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Abstract: Nowadays, with smartphones, people can easily take photos, post photos to any social
networks, and use the photos for various purposes. This leads to a social problem that unintended
appearance in photos may threaten the facial privacy of photographed people. Some solutions to
protect facial privacy in photos have already been proposed. However, most of them rely on different
techniques to de-identify photos which can be done only by photographers, giving no choice to
photographed person. To deal with that, we propose an approach that allows a photographed person
to proactively detect whether someone is intentionally/unintentionally trying to take pictures of him.
Thereby, he can have appropriate reaction to protect the facial privacy. In this approach, we assume
that the photographed person uses a wearable camera to record the surrounding environment in
real-time. The skeleton information of likely photographers who are captured in the monitoring video
is then extracted and put into the calculation of dynamic programming score which is eventually
compared with a threshold for recognition of photo-taking behavior. Experimental results demonstrate
that by using the proposed approach, the photo-taking behavior is precisely recognized with high
accuracy of 92.5%.

Keywords: photo-taking behavior; photo capturing and sharing; bystanders; human behavior
analysis; identity protection; facial privacy

1. Introduction

For years, smartphones have been increasingly become one of the most indispensable personal
devices, allowing people to easily take photos recording every desirable moment with just a simple
click. According to the Global Digital 2019 report, the number of people around the world who use a
mobile phone accounts for 67%—more than two-thirds of the total global population [1]. In Japan, the
statistics obtained from the Ministry of Internal Affairs and Communications show that the ownership
rate of the smartphone is about 60.9%, and especially the rate of owners who are under 40 was
over 90% in 2018 [2,3]. This facilitates the explorations of various Social Networking Services (SNS)
(e.g., Facebook, Twitter, etc.). In fact, about 3.5 billion people accounting for 45% of the global population
are using SNS [1]. As a result, a social problem potentially occurs when people are unintentionally
captured in others’ photos and which are then published on social networks. More seriously, the
photos along with the photographed person’s identity can be used by photographers for their own
purposes. As a consequence, the facial privacy of the photographed person is severely violated.
Recent advances in computer vision and machine learning techniques make this problem become more
serious. Indeed, these techniques can automatically recognize people with extremely high accuracy,
facilitating the possibility of searching for a specific person in vast image collections [4]. To combat
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this privacy problem, numerous approaches have been introduced. One straightforward approach
is to manually specify the regions containing subjects and apply appearance obscuration. However,
this approach is time-consuming and not suitable for real-time privacy protection. For automatic
privacy-protection purposes, the existing methods might be done at either photographer’s site or the
site of the photographed person. The methods in the former category leverage the power of computer
vision and machine learning techniques to hide the identity of photographed persons to avoid their
identification [5]. For example, Google developed cutting-edge face-blurring technology which can
blur identifiable faces of bystanders on the images [6]. Other solutions aim to automatically recognize
photographed persons in images and obscure their identities [7–9]. Unfortunately, these approaches
give no choice to the photographed person to control over his privacy protection since this process is
totally done at the photographer site. The methods in the latter category attempt to proactively prevent
the photos of the photographed person from being taken. For example, some techniques force for the
privacy of photographed person to be respected based on his privacy preferences represented by visual
markers [10] or hand gestures [11] or offline tags [12] which are visible to everyone. However, the
privacy preferences might vary widely among individuals and change from time to time, following
patterns which cannot be conveyed by static visual markers [13]. More sophisticated techniques rely on
cooperation between photographers and photographed persons, which enables photographed people’s
privacy preferences to be detected by nearby photo-taking devices (via peer-to-peer short-range
wireless communications) [14–16]. However, this approach requires the photographed persons to
broadcast their preferences, leading to other aspects of privacy. More importantly, this approach might
not be effective in a situation where the photographers proactively switch off the communication
function on their devices or ignore the advertised privacy choices of the nearby photographed persons
because they are intentionally and secretly taking photos of pre-targeted persons. Indeed, this is also
a common problem of most of existing studies, which mainly focus on the privacy-protection of the
“bystander” which is defined as either “a person who is present and observing an event without taking
part in” [9] or “a person who is unexpectedly framed in“ [7] or “a person who is not a subject of the
photo and is thus not important for the meaning of the photo, e.g., the person was captured in a photo
only because they were in the field of view and was not intentionally captured by the photographer” [9].
In other words, the situation where the photographer intentionally takes photos of targeted persons
has not been taken into account.

