mining is a general area of data mining that focuses on the
fast identification of objects or items that appear together in a similar fashion with regularity in

Information 2020, 11, 44; doi:10.3390/info11010044 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/11/1/44?type=check_update&version=1
http://dx.doi.org/10.3390/info11010044
http://www.mdpi.com/journal/information

Information 2020, 11, 44 2 of 27

a transactional database. A number of frequent pattern mining techniques fall under the broader term.
Itemset mining techniques [4] aim to identify items that frequently co-exist in events or transactions.
Association rule mining attempts to identify rules that dictate when the presence of certain items
tends to imply the presence of others [5]. Sequential pattern mining (SPM) [6] introduces a temporal
nature to the patterns of interest, allowing for the ability to identify patterns of items that appear
across multiple transactions, in a certain order. Thus, while itemset and association rule mining can
be useful to help identify, for example, which items retail consumers tend to purchase together when
considering product placement strategies, SPM extends the scope of item-based pattern mining to
allow for the consideration of, perhaps, the ordering of stock on shelves throughout the entire store.
Athlete movement sequences, surgical technique, student learning behaviours, just to name a few
potential examples, can hence be identified and examined.

The key shortcoming of the frequent pattern mining methods outlined above is that all items
identified in the frequent patterns are considered to have equal significance, with the “interestingness”
of a pattern based solely on the number of times it appears. In reality, it is often the case that the most
highly frequent patterns are also the least interesting ones. Since it is more commonly desirable to
seek out patterns that contain more significant (i.e., more important, profitable, etc.) items, even if
they appear less frequently, SPM methods can fall short of the desired intention to identify patterns of
high interest.

To illustrate, consider the task of discovering key purchase patterns. Here, it might be far more
impactful to identify patterns involving items such as TVs or cars than those involving bread and eggs.
Other examples might instead involve covert activity such as malicious behaviour on a network or
fraudulent transactions in a banking system, which are rare by their very nature yet extremely valuable
to discover. To facilitate the identification of these important yet less frequent patterns, the area of high
utility sequential pattern mining (HUSPM) has been proposed. To accomplish this, items are assigned
a measure of their impact via a numeric utility. The goal of HUSPM then draws the focus away from
identifying patterns meeting a prespecified frequency, and rather seeks to identify patterns whose sum
utility of all of its instances in the database exceeds a prespecified minimum utility.

In order to effectively manage the potentially unwieldy search for the full set of sequential patterns,
state-of-the-art SPM algorithms employ the downward closure property. Simply put, the downward
closure property dictates that, for any sequential pattern sp, if sp is deemed to be frequent (i.e., support
exceeds the minimum), then any of its subsequences must also be frequent. The contrapositive of this
property can be thus exploited by top-down SPM approaches that search for sequential patterns by
extending visited patterns to supersequences of those patterns as children in the search tree, since, for
any such pattern that is found to be infrequent, it must be the case that any of its supersequences are
also infrequent. Thus, whenever a potential pattern is encountered with support that falls below the
minimum, then according to the downward closure property, the frequency of all supersequences of
that pattern can be no higher and thus the search can be pruned at that point. This has the benefit of
restricting the search and facilitating fast identification of sequential patterns, by offering an upper
bound at each node on the support for all supersequences appearing at descendent nodes.

With HUSPM, however, the downward closure property does not hold. In this case, the minimum
utility constraint is non-monotonic, as utility might either increase or decrease as a pattern is extended
to a supersequence. Thus, the exploration of alternative methods for reducing the search space in
HUSPM by eliminating possible extensions is imperative, and has become a key focus of research in the
area. As a result, one of the primary objectives in HUSPM has been the development of new methods
for identifying upper bounds on the utility of future candidate sequential patterns in the search. As an
initial step in this challenge, Ahmed et al. [1] proposed the sequence-weighted downward closure
property. This property dictates that an upper bound on the utility of any supersequence of a sequential
pattern can be computed using the utilities of the input sequences containing instances of that pattern.
The sequence weighted utility (SWU) for a sequential pattern sp is thus defined as the sum of the utilities
of all items in every sequence that contains sp. Yin et al. [2] and Wang et al. [7] propose additional

Information 2020, 11, 44 3 of 27

methods that further tighten upper bounds by considering the utilities of input sequences that contain
a candidate pattern, but only using the portion of the sequence that appears after the completion of the
first instance of the pattern. Specifically, the prefix extension utility (PEU) of a sequential pattern sp in
sequence s is introduced as an upper bound on all extensions of that pattern in s, and is computed
as the maximum possible sum in a sequence of (1) the utility of sp in s, and (2) all of the “remaining”
utilities of items that appear after sp in s, over all instances of the pattern in the sequence. The PEU for
sp in a sequence database S is then the sum PEU over all s ∈ S. The reduced sequence utility (RSU) for
sp given a item i is subsequently proposed as an upper bound of any concatenation of sp with i, and is
defined as the sum PEU of sp over all sequences that contain the concatenation of sp with i.

A novel approach, initially sketched in [8] and extended in this paper, is presented that advances
the state of the art as follows. Initially, existing bound-based search pruning methods, namely the
PEU and RSU approaches discussed above, are extended by a search technique that maintains a list of
candidate concatenation items. The use of this list has a significant impact on the search process since,
for any sequential pattern sp under consideration in the search, only the items in the candidate list
associated with sp need ever be considered for concatenation for any supersequence of sp with sp as
prefix. Thus, even when existing approaches are unable to prune the search entirely at any particular
point, and are thus unable to make any progress in reducing the size of the search, a number of potential
candidates may still be removed from future consideration. Second, in addition to the reduced search
space required as a result of the removal of candidate sequences from consideration, a mechanism
is proposed for further tightening the upper bound on potential pattern extensions by exploiting the
resulting reduced concatenation item list. This facilitates earlier pruning, which further reduces the
size of the search space. The idea is that, if we know that certain items will never appear in any future
concatenation of the prefix pattern in question, then we can remove the utilities of those items from the
remaining utility portion of PEU computation, thus reducing the upper bound. The resulting reduced
upper bound subsequently facilitates further reduction of the candidate list, and so on. Experimental
validation on a number of publicly available datasets demonstrates a substantial improvement in
terms of both run time as well as the size of search space when compared with existing state-of-the-art
pruning techniques.

One drawback to this method is the high computational cost required to maintain the input
database. Each time an item is removed from the candidate list, its utilities must subsequently be
removed (or otherwise stored for future reference) to facilitate updated computation of the decreased
PEU. This limits the number of iterations through the candidate list that can be performed for each
sequential pattern in search of potential item removals, since the additional computational cost can
eventually outweigh the benefit of reducing the number of candidates. To remedy this, a further
advancement is presented in this paper that addresses this cost and facilitates a consequentially
dramatic reduction in the search. Initially, a relaxed upper bound on the utility of all pattern extensions,
referred to as the pivot-centered prefix extension utility (PPEU), is proposed. While this value will always
be greater than or equal to the PEU for a particular sequential pattern, seemingly rendering it less
effective at pruning, it has the significant benefit that remaining utility values do not need to be
maintained at all positions in the database. In fact, they do not need to be kept at all, which is not the
case for any of the other bound computation methods mentioned above. For this method, remaining
utility values are only required at the pivots, which are easily computed at each step. As a result,
for each sequential pattern, the list of candidate items can be traversed multiple times. As candidates
are removed, PPEU values for other candidates are decreased, leading to further removals, and so on.
The result is an extremely significant reduction in the item candidate list and a corresponding reduction
in the number of candidate sequential patterns that need to be generated and tested, often by a factor
of more than 10.

Overall, a number of innovations are proposed. These include, specifically:

1. The maintenance of an item candidate list through out the search, which significantly reduces the
time and space required to search. This reduction is due to the fact that items not in the list for

Information 2020, 11, 44 4 of 27

a given candidate pattern are provably never required to be considered as possible extensions for
that pattern, or for that pattern’s extensions.

2. A method for computing an upper bound on the utility of all future extensions of a sequential
pattern involving a particular item, referred to as the Reduced Concatenation Utility (RCU).
Given a sequential pattern sp and item i, the RCU gives an upper bound on the possible utility
of any other sequential pattern that is an extension of sp (i.e., that has sp as prefix) that includes
i. If the RCU is found to be below the minimum utility, then i can be removed from the search.
By capitalizing on the knowledge of candidate list of eligible items, this bound is proven to be
tighter than the best existing bound from the literature, the Reduced Sequence Utility (RSU).
This tighter upper bound results in earlier pruning and, thus, faster search.

3. The introduction of a slightly more loose upper bound, referred to as the Pivot-Centered Prefix
Extension Utility (PPEU) that is significantly less expensive computationally to compute than RCU,
allowing it to more fully exploit the removed candidates and dramatically reduce the required
search space. Experiments show that search time is reduced significantly for some datasets.

4. The CRUSP (Candidate Reduced Utility-boundedness for Sequential Patterns) and CRUSPPivot
algorithms, designed to implement search using the RCU and PPEU bound computation
methods, respectively.

The paper is organized as follows: Section 2 begins with a review of existing literature in frequent
pattern mining including high utility sequential pattern mining, then gives a formal introduction to
the sequential pattern mining and high utility sequential pattern mining problems. Section 3 then
reviews previous bounding methods and candidate search and pruning methods, with Section 4 then
motivating the work presented in this paper by arguing the necessity for candidate generate-and-test
approaches for HUSPM, and consequently the requirement for candidate reduction schemes. Section 5
next details the approach proposed in this paper for maintaining a concatenation candidate item list,
and demonstrates the usage of this list to derive tighter upper bounds on the utilities of candidate
pattern extensions further down the search. The “CRUSP” algorithm for performing this search is
also described in detail. The pivot-centered method for the fast elimination of candidate items is then
presented in Section 6, along with details of the “CRUSPPivot’ algorithm that implements the technique.
Performance of the proposed algorithms is then validated against existing bounding techniques in
Section 7 using six publicly available datasets used previously in the literature. Finally, Section 8
concludes the paper with a discussion on findings and results, as well as key research directions for
future work.