In this study, we propose an approach that allows the photographed person to proactively
detect a situation where someone is intentionally/unintentionally trying to take photos of him using
a mobile phone, without broadcasting his privacy preferences as well as identifying information.
Afterward, the photographed person will have an appropriate reaction such as leaving the shared
space or asking the photographer to stop taking the photos in order to protect his privacy. Importantly,
in order to sufficiently cover as many of cases of photo-taking as possible, we use the notion of
“photographed person” instead of “bystander”. We assume that the photographed person has strong
motivation to protect his privacy and is willing to use a wearable camera to monitor the surrounding
environment. The behavior of the likely photographers is recognized via the analysis of their skeleton
information obtained from the monitored video. Note that, in this study, we only use a normal camera
to evaluate the potential of the proposed approach. In practice, a thermographic camera should be
used to hide the facial identities of people who are captured in the monitored video. However, there
is no technical difference between the normal camera and the thermographic camera in detecting
photo-taking behaviors of the photographer since the proposed method uses only the photographer’s
skeleton information which can be precisely obtained by both types of cameras. On another front, we
argue that misdetection possibly occurs when there is behavior—i.e., net-surfing—which is similar to
photo-taking behavior. Basically, the human arm parts are believed to significantly contribute to the
precise recognition of photo-taking behavior. Thus, only skeleton information of the arm parts including
length and angle transition is focused on in the analysis process. In our study, such information is
extracted by OpenPose [17] in real-time. Afterwards, dynamic programing (DP) matching between
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monitored data and reference data is performed to generate monitored DP scores which are then
compared with a pre-determined DP threshold. The comparison results decide whether the input data
represents photo-taking behavior. The experimental results demonstrate that the proposed approach
achieve an accuracy of 92.5% in recognizing photo-taking behavior.

The remainder of the paper is organized as follows: related work is provided in Section 2.
Meanwhile, Section 3 describes the proposed method. Performance evaluation of the proposed method
is discussed in Section 4, and Section 5 concludes this study.

2. Related Works

Prior works on handling photographed people’s facial privacy can be classified into two categories:
photographer-site methods, which leverage obfuscation techniques to hide the identity of photographed
persons; and photographed person-site methods, which deny third party devices the opportunity to
collect data.

2.1. Photographer-Site Methods

As the image sources are explosively growing and easily accessible, de-identification has become
extremely important. It refers to the reversible process of removing or obscuring any personally
identifiable information from an individual [18]. Thus, to deal with this privacy problem, the common
approaches are blurring and pixelization. For example, Frome et al. [5] proposed a method for automatic
privacy protection for all people captured in Google Street View, where a fast sliding-window approach
was applied for face detection and post-processing was performed to blur the faces. Koyama et al. [7]
introduced a new system to automatically generate privacy-protected videos in real-time to protect the
privacy of non-intentionally captured persons (ICPs). In real scenarios, social videos posted via social
networks include not only ICPs but also non-ICPs. The authors also claimed that existing privacy
protection systems simply blur out all the people in the video without distinguishing between ICPs
and non-ICPs, resulting in making an unnatural video. Meanwhile, their proposed privacy-protection
system automatically discriminates ICPs from non-ICPs in real-time based on the spatial and temporal
characteristics of the video, and then, only the non-ICPs can be localized and hidden. To protect
privacy of persons captured in videos, Kitahara et al. proposed a system called Stealth Vision [19],
which applies pixelization to persons. To locate persons in a mobile camera’s frame, their system uses
fixed cameras installed in the target environment. Meanwhile, by leveraging the power of machine
learning, some interesting de-identification techniques have been introduced. For example, Yifan
et al. [20] proposed a framework called Privacy-Protective-GAN that adapts generative adversarial
network (GAN) for the face de-identification problem to ensure generating de-identified output with
retained structure similarity according to a single input. In order to mitigate the privacy concern of the
photographed persons in egocentric video, Dimiccoli et al. developed a convolutional neural networks
(CNN)-based computational method for recognizing everyday human activities while mitigating
privacy concerns by intentionally degrading the quality of egocentric photos [21]. Even though these
de-identification techniques provide effective solutions for privacy-protection, the photographed
person has no control over privacy-protection. This might lead to another aspect of privacy issue if the
photographers intentionally use the photos for their own purpose without hiding the photographed
person’s identity.

2.2. Photographed Person-Site Methods

Photographed person-site methods can be classified into two groups: (1) cooperation between
photographer and photographed person; and (2) photographed person-based.