2. Background

2.1. Literature Review

Early research in frequent pattern mining dates back to the data mining work of Hajek [9].
Agrawal and Srikant [5,6] laid the groundwork for contemporary pattern mining, in particular
making seminal contributions to itemset mining and sequential pattern mining with the proposal
of the Apriori and AprioriAll algorithms, respectively. As a necessary component of those search
algorithms, the downward closure property (also referred to as the Apriori property) was first proposed
as a constraint for limiting search, as described in the previous section.

While subsequent algorithms for itemset mining were later developed, such as FP-Growth [10] and
Eclat [11], to name two examples, sequential pattern mining has grown into a highly-regarded field of
study of its own in the ensuing years. Srikant and Agrawal [12] proposed the first key extension of
AprioriAll with the Generalized Sequential Patterns (GSP) algorithm, which allowed for the consideration
of time periods between transactions, facilitating the identification of patterns that frequently occur
within a particular time window. Zaki [13] further improved the time taken to identify the set of
sequential patterns with the SPADE algorithm, which employs a vertical sequence representation that,
as a result, requires far fewer accesses to the database. Ayres et al. [14] also employed the vertical

Information 2020, 11, 44 5 of 27

format in the SPAM algorithm, but advanced the state of the art by introducing the use of bitmaps for
the vertical sequence representation. Perhaps the most significant advancement in SPM research was
proposed by Pei et al. [15] with the introduction of the PrefixSpan, which utilizes a divide-and-conquer
strategy, referred to as pattern growth, that does not require the generation and testing of a large number
of unpromising candidate patterns. This concept is illustrated in depth later in the paper.

The concept of high utility itemset mining rose from work by Yao et al. [16] to address the problem
that arises in situations where items should not be treated equally. For example, major purchases
such as TVs or cars may happen very infrequently compared to more minor purchases like bread and
eggs; however, purchase patterns involving the former might likely be deemed far more interesting
than those involving the latter. Since it is possible, and likely regrettable, that frequent itemset mining
will miss these highly important events, the proposed solution assigns a utility to each item or object,
and itemset patterns are subsequently mined whose sum utility meets or exceeds some prespecified
minimum. To limit the search required, the transaction-weighted downward closure property was proposed
by Liu et al. [17]. This property loosely states that the utility of any superset of an itemset is bounded by
the sum utility of the input transactions that contain the itemset as a subset, and thus this value can be
used to restrict the search. Building upon this work, there have been a number of advances in the area
of high utility itemset mining. Fournier-Viger et al. produced a number of advancements, including the
proposed the use of co-occurrence pruning to significantly improve search time [18], as well as the
concept of representing high utility itemsets using generator patterns [19]. Tseng et al. [20] proposed
algorithms for addressing the problem of identifying top-k high utility patterns, while Lin et al. [21]
explored the concept of high average utility itemsets.

Ahmed et al. [1] proposed the first extension of sequential pattern mining to include the
notion of utility with the UtilityLevel and UtilitySpan algorithms, which utilized the candidate
generate-and-test and pattern growth approaches, respectively. These algorithms were the first
to exploit the sequence-weighted downward closure property as a means for limiting the search.
Here, for each candidate pattern under consideration, the sequence-weighted utility is computed as the
sum of the total utilities of all input sequences that contain the pattern, offering an upper bound on all
supersequences. If this value falls below the minimum allowable utility, the search can be cut off at that
point. Yin et al. [2] then outlined a more general framework for the concept of sequential pattern utility,
and defined the High Utility Sequential Pattern Mining (HUSPM) problem as a special case within their
framework, detailing the uSpan algorithm as a proposed solution technique. Wang et al. [7] proposed
the HUS-Span algorithm, and formalized the prefix extension utility strategy as a tighter upper bound
on the utility of any extensions to a given sequential pattern. Rather than use the total utility of each
input sequence in the computation of this value, only the utility of the pattern and the utilities of items
appearing after the pattern in the sequence are considered.

There have since been a number of advances for problems related to HUSPM. Lin et al. examine the
use of multiple minimum utility thresholds [22], borrowing from a related concept in association rule
mining that attempts to identify “rare” items in the search [23]. Zhang et al. [24] address the problem of
uncertainty in sequence databases. Zihayat et al. [25] consider HUSPM approaches with data streams
as input. Xu et al. [26] propose the possibility for negative item values. Zida et al. [27] propose solutions
to the problem of identifying high utility sequential rules. Advances in data-driven monitoring and
cyber-physical systems [28–30] also highlight the importance of utility-based pattern mining.

While these efforts address related areas and propose solutions to new, relevant problems,
this work is believed to be the first to advance the state of the art established by Ahmed et al., Yin et al.,
and Wang et al. for reducing the search space for general HUSPM search.

2.2. Sequential Pattern Mining

Sequential pattern mining (SPM) [6,31] is a data mining research discipline that focuses on the
identification of frequently occurring patterns of items (i.e., objects, events, etc.), where ordering
of these items is preserved. The ability to mine such patterns can be advantageous in a number of

Information 2020, 11, 44 6 of 27

applications, such as identifying frequent purchase patterns to determine which items tend to be
purchased before or after others [32], analysing network activity to capture frequent patterns of both
normal and attack behaviour in order to identify anomalies that might indicate malicious activity [33],
or even to scrutinize technique being exhibited by a student or trainee to identify consistencies with
common flaws and suggest areas for improvement [34].

The sequential pattern mining problem comprises an input set of sequences and has the objective
of identifying the full set of subsequences that appear within those input sequences with frequency
meeting or exceeding a prespecified minimum. More formally, let I be a set of items, and S be a set
of input sequences, where each s ∈ S consists of an ordered list of itemsets, or sets of items from I,
also referred to as transactions. A sequence 〈a1a2 . . . an〉 is said to be contained in another sequence
〈b1b2 . . . bm〉 if there exist integers i1, i2, . . . , in with i1 < i2 < . . . < in such that a1 ⊆ bi1 , a2 ⊆
bi2 , . . . , an ⊆ bin . A sequence s ∈ S supports a sequence s′ if s′ is contained in s. The support sup(s′) for
a sequence s′ given a set S of input sequences is the portion of sequences in S that support s′, and is
equal to sup(s′) = |{s ∈ S|s supports s′}| /|S|. A sequence s′ is deemed to be a sequential pattern if
sup(s′) is greater than some pre-specified minimum support. Such a pattern with total cardinality of
its itemsets summing to n is referred to as an n-sequence or n-pattern. A sequential pattern s′ is deemed
to be a maximal sequential pattern in a set S′ of sequential patterns if ∀s′′ ∈ S′, where s′′ 6= s′, s′′ does
not contain s′. The objective of the sequential pattern mining problem is to identify the set entire S′ of
sequences that are considered to be sequential patterns according to the definitions above. In some
cases, the set consisting of only maximal sequential patterns is preferred.

To illustrate, consider the example set S of sequences given in the first column of Figure 1.
Using a minimum support of 0.4, the set of all sequential patterns is indicated, specified by 1-sequences,
2-sequences, and 3-sequences. Note that it is accepted conventionally to denote sequences without
set braces and commas separating internal elements. Thus, 〈{b, c}, {d}〉 can be written as 〈bc, d〉.
In addition, note that, while this table gives all of the frequent sequential patterns, only 〈a, d〉, 〈c, c〉,
〈bc, d〉, 〈b, d, e〉 and 〈c, d, e〉 are maximal sequential patterns.

Sequence Database 1-seq 2-seq 3-seq

〈bc, cd, e〉 〈a〉 〈a, d〉 〈bc, d〉
〈ac, bc, d〉 〈b〉 〈bc〉 〈b, d, e〉
〈c, e〉 〈c〉 〈b, d〉 〈c, d, e〉
〈c, d, e f 〉 〈d〉 〈b, e〉
〈ab, d, e〉 〈e〉 〈c, c〉

〈c, d〉
〈c, e〉
〈d, e〉

Figure 1. Example sequence database with mined sequential patterns using a minimum support of 0.4.

2.3. High Utility Sequential Pattern Mining

High utility sequential pattern mining (HUSPM) addresses the inherent problem of SPM that all
items are treated equally, and that the criteria for identifying any such sequential pattern is strictly
frequency based. HUSPM instead allows items to be considered more or less important or significant
than others, and selects patterns based on the consideration of both frequency and the level of
importance of its members. Put formally, the HUSPM problem comprises a set Sq of input sequences
and additionally includes a utility function u : I ⇒ <≥0 assigning a utility to each item (also referred
to as the external utility). The model also optionally allows non-negative quantities to be included
for each item in each input sequence transaction. Thus, each member sq of the set Sq, referred to
as a q-sequence, is a sequence 〈QI1, . . . , QIm〉 over q-itemsets {(i1, q1), (i2, q2), . . . , (in, qn)}, where qj
specifies the quantity of item ij in the q-itemset. Each element (i, q) of a q-itemset is referred to as
a q-item.

Information 2020, 11, 44 7 of 27

Similar to the contains relation in the SPM problem, a q-sequence sq = 〈QI1, . . . , QIm〉 is said to be
a q-supersequence of s′q = 〈QI′1, . . . , QI′n〉 (and thus s′q is a q-subsequence of s) if there exist integers
i1 . . . in, ordered from least to greatest, such that QI′1 ⊆ QIi1 , . . . , QI′n ⊆ QIin . The subsequence relation
with q-sequences is denoted by s′q vq sq. In addition, a q-sequence sq = 〈QI1, . . . , QIn〉 is said to match
a sequence s = 〈I1, . . . , In〉 if, for all QIj = {(a1, q1), (a2, q2), . . . , (ak, qk)} and Ij = {b1, b2, . . . , bm},
k = m and ai = bi for all i. The match relation is denoted by sq ∼ s.