In former group, some solutions require the photographed person to advertise his privacy
preferences based on which the photographer’s smart device will have appropriate actions (e.g., take
no photos, blur subject’s identity). The implementation of these methods mainly depends on: the way
the photographed person express his intention/requirements in privacy-protection; and cooperation
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methods between the photographer and the photographed person. Some methods require the
photographed person to wear visible specialized tags. For examples, Pallas et al. in [12] introduced
a set of four elementary privacy preferences represented by corresponding symbols—“Offlinetags”
which are invisible and easily to be detected by detection algorithms. These privacy preferences are:
“No photos”, “blur me”, “upload me”, and “tag me”. COIN [15] enables a photographed person
to broadcast his privacy policies and empowers the photo service provider (or photographer) to
exert the privacy protection policy. This approach is similar to the one in [16]. Some other methods
require stronger cooperation between the photographer and the photographed person. For example,
Li et al. presented PrivacyCamera [14], an application working on both the photographer’s and the
photographed person’s mobile phone. Upon detecting a face, the app automatically sends notifications
to nearby photographed people who are registered users of the application using short-range wireless
communication. If the photographed person does not want to appear in the photo, they will indicate
so to the photographer. His face will be blurred once the photographer confirms the appearance of
the photographed person in the photo. However, this solution cannot completely solve the privacy
problem if the photographer intentionally ignores the requests from the photographed people.

In the latter group, the photographed person proactively takes actions to protect his privacy.
For examples, Yamada et al. [22] proposed a method to avoid unintended appearance in photos
physically using a privacy visor that uses near-infrared light. That privacy visor’s shape is like a pair
of glasses that are equipped with near-infrared LEDs. The purpose of the use of near-infrared light
is to saturate the charged-coupled device (CCD) sensor of digital cameras to distort the Haar-like
features. Farinella et al. developed FacePET [23] to prevent the unintentional capture of facial images
by distorting the region containing the face. This work is similar to the work in [22] since it makes
use of glasses to emit light patterns designed to distort the Haar-like features which are used in some
face detection algorithms. The noticeable difference is that the work in [22] used near-infrared light,
while the visible light was used in [23]. However, these systems might not be effective for other types
of face detection algorithm such as deep learning-based approaches. Additionally, these prototype
glasses seem to be burdensome for users. In previous study [24], we proposed a method to identify
photo-taking behavior using optical flow technique. To recognize such the behavior, the movements of
arms and/or hands of the photographer were studied. However, the detection accuracy of this proposal
was not so high, and it focused on only photo-taking behavior without considering other behavior
with similar characteristics.

Our proposed solution in this study belongs to the photographed person-based category,
allowing the photographed person to proactively make decisions in controlling over his facial privacy.
More concretely, it helps him to detect the situation where someone is intentionally/unintentionally
trying to take photos of him and has appropriate reaction to protect his facial privacy.

3. Proposed Approach

3.1. Photo-Taking Recognition Algorithm

In this section, the proposed algorithm for recognizing photo-taking behavior is presented. In a
general scenario, we assume that a photographed person uses a wearable camera to monitors the
surrounding environment. Then, based on the monitored video, the proposed algorithm will examine
whether there is someone is trying to take the photos of the photographed person. Typically, our
propped algorithm focuses on detecting photo-taking behavior and classifying it from net-surfing
behavior. Note that, the net-surfing behavior is taken into account in the proposed algorithm due
to its popularity. In fact, with smartphone, people can perform similar activities to net-surfing, for
examples, texting, retrieving data, etc. In our definition, net-surfing includes web-surfing, social media
(e.g., Facebook, Instagram) surfing, etc. Indeed, according to [25], Americans spend an average of 3
h a day on their smartphone for net-surfing compared to 41 min per day for texting. Typically, both
photo-taking and net-surfing behaviors share common motions of moving arms which are defined
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by the changes in arm’s length and the angle from the view of the photographed person. Therefore,
the transition of the arm’s length and angle of the bending arm are crucial inputs for the detection
mechanism. The proposed algorithm (Algorithm 1) is clearly described as follows:

Algorithm 1: Proposed Algorithm

Input: Monitored Video, DP Threshold

Output: 0: Photo-Taking Behavior, 1: Net-Surfing Behavior

1: Initiate OpenPose
2: Analyze the monitored video
3: return arm parts’ skeleton information
4: Calculate the arm’s length and angle of bending arm
5: (I) length of upper arm, (II) length of lower arm, (III) angle of bending arm
6: return (I)~(III) value
7: Calculate DP scores
8: DP matching (reference data: photo-taking behavior)
9: return DP score
10: If DP score ≤ threshold Then
11: Judged as photo-taking behavior
12: return 0: photo-taking behavior
13: Else
14: Judged as net-surfing behavior
15: return 1: net-surfing behavior
16: End if

3.2. How Does the Proposed Approach Work in Reality?

Figure 1 depicts an assumed scenario for the implementation of our proposal. Accordingly, a
photographed person uses a wearable camera to monitor the surrounding environment all the time
or in specific event that he wants to protect his facial privacy. The monitored video as input data
is continuously fed into the detection algorithm which runs on his mobile phone or cloud-based
device for further analysis. If the photo-taking behavior is detected, a vibration signal as the output is
activated to notify the photographed person. This allows him to perform some types of physical actions.
For example, he simply leaves the shared space or asks the photographers to stop taking photos.
In practice, this approach can be used by a person who wishes to proactively protect his privacy from
the violation of an individual. It means that only a suspected individual is captured in the monitoring
video. However, using a normal wearable camera possibly leads to the facial privacy issue of other
people who are captured in the video unintentionally. In reality, we believe that using thermographic
camera, particularly long-wave infrared camera, is a potential solution to deal with this problem.
Typically, long-wave infrared imagery is independent of illumination since thermal infrared sensors
operating at particular wavelength bands measure heat energy emitted and not the light reflected from
the objects [26]. As mentioned in Section 2, the photographed person is assumed to be the one who has
strong motivation in securing his facial privacy. Thus, by wearing such a thermographic camera, the
photographed person can proactively control over privacy-protection without violating the others’
facial privacy. However, using a thermographic camera probably poses challenges in recognizing
photo-taking behavior in thermal video. This will be considered in our future study.
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Figure 1. A scenario of photo-taking behavior detection and its notification.

3.3. Extract Human Skeleton Information

As stated in Section 3.1, human skeleton information is the key input of our proposed algorithm.
Typically, both photo-taking and net-surfing behaviors share similar motions of moving arms. Thus,
the skeleton information of the arm’s length and the transition of angle of bending arms from the view
of the photographed person is focused on. Such information can be obtained by monitoring: (I) upper
arm, (II) lower arm, and (III) the angle of the bending arms.

In order to obtain the skeleton information, OpenPose [17] (an open-source tool) is used.
By leveraging this tool, the human skeleton information can be extracted in real-time from
two-dimensional video frames. Figure 2 illustrates an example of skeleton information extracted from
OpenPose. Accordingly, there are 25 points connected by joint parts, establishing “BODY_25” human
skeleton estimation model. In practice, OpenPose allows the joint coordinates in each frame to be
obtained and stored in json files. Thus, the skeleton data is formed as [x, y, confidence score].

In the following subsections, the details of each step in the proposed algorithm will be explained.
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Figure 2. “BODY_25” human skeleton estimation model.

Here, the x and y are coordinates indicating body part locations in the input image. The confidence
score indicates the accuracy of the coordinates calculated by OpenPose tool. As we assumed earlier,
there are some potential differences in the arm’s length and the angle among photo-taking and
net-surfing behaviors. Therefore, we only focus on these parts which are numerically calculated from
joints’ information. Accordingly, the joints: “2, 3, 4, 5, 6, 7” in “BODY_25” model (depicted in Figure 2)
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are used for further behavior analysis. The points and joints of the utilized arm parts are visualized
in Figure 3. Table 1 provides brief information of joint positions of the arm parts and the according
expressions used in this paper.
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Figure 3. Focusing parts in proposed approach.

Table 1. Correspondence between joint position and body part.

Index Factors Joint Position
(Keypoint) Arm Parts Index Number

in Figure 3
Expression in

This Paper

Right

I 2–3 Right Upper arm 1O Length-23

II 3–4 Right Lower arm 2O Length-34

III 2–3–4 Angle of the
bending right arm

3O Angle-234

Left

I 5–6 Left Upper arm 4O Length-56

II 6–7 Left Lower arm 5O Length-67

III 5–6–7 Angle of the
bending left arm

6O Angle-567

In proposed approach, the numerical values of the arm length and angle are determined by using
the distance between two points and inner product of coordinates, which are obtained from OpenPose.
The detailed calculations are presented in Figure 4.
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According to Figure 4a, a certain joint position (keypoint) denoted as KPp is presented as 