The objective of high utility sequential pattern mining is to identify sequential patterns that
contain total utility in a sequence database that meets or exceeds a prespecified minimum. Such utility
is determined as follows:

Definition 1 (q-item utility). The utility uit of a q-item (i, q) is the product of the item utility and the quantity:

uit(i, q) = u(i)q. (1)

Definition 2 (q-itemset utility). The utility uis of a q-itemset Iq is the sum of its q-item utilities:

uis(Iq) = ∑
iq∈Iq

uit(iq). (2)

Definition 3 (q-sequence utility). The utility useq of a q-sequence sq is the sum of its q-itemset utilities:

useq(sq) = ∑
Iq∈sq

uis(Iq). (3)

Definition 4 (Sequential pattern utility set). The utility set for a sequential pattern sp in a q-sequence sq

holds the q-sequence utility for every possible match for s contained by (i.e., is a subsequence of) sq:

us(sp, sq) = {useq(s′q)|s′q ∼ sp ∧ s′q vq sq}. (4)

Definition 5 (Sequential pattern utility). The utility of a sequential pattern sp in a q-sequence sq is equal to
the maximum element of its utility set:

usp(sp, sq) = max(us(sp, sq)). (5)

The utility of a sequential pattern sp in a q-sequence database Sq is equal to sum of the sequential pattern
utilities for all q-sequences in Sq:

u(sp, Sq) = ∑
sq∈Sq

usp(sp, sq). (6)

Figure 2 depicts an example input sequence database, with corresponding item utilities provided
in a separate table (commonly referenced as a profit table [7]). For convenience, q-itemsets are denoted
with shorthand notation as q1i1q2i2 . . . with commas then separating the q-itemsets in a q-sequence.
Thus, the q-sequence 〈{(a, 4), (b, 2)}, {(c, 3}〉, for example, is written as 〈4a2b, 3c〉. To illustrate the
concept of sequential pattern utility computation, consider the candidate sequential pattern 〈ab, c〉:

• 〈ab, c〉 has two matches in sequence 1, 〈6a4b, 4c〉 and 〈6a4b, 2c〉, which have utilities 6(2) + 4(3) +
4(1) = 28 and 6(2) + 4(3) + 2(1) = 26, respectively. Thus, the utility set for 〈ab, c〉 in sequence 1
is {28, 26}.

• 〈ab, c〉 has no match in sequence 2.
• 〈ab, c〉 has three matches in sequence 3: 〈3a4b, 2c〉, 〈3a4b, 5c〉 and 〈2a9b, 5c〉, yielding the utility

set {20, 23, 36}.
• 〈ab, c〉 has two matches in sequence 4: 〈3a1b, 2c〉 and 〈2a3b, 2c〉, yielding the utility set {11, 15}.

Information 2020, 11, 44 8 of 27

Choosing the maximum for each utility set and summing over the entire database gives a total
utility of 28 + 36 + 15 = 79. If this total meets or exceeds the prespecified minimum, then we deem
〈ab, c〉 to be a high utility sequential pattern.

a b c d e f

2 3 1 2 3 4

ID Sequence

1 〈6a4b, 2b4c, 3d, 2c1e〉

2 〈2a, 3b2d, 1e3 f , 2b〉

3 〈3a4b, 2c, 2a9b, 3 f , 5c〉

4 〈2 f , 3a1b, 2a3b, 5d, 2c, e〉

Figure 2. Example profit table and sequence database.

3. Existing Bounding and Search Space Pruning Strategies

3.1. Lexicographic Tree Search

In order to present an overview techniques for bounding and search space pruning, the common
tree structure is first demonstrated. As with their frequency-based sequential pattern counterparts,
the use of a lexicographic tree structure [14] is employed by many existing HUSPM algorithms.
With this sort of tree structure, each node represents a potential sequential pattern in the search (with
the root node representing the empty pattern {}), with each child node representing an extension of the
parent node’s pattern. An extension of a pattern always consists of that same pattern with a single
item appended to the end. There are two ways to accomplish this sort of extension:

• i-extensions: an item is added to the final itemset of the pattern,
• s-extensions: an item is added to a newly added itemset appended to the end of the pattern.

To illustrate, for a sequential pattern sp = 〈x, y〉, sp = 〈x, yz〉would be an example i-concatenation
while sp = 〈x, y, z〉 would be an example s-concatenation. Adjacent children of a sequential pattern in
the tree are ordered lexicographically from left to right, with the i-concatenation children appearing
to the left of the s-concatenation children. Itemsets themselves are also lexicographically ordered,
so only those items that are higher in the lexicographical order than the final item in the final itemset
are explored for potential i-concatenation. Yin et al. [2] provide an example implementation of the
lexicographic tree for HUSPM for the uSpan algorithm, while Wang et al. [7] does so similarly for the
HUS-Span algorithm.

With the tree established, search proceeds top down, beginning at the empty pattern node and
continuing to the 1-sequence nodes, 2-sequence nodes, etc. Clearly, without proper pruning techniques,
the tree can become quickly unwieldy, as the number of possible i-extensions for a node representing
sp is equal to the number of items in I that follow the maximum item in the final itemset of sp in the
lexicographic order, while the number of possible s-extensions is equal to |I|. Thus, early pruning is
key to efficient search.

3.2. Existing Pruning Strategies for HUSPM

As mentioned above, the downward closure property, which can be used effectively to limit the
search in SPM, does not apply to HUSPM. As a first attempt to limit search in HUSPM, Ahmed et al. [1]
proposed the sequence-weighted utilization factor (SWU) for a sequential pattern, formally defined
as follows:

Information 2020, 11, 44 9 of 27

Definition 6 (sequence-weighted utilization factor (SWU)). Given a sequential pattern sp and a q-sequence
database Sq, with each sq ∈ Sq having total utility useq(sq), and given S′q ⊆ Sq as the set {s′q ∈ Sq|∃sq v
s′q ∧ sq ∼ sp} of all q-sequences from Sq containing a match for sp, the sequence-weighted utilization factor
(SWU) for sp is computed by

swu(sp) = ∑
s′q∈S′q

useq(s′q). (7)

Since it is not possible for a supersequence of sp to reside in any q-sequence in Sq \ S′q, the sum
utility of the sequences in S′q must necessarily constitute an upper bound on the utilities of sp’s
supersequences (see Ahmed et al. [1] for a formal proof). Thus, if swu(sp) is less than the minimum
utility, it follows that the utility of any supersequence of sp must be less than the minimum. As a result,
there is no need to continue search and the lexicographic tree can be pruned at that point.

HUSPM search using SWU as an upper bound was implemented in the UtilityLevel and UtilitySpan
algorithms by a step in which the SWU was computed for each pattern in the tree. Such patterns
with SWU exceeding the minimum were deemed high SWU patterns, and only these patterns were
deemed to be promising, i.e., of having any chance of being considered a high utility sequential pattern.
All candidates were scanned to identify those with sufficient utility at a later stage. This pruning
technique was also implemented in uSpan in the candidate generation stage.

While use of the SWU was demonstrated as an effective search pruning mechanism, it is clear
that use of the total utility over entire input q-sequences is likely to offer an unnecessarily high upper
bound on utility in practice. This is due to the fact that, typically, high utility sequential patterns
are significantly smaller in size (and utility) when compared with the size of the input q-sequences.
To accommodate this property and consequently further tighten this upper bound, the prefix extension
utility (PEU) [2,7] and the reduced sequence utility (RSU) [7] measures were proposed, and are defined
as follows:

Definition 7 (prefix extension utility (PEU)). Let sp be a sequential pattern and Sq be a q-sequence database.
In addition, let p(sp, sq) be the set of ending positions for sp in sq (referred to as the extension positions),
let usp(sp, sq, p) be the maximum utility of all instances of sp appearing in sq that end at p, let sq/(sp,p) be the
remaining sequence of sq with respect to the instance of sp that ends in position p (i.e., the rest of the sequence
that appears after sp) and let useq(sq/(sp,p)) be the sum utility of this remaining sequence. The prefix extension
utility (PEU) for sp in sq is computed by:

peu(sp, sq) = max
p∈p(sp,sq)

{usp(sp, sq, p) + useq(sq/(sp,p))}. (8)

The PEU for sp is then
peu(sp) = ∑

sq∈Sq

peu(sp, sq). (9)

Definition 8 (reduced sequence utility (RSU)). Given a sequential pattern sp and a candidate item i,
which when concatenated with sp gives a new sequence denoted by sp + i, the reduced sequence utility (RSU)
for sp + i in a sequence sq is computed by:

rsu(sp, i, sq) =

{
peu(sp, sq), if sp + i vq sq,
0, otherwise,

(10)

where vq denotes the sequential pattern subsequence relation with q-sequences. That is, s vq sq iff there exists
a q-sequence s′q such that s ∼ s′q ∧ s′q vq sq. The RSU for sp + i is then

rsu(sp, i) = ∑
sq∈Sq

rsu(sp, i, sq). (11)

Information 2020, 11, 44 10 of 27

Since rsu(sp, i, sq) is equal to the maximum possible sum of (1) sp’s utility in sq and (2) the
maximum possible increase in utility that would be the result of any concatenation (taken as the utility
of all items in sq appearing after the earliest instance of sp), rsu(sp, i) gives an upper bound on the
utility in sq of any extension of sp where the extension contains i. In addition, since rsu(sp, i) gives the
maximum such utility in the entire database, if rsu(sp, i) is below the minimum threshold, i can then
be deemed an unpromising candidate (see [7] for proofs).

Once the RSU stage is completed and extension nodes are constructed for promising candidates,
the PEU value for each extension can be computed in an effort to determine whether any search is
further necessary. Specifically, if the PEU value for an extension is found to be below the minimum
utility, then the corresponding node can be declared a leaf, and the search can thus be pruned at
that point.

To further illustrate the utilization of PEU and RSU, consider the example database and profit table
previously presented in Figure 2. Let sp = 〈b〉, and let c be the item under consideration for potential
s-concatenation, resulting in the new pattern sp + i = 〈b, c〉. In addition, let the minimum utility for
this example be 120. PEU and RSU are then computed and utilized as follows. Consider sequence
s1, which contains both 〈b〉, and c. Since sp = 〈b〉 contains only a single item, the ending positions
are simply the positions of q-itemsets that contain b, and thus p(〈b〉, s1) = {1, 2} (for demonstration
purposes, position numbering here begins with 1). The PEU for s1 is then computed as follows:

• for p = 1: usp(〈b〉, s1, 1) = 12, s1/(〈b〉,1) = 〈2b4c, 3d, 2c1e〉, and useq(s1/(〈b〉,1)) = 21,
• for p = 2: usp(〈b〉, s1, 2) = 6, s1/(〈b〉,2) = 〈4c, 3d, 2c1e〉, and useq(s1/(〈b〉,2)) = 15.

Thus, peu(〈b〉, s1) = max{12 + 21, 6 + 15} = 33. The PEU values are similarly calculated for s2,
s3, and s4, yielding the values 34, 62, and 31, respectively. RSU for sp + i = 〈b, c〉 is then computed
as the sum of the PEU values for all sequences that contain 〈b, c〉. Since all but s2 contain 〈b, c〉,
rsu(〈b〉, 〈b, c〉) = 33 + 0 + 62 + 31 = 126. Since 126 ≥ 120, c is considered a promising candidate for
concatenation, and 〈b〉 is extended to 〈b, c〉.

After creating a node for 〈b, c〉, pruning proceeds to the leaf evaluation phase, where the PEU
value for the new pattern is computed. The PEU value will yield an upper bound on the utility of
any further extensions, and thus will help dictate whether the new node is a leaf and thus search
can be pruned. Again considering sequence s1, note the two ending positions for 〈b, c〉, specifically
{2, 4}. One can see that the maximum utility of 〈b, c〉 is 16 and 14 at those two ending positions,
respectively. Incorporating the remaining utility residing in the sequences following those two ending
positions yields a PEU value of peu(〈b, c〉, s1) = max{16 + 11, 14 + 3} = 27. The PEU values are
similarly calculated for s2, s3 and s4, yielding values 0, 62 and 14, respectively, giving a total PEU value
of peu(〈b, c〉) = 27+ 0+ 62+ 14 = 103. Since 103 is the highest possible utility of any further extension
of 〈b, c〉, and 103 falls below the minimum threshold of 120, clearly the search can be terminated at this
point and the node corresponding to 〈b, c〉 can be declared a leaf.

4. Candidate Generate-and-Test vs. Pattern Growth Methods

Many existing sequential pattern mining methods, including early methods such as AprioriAll
and GSP, utilize a candidate generate-and-test approach where candidate sequential patterns are
constructed, typically by building upon smaller frequent patterns, which are then tested for support.
If the minimum support is not achieved, then no further candidates are generated based on that pattern.
Otherwise, the search continues. This approach can be extremely costly in many cases due to the
potentially large number of infrequent patterns that need to be generated before they can be ruled out.
To mitigate this wasteful exploration of the search space, Pei et al. [15] proposed the concept of pattern
growth approaches to sequential pattern search with the introduction of the PrefixSpan algorithm.

The pattern growth method keys on a divide-and-conquer approach that drastically reduces
the size of the search space when attempting to construct new frequent patterns by building on
smaller ones. This is achieved by considering only smaller segments of the input sequences each

Information 2020, 11, 44 11 of 27

time a sequential pattern is considered for extension. These segments are collectively referred to as
the projected database. Specifically, given a sequential pattern sp, referred to as a prefix, the projected
database contains only those parts of the input sequences that can contain a possible postfix for sp.
Thus, the search for new frequent patterns by extending sp is reduced to this new projected database.
To illustrate, consider the example input database given in Figure 3, with corresponding projected
database for prefix 〈a, b, c〉 given in Figure 4.

ID Sequence

1 〈a, b, a, c, f , b, c, d〉

2 〈a, d, b, bc, d, e〉

3 〈bd, ac, c, a〉

4 〈de, ab, bcd, c, abd, d〉

5 〈e, a, d f , be, c〉

Figure 3. Example input sequences for demonstration of the pattern growth approach.

ID Sequence

1 〈 f , b, c, d〉

2 〈d, e〉

4 〈abd, d〉

Figure 4. Projected database for prefix 〈a, b, c〉.

As a result, the search for sequential patterns with prefix 〈a, b, c〉, is reduced to a search for
frequent items in the projected database. If the minimum support is, say, 0.4 for example, one can
quickly see that b and d are frequent (appearing in at least two sequences) in the projected database,
and thus can be appended to 〈a, b, c〉, producing sequential patterns 〈a, b, c, b〉 and 〈a, b, c, d〉. There is
no need to consider any other extensions. Refer to [15] for a more formal treatment as well as proofs of
various properties.

While pattern growth can be a very effective search method for frequent sequential patterns,
unfortunately the concept does not extend very well to the high utility sequential pattern problem,
particularly when utilizing prefix extension utility to control the search. This is due to the fact that
multiple instances of the same pattern in a sequence cannot be treated equally, and thus one cannot
build on a pattern simply by looking at the remainder of an input sequence that occurs after the first
instance of a pattern. Consider the first sequence in the sample database above, this time with example
utility values included:

〈2a1, 6b2, 16a3, 4c4, 1 f5, 6b6, 5c7, 6d8〉

Assume the number associated with each item to be the total utility (i.e., weight × quantity) for
that item. Notice that all items are subscripted to facilitate differentiation among the multiple instances
of a particular pattern. For example, there are four instances of 〈a, b, c〉: 〈2a1, 6b2, 4c4〉, 〈2a1, 6b2, 5c7〉,
〈2a1, 6b6, 5c7〉 and 〈16a3, 6b6, 5c7〉. Examining the projected sequence for 〈a, b, c〉:

First, instance of prefix: 〈2a1, 6b2, 4c4〉,
Projected sequence: 〈1 f5, 6b6, 5c7, 6d8〉.

One can see that, for the instance of 〈a, b, c〉 with maximum utility in the sequence,
namely 〈16a3, 6b6, 5c7〉 (utility = 27), one element (16a3) appears neither in the prefix part of the
sequence nor the projected part, and thus cannot be identified in this manner. In fact, there is no way
to choose a single instance of 〈a, b, c〉 upon which to build a projected sequence, since different high
utility sequential patterns with 〈a, b, c〉 as prefix can rely on different instances of 〈a, b, c〉 to maximize

Information 2020, 11, 44 12 of 27

utility. Consider 〈16a3, 6b6, 5c7, 6d8〉 and 〈2a1, 6b2, 4c4, 1 f5〉 as such examples of maximal instances for
〈a, b, c, d〉 and 〈a, b, c, f 〉, respectively that utilize different instances of 〈a, b, c〉 for their prefix.

As far as computing the PEU value for 〈a, b, c〉, one can observe that the utility plus remaining
values for each instance of 〈a, b, c〉 are 12 + 18 = 30, 13 + 6 = 19, 13 + 6 = 19 and 27 + 6 = 33,
respectively, which should result in a PEU value of peu(〈a, b, c〉) = max{30, 19, 19, 33} = 33.
However, this value cannot be ascertained from the projected database depicted above.

This demonstrates that pattern growth approaches are not directly applicable to the HUSPM
search problem, particularly with PEU-based pruning, demonstrating the necessity for candidate
generate-and-test schemes. One should note that pattern growth-based algorithms for HUSPM are
indeed feasible, as Ahmed et al. showed with the UtilitySpan algorithm [1]. However, it should pointed
out that this algorithm did not employ a PEU-based scheme and rather used the inferior SWU pruning
method, which considers the utility of entire input sequences in its computation, regardless of the
projected database. Thus, to exploit the advantages of PEU-based schemes for search space reduction,
candidate generate-and-test schemes are necessary for effective HUSPM. As a result, a primary research
problem in HUSPM, and key theme of the work proposed here, focuses on the reduction of the number
candidates that need to be generated in order to identify the full set of sequential patterns.

5. Concatenation Candidate List Maintenance

5.1. PEU-Based Candidate Maintenance

This section introduces the concept of candidate list maintenance in HUSPM. To facilitate this,
the concept of maximum concatenation utility (MCU) is introduced to determine whether an candidate
item for concatenation can be eliminated from future consideration. By capitalizing on the knowledge
that certain items can be removed from consideration for any future extensions, a reduced upper
bound on the utility of future patterns can be computed. Then, by capitalizing on this reduced upper
bound, further removal of additional items from consideration may then be possible later in the search,
leading potentially to further reductions on the upper bound.

Note that, for convenience, the q subscript for q-sequences is dropped hereafter since there is no
further need to disambiguate from traditional sequences.

Definition 9 (maximum concatenation utility (MCU)). Let sp be a sequential pattern, i an item and S the
set of input q-sequences. In addition, let p(sp, s) be the set of ending positions for sp in s. The maximum
concatenation utility (MCU) of i for sp in a sequence s ∈ S is computed by

mcu(sp, i, s) =

{
peu(sp, s), if sp vq s ∧ 〈i〉 vq s ∧min(p(sp, s)) < max(p(〈i〉, s)),
0, otherwise,

(12)

The overall MCU for sp is then computed by:

mcu(sp, i) = ∑
s∈S

mcu(sp, i, s). (13)

To validate the use of MCU as an upper bound, a formal proof is given to show that the utility of
any i-concatenation or s-concatenation of an item i with a sequential pattern sp, or any descendant
sequential pattern of sp in the lexicographical tree (i.e., any supersequence of sp with sp as prefix that
includes i in the extension), will be less than or equal to mcu(sp, i):

Theorem 1. For any sequential pattern sp and item i, mcu(sp, i) is greater than or equal to the utility useq(sp′)
of any proper descendant sequential pattern sp′ in the lexicographical tree that is the result of a concatenation
with i.

Information 2020, 11, 44 13 of 27

Proof. Suppose sp′ is such a descendant pattern with higher utility than mcu(sp, i). Then, there exists
a sequence s in the database such that either (1) useq(sp′, s) > peu(sp′, s) where the conditions in
Equation (12) are true, or (2) useq(sp′, s) > 0, where one or more conditions are false.