KPp = xp, yp  (1) 

Figure 4. Calculation of the arm’s length and angle of the bending arm. (a) Calculation of the arm’s
length from two coordinates by using the distance between two points KPn and KPm. This method is
applied to calculate the length of 1O, 2O, 4O, 5O in Table 1; (b) Calculation of the angle of the bending arm
from three coordinates which are indexed by 3O, 6O in Table 1 by using the inner product.
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• Calculation of the arm’s length (I) and (II)

According to Figure 4a, a certain joint position (keypoint) denoted as KPp is presented as

KPp =
(
xp, yp

)
(1)

where, the p indicates a joint position (keypoint) number.
The arm length can be calculated by the equation

Length-nm =

√
(xm − xn)

2 + (ym − yn)
2 (2)

In this case, “Length-nm” stands for arm’s length between joint position number of n and m.
By using Equation (2), the length of the right and left upper/lower arm (indexed by 1O, 2O, 4O, 5O) can be
properly determined.

• Calculation of the angle of bending arm (III)

The angle of bending arm θ is formed by KPa = (xa, ya), KPb = (xb, yb), KPc =
(
xc, yc

)
as shown

in Figure 4b. Accordingly, the procedure to calculate the angle from these points is as follows: First, it
is required to perform vectorization where the vectorization Lpq is expressed as

Lba =

(
xa − xb
ya − yb

)
=

(
ba1

ba2

)
, Lbc =

(
xc − xb
yc − yb

)
=

(
bc1

bc2

)
(3)

Then, by using these vectors, the angle can be calculated as

θ = cos−1
(

Lba·Lbc
|Lba|·|Lbc|

)
(4)

where, 0 ≤ θ ≤ π.
Therefore, based on this procedure, the angles of the bending right and left arms (indexed by 3O,

6O) can be calculated.

3.4. Threshold for Recognizing Photo-Taking Behavior

In this subsection, we present the determination of DP threshold which plays an important role in
deciding whether a series of human hand movements form photo-taking behavior or not. Typically, the
threshold value can be obtained from the point of equal error rate (ERR), where the false acceptance rate
(FAR) and false rejection rate (FRR) curves meet. The following parts will provide brief explanations of
DP matching, FAR, FRR, and ERR using in our proposed approach.

3.4.1. DP Matching

DP matching is a pattern matching technique which evaluates the similarity between two
sequenced data. For examples, given two patterns of sequenced data (X and Y) which are expressed as

X = x1, x2, · · · , xi, · · · , xI (5)

Y = y1, y2, · · · , y j, · · · , yJ (6)

where X and Y represent a sequenced input data and the reference sequenced data, respectively.
Meanwhile, I and J indicate the number of data points of X and Y, respectively. Let d (xi, yj) express

the distance between the elements: X and Y. It will be transformed from x-y coordinate space to i-j
coordinate space as

l(i, j) = d(xi, yi) =
∣∣∣xi − y j

∣∣∣ (7)
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In addition, the accumulated distance is expressed by g(i, j) in i-j coordinates space. g(i, j) basically
can be obtained by calculating the minimum DP path in an optimal distance problem. Figure 5 shows
the weight for calculating optimal distance as the definition of DP path. According to Figure 5, the
dissimilarity g(i, j) can be defined by

g(i, j) = min


g(i− 1, j) + d(i, j) : (a)

g(i− 1, j− 1) + 2d(i, j) : (b)
g(i, j− 1) + d(i, j) : (c)

 (8)
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Finally, DP matching score between X and Y is obtained by normalizing g (i, j) with the number of
each data points as shown in Equation (9).

DP score =
g(I,J)
I+J (9)

The smaller the DP score is, the higher the similarity between the two data is. In this study,
the use of DP score is two-fold. First, in the training phase, DP scores are calculated from matching
process upon human skeleton information in training dataset. The DP scores are then used to generate
the values of FAR and FRR. Theoretically, the curves which represent FAR and FRR are expected to
intersect at a point of EER value. As a result, the DP score which reflects EER value is eventually
determined as the DP threshold. Second, in the testing phase, DP scores which are calculated from
the matching process are compared with the determined DP threshold to conclude whether the input
monitored hand movements characterize photo-taking behavior.