For case (1), since sp′ is a descendant of sp, sp is a prefix for sp′. Since peu(sp′, s) gives the
maximum possible utility of any sequential pattern with prefix sp in s, useq(sp′, s) ≤ peu(sp′, s).
For case (2):

• Assume sp vq s is false. Since sp′ contains sp, s will not contain sp′ and thus u(sp′, s) = 0.
• Assume 〈i〉 vq s is false. Since sp′ is a result of i-concatenation with i and thus contains i, s will

not contain sp′ and thus u(sp′, s) = 0.
• Assume min(p(sp, s)) ≥ max(p(〈i〉, s)). Then, the first ending position of sp appears after the

last position of i, so sp′ cannot be contained in s, and thus u(sp′, s) = 0. ⇒⇐

To keep track of which items yield an MCU that meets or exceeds the minimum utility, and thus
are eligible for concatenation further down the search, an MCU-candidate list is maintained. This list is
then passed down to the child nodes of sp, informing the subsequent search down the tree that these
items are unpromising and resources should not be wasted considering them.

A significant benefit of this candidate elimination is that an even tighter upper bound on
the utility of future concatenations can be computed as a result. This is due to the fact that the
remaining utility component of the PEU calculation (i.e., the useq(sq/(sp,p)) term in Equation (8)) can
decrease as items are eliminated, since they no longer need to be considered as part of sq/(sp,p).
To illustrate, consider again the example database given in Figure 2. Let sp = 〈a〉, let a be
an item under consideration for s-concatenation, and let the minimum utility be 145. The PEU
value is then peu(〈a〉, a) = 0 + 0 + max{68, 48} + max{37, 28} = 105. Since 105 is below the
minimum allowable utility of 145, we can safely conclude that a can never be concatenated to
any subsequent sequence with 〈a〉 as prefix, and thus a’s utilities can be removed from subsequent
upper bound computations. Consider then a subsequent extension of 〈a〉 later in the search, namely
〈ab〉, with s-concatenation candidate c. A check of the original database will reveal a PEU value
of peu(〈ab〉, c) = 45 + 0 + max{68, 48} + max{37, 28} = 150. However, since it is known that
a subsequent a cannot possibly appear after the ab in any high utility sequential pattern with prefix
sp = 〈ab〉, any utilities associated with a, specifically the utilities associated with the 2a appearing in
the third position of both the third and fourth sequences, can be removed from the computation of
the remaining sequence utility useq(sq/(sp,p)). Thus, we can further tighten the upper bound on the
s-concatenation of c to 45 + 0 + max{68− 4, 48}+ max{37− 4, 28} = 142. Since 142 falls below the
minimum of 145, c can be declared as unpromising and removed from consideration for 〈ab〉 and all
of its descendants. This reduced upper bound is referred to as the reduced concatenation utility (RCU),
and is defined below.

Before formally defining RCU, the removed utility function must first be introduced. The RCU
definition follows. Let the MCU-candidate list (MCL) be the list mcl(sp) of items that have been
deemed promising for concatenation with sp, and let the MCU-removal list (MRL) be the list mrl(sp) =
I \mcl(sp) of those that have been removed as unpromising (i.e., those items that yielded an MCU
value below the limit). Then, the removed utility ru(sp, s, pos) is the total utility of the items in mrl(sp)
that appear in position pos in sequence s. Thus, this gives the utilities that are not relevant when
computing the upper bound on the utility in s of any descendant of sp. The total removed utility after
position pos in sequence s is then:

rurest(sp, s, pos) =
|s|

∑
k=pos+1

ru(sp, s, k). (14)

Information 2020, 11, 44 14 of 27

Definition 10 (reduced concatenation utility (RCU)). Let sp be a sequential pattern, i an item and S the set
of input q-sequences. In addition, let p(sp, s) be the set of ending positions for sp in s. The reduced concatenation
utility (RCU) of i for sp in a sequence s ∈ S is computed by

rcu(sp, i, s) =
max

p∈p(sp,s)
{usp(sp, s, p) + useq(s/(sp,p))− rurest(sp, s, p)}, if sp vq s ∧ 〈i〉 vq s∧,

min(p(sp, s)) < max(p(〈i〉, s)),
0, otherwise.

(15)

The overall RCU for sp is then computed as:

rcu(sp, i) = ∑
s∈S

rcu(sp, i, s). (16)

The RCU is now shown to find unpromising candidates by providing an upper bound on the
utility of any descendant.

Theorem 2. For any sequential pattern sp with MCL-removal list mrl(sp) and candidate concatenation
item i, if rcu(sp, i) is less than the minimum utility, i can be safely added to mrl(sp′) for any descendant
sequential pattern sp′ of sp.

Proof. By induction on the size of mrl(sp). Base case: Let mrl(sp) = φ. Then, rurest(sp, s, p) = 0
for any s, and thus by Equations (8) and 15, rcu(sp, i) = mcu(sp, i). According to Theorem 1,
if mcu(sp, i) is less than the minimum utility, any descendant of sp concatenated with i will have
utility less than the minimum, and thus i can be eliminated and added to mrl(sp′). Inductive step:
Assume all items in mrl(sp) have been safely eliminated, and thus they all belong to mrl(sp′).
Since mcu(sp, i, s) = peu(sp, s) = maxp∈p(sp,s){usp(sp, s, p) + useq(s/(sp,p)) is an upper bound on
the utility of any future concatenation of i in sequences where the conditions in Equation (8) are
met, then maxp∈p(sp,s){usp(sp, s, p) + useq(s/(sp,p))− rurest(sp, s, p) must also be an upper bound for
each sequence when the conditions are met (and 0, otherwise), since the items in mrl(sp) have been
safely eliminated as possibilities, meaning that the utility rurest(sp, s, p) of those items can be safely
subtracted. Thus, if rcu(sp, i) is less than the minimum utility, i can be safely eliminated and added to
mrl(sp′).

We show empirically in Section 7 that RCU provides a generally tighter upper bound than RSU
by demonstrating that significantly fewer candidates are considered in the search.

5.2. The CRUSP Algorithm

To implement the candidate list maintenance and utility bound reduction proposed in this paper,
the CRUSP (Candidate Reduced Utility-boundedness for Sequential Patterns) algorithm has been
developed, and is outlined as follows.

In order to reduce the time taken to compute the RCU values at each step, two structures are
maintained for each in put sequence: a removed-utilities list (RUL) and a removed-utility-positions list
(RUPL). These lists are used to keep track of the utilities in a sequence that can be ignored as a result
of the elimination of items from the MCL, and the associated positions in the sequences in which
those items reside. For example, if items b and c have been eliminated, for sequence 1 in Figure 2,
the removed-utilities list would hold 〈12, 10, 2〉 while the removed-utility-positions would hold 〈1, 2, 4〉,
indicating that utilities 12, 10 and 2 were eliminated from positions 1, 2 and 4, respectively.

The algorithm is outlined in Figure 5. In the initial step, sp undergoes a “leaf node” test.
Here, if the PEU value for sp is found to lie below the minimum utility, the node corresponding

Information 2020, 11, 44 15 of 27

to sp is declared a leaf and the search is pruned at that point. In step 2, a special iCandList is maintained,
which may contain items that have been eliminated as promising for itemsets after sp but could still
be i-concatenated with sp itself only (i.e., added to sp’s final itemset). Step 3 takes all promising
candidates from iCandList, and stores them in iList. In step 4, the RCU is computed for each item in
the MCU-candidate list, with all items yielding a value below the limit subsequently being removed.
Since the remaining items are exactly those that are deemed promising for s-concatenation with
sp, these are moved to the sList in step 5. The removed-utilities and removed-utility-positions lists are
then updated in step 6 to reflect the utilities that can be subsequently disregarded as a result of the
elimination conducted in step 4. Note that this step is quite computationally expensive, so it is only
conducted if a sufficient number of items remain to make it worthwhile. In this implementation,
a threshold of 70% was chosen such that RUL and RUPL are updated only if the percentage of items
removed in step 4 falls below this threshold. Steps 7–14 then create the next level of candidate
sequential patterns via i-concatenation and s-concatenation, determine the utilities, ending positions
and remaining utility values, and recursively call the algorithm. Finally, step 15 outputs the high utility
sequential patterns.

CRUSP(sp, sp_util, sp_pos, sp_ru, iCandList, MCL, RUL, RUPL)

1. If this node is a leaf, then return
2. Remove low RCU items from iCandList
3. Put promising candidates for i-concatenation in iList
4. Remove low RCU items from MCL
5. sList = MCL
6. If sufficient items remain, update RUL and RUPL
7. For each item i in iList:
8. sp′ = i-concatenate(sp, i)
9. Construct sp’_util, sp’_pos, sp’_ru

10. CRUSP(sp′, sp’_util, sp’_pos, sp’_ru, iCandList, MCL, RUL, RUPL)
11. For each item i in sList:
12. sp′ = s-concatenate(sp, i)
13. Construct sp’_util, sp’_pos, sp’_ru
14. CRUSP(sp′, sp’_util, sp’_pos, sp’_ru, iCandList, MCL, RUL, RUPL)
15. if u(sp) > umin, then output sp
16. return

Figure 5. The CRUSP algorithm.

6. Candidate List Maintenance with Repeated Item Traversal

6.1. Pivot-Centered PEU-Based Candidate Maintenance

As mentioned previously, there is a high cost associated with computing the reduced candidate
utility (RCU) for a sequential pattern, mainly due to the repeated updating of utility values that need
to be removed at various positions in the database as a result of the elimination of candidate items.
This is, however, required in order to obtain an updated PEU value for each potential candidate.
As demonstrated in Section 5.2, the algorithm that implements the lower bound in the search is
somewhat limited. Specifically, in step 4, each candidate item is examined only once for possible
removal, and, even then, utility values are only updated as a result of any removals (step 6) when
conditions deem it worthwhile. Ideally, we would like to update utilities every time to achieve
maximum reduction in the search space. Moreover, it would be even more beneficial to repeat step 4
in a loop each time these utilities are updated, until no more item removals are possible. To illustrate
this last point, consider the example set of sequences with item utilities in Figure 6. Let 〈a, b, c〉 be the

Information 2020, 11, 44 16 of 27

sequential pattern being considered for expansion with candidate list {d, e, f }, and let the minimum
utility be 40.

ID Sequence

1 〈2a, 1b, 4e, 10a, 2c, 2b, 1c, 5d3e〉

2 〈5a2 f , 3e, 3b, 5c, 4e, 2 f 〉

3 〈2 f , 4a, 6b2d, 4c, 2d, 4 f 〉

Figure 6. Example input sequences.

Step 4 of the CRUSP algorithm calls for unpromising candidate items to be culled using the RCU
method described above, which yields the following RCU values for each item: d : 41 (i.e., max{5 +

11, 13 + 8} in sequence 1 and 14 + 6 in sequence 3), e : 40 and f : 39. Since f ’s value is below the
minimum utility, we know it can never be part of a high utility sequential pattern with 〈a, b〉 as prefix,
and is removed from the list. Step 6 then updates the removed utilities and positions lists to reflect the
fact that f ’s utilities are no longer relevant, which are then passed down to the extensions of 〈a, b, c〉
(i.e., with d and e).

Before generating and testing these extensions, however, we should note that the removal of
f ’s utilities has the effect of decreasing the RCU value for d to 37, since a utility of 4 is removed
from sequence 3, which thus falls below the utility threshold of 40, facilitating the removal of d.
Further removal of d’s utilities reduces the RCU for e to 33, which is also eliminated. With an empty
candidate list, search can be pruned at this point. This serves as a demonstration that the search
for high utility sequential patterns can indeed be minimized by looping back to update RCU values
whenever candidate items have been eliminated. However, as mentioned above, updating all of
an item’s utilities upon removal to facilitate updated RCU computation is too costly.

As a solution to this problem, a relaxed upper bound on the value of an item extension, referred to
as the pivot-centered prefix extension utility (PPEU), is proposed. In contrast to the PEU, where the sum of
prefix utility and the remaining utility value is maximized over all instances of the prefix in a sequence,
the PPEU value takes the sum of the maximum prefix utility over all instances, and the rest value at the
pivot, i.e., the first instance in the sequence. The PPEU value is defined formally in Definition 17.

Definition 11 (pivot-centered prefix extension utility (PPEU)). Let sp be a sequential pattern and Sq be a
q-sequence database. In addition, let p(sp, sq) be the set of ending positions for sp in sq, let usp(sp, sq, p) be the
maximum utility of all instances of sp appearing in sq that end at p, let sq/(sp,p0)

be the remaining sequence of
sq with respect to the instance of sp that ends at the pivot position p0 (i.e., the first position in p(sp, sq)) and
let useq(sq/(sp,p0)

) be the sum utility of this remaining sequence. The pivot-centered prefix extension utility
(PPEU) for sp in sq is computed by:

ppeu(sp, sq) = max
p∈p(sp,sq)

{usp(sp, sq, p)}+ useq(sq/(sp,p0)
). (17)

The PPEU for sp is then
ppeu(sp) = ∑

sq∈Sq

ppeu(sp, sq). (18)

Definition 12 (pivot-centered reduced sequence utility (PRSU)). Given a sequential pattern sp and
a candidate item i, which when concatenated with sp gives a new sequence denoted by sp + i, the pivot-centered
reduced sequence utility (PRSU) for sp + i in a sequence sq is computed by:

prsu(sp, i, sq) =

{
ppeu(sp, sq), if sp + i vq sq,
0, otherwise.

(19)

Information 2020, 11, 44 17 of 27

The PRSU for sp + i is then

prsu(sp, i) = ∑
sq∈Sq

prsu(sp, i, sq) (20)

The key feature of Equation (17) to note is that the remaining utility value useq(sq/(sp,p0)
) is now

outside of the scope of the maximization. Thus, the rest value does not need to be computed for all
ending positions, but rather only for the pivot position each time. As a result, utilities do not need
to be updated at all positions when an item is eliminated, but rather only the rest value at the pivot
needs to be updated. The result is a significant speed up in the time required for updates when an item
is eliminated.

With the speed up potential demonstrated, it is also necessary to prove that the new pivot-centered
reduced sequence utility, computed based on the PPEU, still indeed provides an upper bound on the
utility of any extension of sp with item i.

Theorem 3. For any sequential pattern sp and item i, prsu(sp, i) is greater than or equal to the utility useq(sp′)
of any proper descendant sequential pattern sp′ with sp as prefix in the lexicographical tree that is the result of
a concatenation with i.

Proof. Since rsu(sp, i) is known to provide an upper bound (proven in [7]), it is sufficient to show
that prsu(sp, i) ≥ rsu(sp, i). This is accomplished by showing that ppeu(sp, sq) ≥ peu(sp, sq) for any
sequence sq containing sp. Since peu(sp, sq) is the maximum value of usp(sp, sq, p) + useq(sq/(sp,p))

over all ending positions p of sp, then this value is less than or equal to the sum of the maximum
usp(sp, sq, p) over all ending positions and the maximum useq(sq/(sp,p)) over all ending positions,
which is precisely the value of ppeu(sp, sq), since ppeu(sp, sq) is the sum of the maximum values for
usp(sp, sq, p) and useq(sq/(sp,p0)

), and useq(sq/(sp,p0)
) (i.e., the remaining utility value at the pivot) is

necessarily the maximum over all ending positions.

6.2. The CRUSPPivot Algorithm

With this new computational method, there is no need to update utility values at all positions
as items are removed. Only one value per sequence, namely the remaining utility useq(sq/(sp,p0)

at
the pivot, needs to be changed if an item in the remaining sequence sq/(sp,p0)

is removed. This is
implemented as demonstrated by the CRUSPPivot algorithm outlined in Figure 7.

In step 1, the PPEU value for sp is computed to determine whether the node corresponding to
sp is a leaf. If the PPEU lies below the minimum utility, the search is pruned at that point. In step
2, the iCandList is maintained which, as with the CRUSP algorithm, may contain items that have
been eliminated as promising for itemsets after sp, but could still be i-concatenated with sp itself as
part of sp’s final itemset. Step 3 stores all promising candidates from iCandList in iList. In step 4,
the items in the MCU-candidate list MCL are checked for PRSU values below the minimum, which are
subsequently removed. Each removal (1) initiates an update of the pivot remaining utilities sp_pivot_ru,
and (2) ensures that all items still in the MCL are assessed again. Since the remaining items are
exactly those that are deemed promising for s-concatenation with sp, these are moved to the sList
in step 5. Steps 6–13 then create the next level of candidate sequential patterns via i-concatenation
and s-concatenation, determine the utilities, ending positions and pivot remaining utility values,
and recursively call the algorithm. Finally, step 14 outputs the high utility sequential patterns.

Information 2020, 11, 44 18 of 27

CRUSPPivot(sp, sp_util, sp_pos, sp_pivot_ru, iCandList, MCL)

1. If this node is a leaf, then return
2. Remove low PRSU items from iCandList
3. Put promising candidates for i-concatenation in iList
4. Remove low RCU items from MCL
5. sList = MCL
6. For each item i in iList:
7. sp′ = i-concatenate(sp, i)
8. Construct sp’_util, sp’_pos, sp’_pivot_ru
9. CRUSPPivot(sp′, sp’_util, sp’_pos, sp’_pivot_ru, iCandList, MCL)

10. For each item i in sList:
11. sp′ = s-concatenate(sp, i)
12. Construct sp’_util, sp’_pos, sp’_pivot_ru
13. CRUSPPivot(sp′, sp’_util, sp’_pos, sp’_pivot_ru, iCandList, MCL)
14. if u(sp) > umin, then output sp
15. return

Figure 7. The CRUSPPivot algorithm.

7. Results

7.1. Objectives and Hypotheses

To demonstrate performance of the advances proposed in this paper, a number of different
mechanisms for identifying promising concatenation candidates were tested. Two separate
experiments were conducted. The first experiment tests the efficacy of maintaining a candidate
list during the search. Here, two methods introduced in this paper and implemented by the CRUSP
algorithm are tested, namely the maximum concatenation utility (MCU) method that maintains a list of
items that are candidates for future concatenation, and the reduced concatenation utility (RCU) method
that further reduces the upper bound on descendant pattern utilities by capitalizing on items having
been removed from the candidate lists. Performance of these two approaches are compared to two
state-of-the-art approaches from the literature, namely the sequence-weighted utility (SWU) method
for determining upper bounds on candidate utilities as implemented by uSpan [2] and the reduced
sequence utility (RSU) method implemented by HUS-Span [7]. The second experiment tests the speed
up produced by the pivot-centered reduced sequence utility (PRSU) method, implemented by the
CRUSPPivot algorithm, which facilitates fast updates of the utility values, allowing for multiple passes
through the candidate item list at each node in the tree.

Tests were conducted on an HP Z820 workstation (Fredericton, NB, Canada) with 32 CPUs,
running at 2.20 GHz each, with 28 GB of RAM.

Performance is measured in two respects: (1) size of search space required in terms of the number
of candidate patterns generated (i.e., the number of nodes in the lexicographic tree) and (2) the
runtime required. The hypotheses are that the approaches implemented by CRUSP, namely MCU
and RCU, significantly outperform the existing SWU and RSU approaches in terms of both size and
speed, with RCU improving over MCU, and that the PRSU approach implemented by CRUSPPivot
significantly improves upon the CRUSP methods in both aspects.

7.2. Experiment #1: CRUSP Performance Validation

For the first experiment, the MCU and RCU methods were validated via comparison with SWU
and RSU on four real-life and publicly available datasets. Details on these four datasets are given in
Table 1, and are generally described as follows:

• BMS: e-commerce website (click-stream data),

Information 2020, 11, 44 19 of 27

• ds3: e-commerce website (data on customer transactions),
• msnbc: data on website page visits (msnbc.com, 28 September 1999),
• SIGN: sign language data.

The BMS and SIGN datasets can be attributed to the SPMF open source data mining library [35].
The ds3 dataset was used by Yin et al. [2] in the uSpan and was kindly made available for this paper by
the authors. The msnbc dataset was constructed from the msnbc transactional dataset found at the
UCI Machine Learning Repository [36], with utilities randomly added using a uniform distribution
from [1, 10].

Table 1. Datasets used in testing.

Dataset Total # Seq # Items Avg TypeUtil Length

BMS 2× 106 59,601 497 2.5 click-stream
ds3 9× 107 59,476 811 5.9 transactions

msnbc 3× 107 989,818 17 4.74 page visits
SIGN 6× 105 730 267 52.0 sign language

Minimum utility thresholds were varied over a number of tests, with each expressed as the portion
of the total utility present in the corresponding dataset. While it is desirable for the methods tested
to perform well at high minimum utility thresholds, it is a far more significant result if performance
is found to drastically improve at lower threshold levels, where existing methods tend to struggle to
execute in a reasonable amount of space or time. Figure 8 depicts the performance of each method in
terms of the number of candidate high utility sequential patterns considered in the lexicographical tree.
Notice that there is only one set of plot points for the RSU and MCU methods. This is because each
method actually builds the exact same tree of candidate nodes. In this case, the effect of maintaining
a candidate list is expected to be realized in reduced run time, due to the fact that the RSU method
is found to be continuously considering items for concatenation and then rejecting them due to
their low RSU values. As a result, these candidate extensions are never actually added to the tree.
However, run time is indeed spent on evaluating the RSU values for these candidates, whereas the
MCU method entirely removes them from consideration for the duration of the search and devotes
no further effort towards their evaluation. Experiments validate that space efficiency is dramatically
improved by the MCU and RSU methods over SWU, particularly at lower threshold levels. Of greater
importance, however, is the significant improvement realized by the RCU method over all other
methods for each problem tested, boasting reductions in the number of candidates considered of
99.9%, 33%, 42%, and 49%, confirming the hypothesis that the RCU offers a substantially tighter upper
bound on future extension utilities, and thus offering the opportunity for significantly earlier pruning,
resulting in reduced search.

Information 2020, 11, 44 20 of 27

2.59 2.62 2.65 2.68 2.71 2.74
0

1

2

3

4
·106

umin (%)

BMS

3.5 3.7 3.9 4.1 4.3 4.5

·10−2

0

0.5

1

1.5

2
·106

umin (%)

ds3

1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4
·105

umin (%)

msnbc

1 1.2 1.4 1.6 1.8 2
0

0.4

0.8

1.2

1.6
·107

umin (%)

SIGN

SWU MCU/RSU RCU

Figure 8. Results of experiment 1: Number of candidate patterns generated by each method to identify
the full set of high utility sequential patterns.

Figure 9 validates the performance of the MCU and RCU methods over SWU and RSU in
terms of run time (in seconds) required to identify the full set of high utility sequential patterns.
Here, the expected improvement in run time performance of the MCU method over the RSU method,
as hypothesized above, is confirmed, with run time reductions of 23%, 17%, 22%, and 63% over the
four datasets, respectively, at the lowest level of minimum utility tested. The RCU method was
found to further reduce run time, with reduction percentages of 94%, 25%, 32%, and 72% over the
RSU method. The fact that the RCU method improves upon MCU in all cases (marginally in three
cases, and significantly for the BMS dataset) is a very positive result. While it was clear that the RCU
should reduce the size of the search space significantly due to the potentially dramatic reduction in the
upper bounds computed, it was not clear at the outset that these gains would outweigh the additional
computational effort.

Information 2020, 11, 44 21 of 27

2.59 2.62 2.65 2.68 2.71 2.74
0

40

80

120

160

umin

BMS

3.5 3.7 3.9 4.1 4.3 4.5

·10−2

0

35

70

105

140

umin (%)

ds3

1 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

umin (%)

msnbc

1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

umin (%)

SIGN

SWU RSU MCU RCU

Figure 9. Results of experiment 1: Time (s) taken by each method to identify the full set of high utility
sequential patterns.

7.3. Experiment #2: CRUSPPivot Performance Validation

In the second experiment, the PRSU method implemented by CRUSPPivot is tested against RCU
to assess the improvement in performance in terms of size of search space and run time. Each of the
four datasets used in the first experiment were utilized, including two additional datasets described in
Table 2. Each of these two new datasets are based on click-stream activity, and were acquired from
the SPMF open source data mining library [35]. These two datasets were not included in the first
experiment as they were unsolvable by the non-candidate-list-based methods in a reasonable amount
of time at reasonable minimum utility levels.

Table 2. Additional datasets used in testing for experiment 2.

Dataset Total # Seq # Items Avg TypeUtil Length

FIFA 7× 105 20,450 2990 36.24 click-stream
Kosarak10K 1× 106 10,000 10,094 8.14 click-stream

Figure 10 depicts the performance of each method in terms of the number of candidate high
utility sequential patterns considered in the lexicographical tree. The reduction in the number of
candidate patterns generated by the PRSU method is highly significant in all cases, and particularly
for datasets ds3, SIGN, FIFA, and Kosarak, where reduction by more than a factor of 10 occurs at
lower minimum utility levels. Comparing PRSU with the results of existing methods SWU and RSU
depicted in Figure 8 shows a massive reduction in the number of candidates generated, for all datasets

Information 2020, 11, 44 22 of 27

at all levels. To illustrate just one example, for the BMS dataset at 2.65% minimum utility, the SWU
approach required the generation of 3,153,620 candidates while the PPEU approach required just 498,
resulting in a reduction of 99.98%.

2.59 2.62 2.65 2.68 2.71 2.74
0

500

1,000

1,500

2,000

umin (%)

BMS

3.5 3.7 3.9 4.1 4.3 4.5

·10−2

0

1.5

3

4.5

6
·105

umin (%)

ds3

1 1.1 1.2 1.3 1.4 1.5
0

0.4

0.8

1.2

1.6
·105

umin (%)

msnbc

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8
·106

umin (%)

SIGN

4 5 6 7 8 9
0

2

4

6

8
·105

umin (%)

FIFA

1.64 1.66 1.68 1.7 1.72 1.74
0

0.3

0.6

0.9

1.2
·107

umin (%)

kosarak

RCU PRSU

Figure 10. Results of experiment 2: Number of candidate patterns generated by each of the RCU and
PRSU methods to identify the full set of high utility sequential patterns.

Figure 11 depicts the performance of each method in terms of the total time (in seconds) taken to
identify the full set of high utility sequential patterns. For three of the datasets, BMS, ds3, and msnbc,
performance is essentially unchanged, indicating that the decrease in candidate patterns generated and

Information 2020, 11, 44 23 of 27

the time taken to process the item candidate lists are essentially an even trade-off in these cases. Tests on
the SIGN database show significant improvement for PRSU, with an approximate 13% reduction in
run time across the board. FIFA and Kosarak, on the other hand, experience a dramatic reduction
in runtime. For FIFA, nearly a 50% reduction in run time is realized at low minimum utility values.
For Kosarak, the problem quickly becomes unmanageable for RCU once the minimum falls below
1.66%, where the run time seemingly remains constant for PRSU. It is thus apparent that, depending
on the problem, the benefits of PRSU are sometimes neutralized by the additional computational cost;
however, at other times, the PRSU method has the potential to yield dramatically improved results.

Information 2020, 11, 44 24 of 27

2.59 2.62 2.65 2.68 2.71 2.74
0

3

6

9

12

umin

BMS

3.5 3.7 3.9 4.1 4.3 4.5
·10−2

0

35

70

105

140

umin (%)

ds3

1 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

umin (%)

msnbc

1 1.2 1.4 1.6 1.8 2
0

40

80

120

160

umin (%)

SIGN

4 5 6 7 8 9
0

750

1,500

2,250

3,000

umin (%)

FIFA

1.64 1.66 1.68 1.7 1.72 1.74
0

40

80

120

160

umin (%)

kosarak

RCU PRSU

Figure 11. Results of experiment 2: Time (s) taken by each of the RCU and PRSU methods to identify
the full set of high utility sequential patterns.

8. Conclusions

The high utility sequential pattern mining (HUSPM) problem seeks to identify frequent patterns
that are (1) sequential in nature and (2) hold a significant magnitude of utility in a sequence database,
by considering the aspect of item value or importance. The objective is thus to offer a solution to the
shortcoming associated with traditional frequency-based sequential pattern mining that all items in
an input database are treated with equal importance. As such, the HUSPM problem offers a host of

Information 2020, 11, 44 25 of 27

interesting challenges. Chief among these is the non-applicability of search reduction techniques that
have been previously developed based on the downward closure property, and which have been relied
upon so critically by existing frequency-based pattern mining approaches. This paper offers a deep
examination of the challenges of overcoming this obstacle, and details a number of methods from
the literature that attempt to address these challenges. Central among these methods is a focus on
establishing upper bounds on the utilities of pattern extensions that might be encountered later in the
search. The idea here is that, if future extensions from some point are found to have upper bounds on
utility that fall short of a prespecified minimum, then search can be cut off at that point.

In this paper, a number of new approaches are proposed that seek to further reduce such upper
bounds and produce further dramatic reductions in the number of candidate patterns that need to be
considered. The first such approach, referred to as the maximum concatenation utility (MCU) method,
is proposed, which maintains a list of candidate concatenation items. This list specifies the only items
that should ever be considered as possible candidates for extension for a particular sequential pattern,
or for any future sequential pattern extension that may appear as a descendant in the search tree.
The run time savings that result from the ability to disregard items that do not appear in the list is
shown empirically to be substantial, exhibiting a reduction in the range of 17% to 63% for four publicly
available datasets.

The second approach proposed in the paper, referred to as the reduced concatenation utility (RCU)
method, capitalizes on the elimination of items from consideration, as deemed by the candidate list, to
correspondingly compute an even tighter upper bound, resulting in earlier pruning during the search.
Further experiments showed that the RCU approach provides significant improvements over the MCU
approach in terms of both size of search space and run time. These new methods were implemented
by the CRUSP algorithm, which is also outlined in the paper.

Even though the utilization of the RCU method resulted in a significant reduction in the size of the
search space, the reduction in run time, while still significant, was found to be relatively limited due to
the expensive computational cost required by the consideration of removed utilities in the computation
of upper bounds. To alleviate this computational burden, a relaxed upper bound referred to as the
pivot-centered prefix extension utility (PPEU) was proposed. This upper bound, while not as tight
initially as the previously proposed prefix extension utility from the literature, was instead significantly
faster to update. This speed up facilitated the ability to process the candidate list multiple times,
consequently leading to the removal of more candidate items and ultimately yielding a dramatically
tighter upper bound. The approach was subsequently implemented as part of a new algorithm named
CRUSPPivot. Tests on a number of datasets showed that this new approach performed no worse than
the RCU method on some datasets, while on others the improvement was immeasurable, even solving
one problem easily where the RCU method could not complete the search in a reasonable amount of
time. When compared against the results of existing methods SWU and RSU depicted in Figure 8,
a massive reduction in the number of candidates generated was realized for all datasets at all levels.
One particular example was cited that showed that, for the BMS dataset at 2.65% minimum utility,
the SWU approach required the generation of 3,153,620 candidates, while the PPEU approach required
just 498, resulting in a reduction of 99.98%. This demonstrates that there is significant potential in
further pursuing this sort of approach to HUSPM search.

There are a number of outstanding related research questions that may be considered for future
work, including (1) whether an algorithm more efficient than CRUSP exists that would facilitate the
timely usage of the tighter upper bound (RCU) proposed in the paper, as opposed to the slightly more
loose PPEU bound, (2) whether bounds tighter than RCU exist, (3) how to improve the efficiency of
CRUSPPivot to possibly achieve reduction in run time proportionate to the reduction in search space
shown in experiments, and (4) how to modify CRUSP and CRUSPPivot to mine the top-k patterns.
This list is far from exhaustive, demonstrating the great potential for further research in this area.

Funding: This research received no external funding.

Information 2020, 11, 44 26 of 27

Conflicts of Interest: The author declares no conflict of interest.

References

1. Ahmed, C.F.; Tanbeer, S.K.; Jeong, B.S. A novel approach for mining high-utility sequential patterns in
sequence databases. ETRI J. 2010, 32, 676–686.

2. Yin, J.; Zheng, Z.; Cao, L. USpan: An efficient algorithm for mining high utility sequential patterns.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Beijing, China, 12–16 August 2012; pp. 660–668.

3. Aggarwal, C.C.; Han, J. Frequent Pattern Mining; Springer: Berlin/Heidelberg, Germany, 2014.
4. Fournier-Viger, P.; Lin, J.C.W.; Vo, B.; Chi, T.T.; Zhang, J.; Le, H.B. A survey of itemset mining. Wiley Interdiscip.

Rev. Data Min. Knowl. Discov. 2017, 7, e1207.
5. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th Int. Conf.

Very Large Data Bases, VLDB, Santiago de Chile, Chile, 12–15 September 1994; Volume 1215, pp. 487–499.
6. Agrawal, R.; Srikant, R. Mining sequential patterns. In Proceedings of the Eleventh International Conference

on Data Engineering, Taipei, Taiwan, 6–10 March 1995; pp. 3–14.
7. Wang, J.Z.; Huang, J.L.; Chen, Y.C. On efficiently mining high utility sequential patterns. Knowl. Inf. Syst.

2016, 49, 597–627.
8. BUFFETT, S. Candidate List Maintenance in High Utility Sequential Pattern Mining. In Proceedings of the

2018 IEEE International Conference on Big Data (Big Data), IEEE, Seattle, WA, USA, USA, 10–13 December
2018; pp. 644-652.

9. Hájek, P.; Havel, I.; Chytil, M. The GUHA method of automatic hypotheses determination. Computing 1966,
1, 293–308.

10. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern
tree approach. Data Min. Knowl. Discov. 2004, 8, 53–87.

11. Zaki, M.J. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390.
12. Srikant, R.; Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements; Springer:

Berlin/Heidelberg, Germany, 1996.
13. Zaki, M.J. SPADE: An efficient algorithm for mining frequent sequences. Mach. Learn. 2001, 42, 31–60.
14. Ayres, J.; Flannick, J.; Gehrke, J.; Yiu, T. Sequential pattern mining using a bitmap representation.

In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 429–435.

15. Pei, J.; Han, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M.C. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In Proceedings of the 2013 IEEE 29th International
Conference on Data Engineering (ICDE), Heidelberg, Germany, 2–6 April 2001; p. 0215.

16. Yao, H.; Hamilton, H.J.; Butz, C.J. A foundational approach to mining itemset utilities from databases.
In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA,
22–24 April 2004; pp. 482–486.

17. Liu, Y.; Liao, W.K.; Choudhary, A.N. A Two-Phase Algorithm for Fast Discovery of High Utility Itemsets.
In PAKDD; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3518, pp. 689–695.

18. Fournier-Viger, P.; Wu, C.W.; Zida, S.; Tseng, V.S. FHM: Faster high-utility itemset mining using estimated
utility co-occurrence pruning. In International Symposium on Methodologies for Intelligent Systems; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 83–92.

19. Fournier-Viger, P.; Wu, C.W.; Tseng, V.S. Novel concise representations of high utility itemsets using generator
patterns. In International Conference on Advanced Data Mining and Applications; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 30–43.

20. Tseng, V.S.; Wu, C.W.; Fournier-Viger, P.; Philip, S.Y. Efficient algorithms for mining top-k high utility
itemsets. IEEE Trans. Knowl. Data Eng. 2015, 28, 54–67.

21. Lin, J.C.W.; Li, T.; Fournier-Viger, P.; Hong, T.P.; Zhan, J.; Voznak, M. An efficient algorithm to mine high
average-utility itemsets. Adv. Eng. Inform. 2016, 30, 233–243.

22. Lin, J.C.W.; Zhang, J.; Fournier-Viger, P. High-Utility Sequential Pattern Mining with Multiple Minimum
Utility Thresholds. In Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference
on Web and Big Data; Springer: Berlin/Heidelberg, Germany, 2017; pp. 215–229.

Information 2020, 11, 44 27 of 27

23. Liu, B.; Hsu, W.; Ma, Y. Mining association rules with multiple minimum supports. In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, 15–18 August 1999; Volume 99, pp. 337–341.

24. Zhang, B.; Lin, J.C.W.; Fournier-Viger, P.; Li, T. Mining of high utility-probability sequential patterns from
uncertain databases. PLoS ONE 2017, 12, e0180931.

25. Zihayat, M.; Wu, C.W.; An, A.; Tseng, V.S. Mining high utility sequential patterns from evolving data streams.
In Proceedings of the ASE BigData & SocialInformatics 2015, Kaohsiung, Taiwan, 7–9 October 2015; p. 52.

26. Xu, T.; Dong, X.; Xu, J.; Dong, X. Mining High Utility Sequential Patterns with Negative Item Values. Int. J.
Pattern Recognit. Artif. Intell. 2017, 31, 1750035.

27. Zida, S.; Fournier-Viger, P.; Wu, C.W.; Lin, J.C.W.; Tseng, V.S. Efficient mining of high-utility sequential
rules. In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 157–171.

28. Jiang, Y.; Yin, S.; Kaynak, O. Data-driven monitoring and safety control of industrial cyber-physical systems:
Basics and beyond. IEEE Access 2018, 6, 47374–47384.

29. Jiang, Y.; Li, K.; Yin, S. Cyber-physical system based factory monitoring and fault diagnosis framework with
plant-wide performance optimization. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems
(ICPS), St. Petersburg, Russia, 15–18 May 2018; pp. 240–245.

30. Jiang, Y.; Yin, S. Recent advances in key-performance-indicator oriented prognosis and diagnosis with
a matlab toolbox: Db-kit. IEEE Trans. Ind. Inform. 2018, 15, 2849–2858.

31. Mooney, C.H.; Roddick, J.F. Sequential pattern mining–approaches and algorithms. ACM Comput. Surv.
(CSUR) 2013, 45, 19.

32. Chena, Y.L.; Kuo, M.H.; Wub, S.Y.; Tang, K. Discovering recency, frequency, and monetary (RFM) sequential
patterns from customers’ purchasing data. Electron. Commer. Res. Appl. 2009, 8, 241–251.

33. Li, Z.; Zhang, A.; Li, D.; Wang, L. Discovering novel multistage attack strategies. In International Conference
on Advanced Data Mining and Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 45–56.

34. Buffett, S.; Pagiatakis, C.; Jiang, D. Pattern-Based Behavioural Analysis on Neurosurgical Simulation Data.
Proc. Mach. Learn. Res. 2018, 85, 514–533.

35. Fournier-Viger, P.; Gomariz, A.; Gueniche, T.; Soltani, A.; Wu., C.; Tseng, V.S. SPMF: A Java Open-Source
Pattern Mining Library. J. Mach. Learn. Res. (JMLR) 2014, 15, 3389–3393.

36. Lichman, M. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/ml/
index.php (accessed on 11 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Literature Review
	Sequential Pattern Mining
	High Utility Sequential Pattern Mining

	Existing Bounding and Search Space Pruning Strategies
	Lexicographic Tree Search
	Existing Pruning Strategies for HUSPM

	Candidate Generate-and-Test vs. Pattern Growth Methods
	Concatenation Candidate List Maintenance
	PEU-Based Candidate Maintenance
	The CRUSP Algorithm

	Candidate List Maintenance with Repeated Item Traversal
	Pivot-Centered PEU-Based Candidate Maintenance
	The CRUSPPivot Algorithm

	Results
	Objectives and Hypotheses
	Experiment #1: CRUSP Performance Validation
	Experiment #2: CRUSPPivot Performance Validation

	Conclusions
	References