3.4.2. FAR and FRR and DP Threshold Determination

In this part, we provide the explanations on how we define FAR and FRR for the determination of
EER value which is referred to threshold value. The terms of FAR, FRR, and ERR are common in the
topics of biometric security systems [27]. False acceptance rate (FAR) is defined by the percentage of
identification instances in which unauthorized persons are incorrectly accepted (this is also known as
false match rate.) False rejection rate (FRR) refers to the percentage of identification instances in which
authorized persons are incorrectly rejected (this is also known as false non-match rate). In other words,
FAR implies how high your system’s security level is, whereas FRR reflects the level of comfortableness
of the users. In order to evaluate the operating performance of a security system, the equal error rate
(EER), which is also known as the crossover error rate (CER), must be taken into account. It means
that the system has parameters that can be turned to adjust FAR and FRR to the point where both
of them are equal. Importantly, the smaller the ERR is, the better the performance is. In this study,
the FAR is defined as the error rate in which the net-surfing behavior is recognized as photo-taking
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behavior, whereas FRR refers to the non-detection rate of photo-taking behavior. Accordingly, the
obtained EER is illustrated in Figure 6 as the intersection point of the curves of FAR and FRR. The DP
score corresponding to this ERR value will be desirable threshold.Information 2020, 11, 468 10 of 20 
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4. Evaluations

In this section, we present three major tasks regarding the evaluation of the proposed approach:
(1) collecting necessary datasets; (2) determining DP threshold score; (3) evaluating performance of the
proposed approach.

4.1. Dataset Collection

4.1.1. Experimental Setup and Data Acquisition

In this part, we present the experiments which were conducted to obtain the necessary datasets for
the study. The experimental setup is described in Figure 7 where a user (assumed as a photographer)
is taking action of either taking the photo or net-surfing using a smartphone, while the other plays the
role of the photographed person. In our experiment, the photographer’s behavior was continuously
recorded by another smartphone worn by the photographed person. Note that, the recorded videos
were taken from the right side of all participants as shown in Figure 7. Therefore, we hypothesize
that the information of the movements of the participants’ right arm will significantly contribute to
detection purpose. All the videos were taken by Apple iPhone5s with a frame rate of 30 fps. There were
15 subjects participating in this experiment. Openpose was then used to automatically extract skeleton
information of the participants in the videos, forming our datasets. As mentioned earlier, we only
focus on three major parts: ((I) upper arm, (II) lower arm, and (III) the angle of the bending arms.
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Figures 8 and 9 partly illustrate the visual outputs obtained from OpenPose for photo-taking
and net-surfing behaviors, respectively. Specifically, (a–d) in these two figures shows the example
frame expressing: initial position of subject’s arms, moment when the behavior starts, moment during
the behavior, and moment when behavior ends, respectively. The OpenPose data obtained from
the participant who performed a photo-taking behavior was denoted as “Px”. Meanwhile, the data
obtained from the participant who performed net-surfing behavior was denoted as “Nx”. We divided
the obtained dataset into two sub-datasets, namely, dataset1 and dataset2 with the ratio of 50:50.
The details are tabulated in Table 2. Accordingly, the dataset1 which consists of P1 to P7 and N1 to N3
was used for determining DP threshold. Note that, since this sub-dataset was small, cross-validation
was applied beforehand. On the other hand, the dataset2 which consists of P8 to P15 and N4 to N6
was used for evaluating the performance of the proposed approach.
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photo-taking behavior); (d) when subject finishes photo-taking behavior.
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Figure 9. Visual skeleton information of net-surfing behavior. (a) Initial position of subject’s arm; (b)
before subject starts the net-surfing behavior; (c) when subject is surfing the Internet on smartphone
(during net-surfing behavior); (d) when subject finishes net-surfing behavior.

Table 2. Obtained datasets from experiments.

Photo-Taking Behavior Net-Surfing Behavior

Dataset1 P1, P2, . . . , P7 N1, N2, N3
Dataset2 P8, P9, . . . , P15 N4, N5, N6
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We visualize some sample data of skeleton information obtained from OpenPose to demonstrate
the transitions of three considered human parts (I, II, and III). Figure 10 illustrates the transitions
drawn from P1 which is the data of the photo-taking behavior performed by subject 1. Meanwhile,
the transitions depicted in Figure 11 plotted from N1 (net-surfing behavior performed by subject 1).
Note that, for each subject, six joint components (joint-23, joint-34, joint-56, joint-67, angle-234, and
angle-567) in total were considered for further analysis. Qualitatively, according to Figure 10b,c and
Figure 11b,c, there are no significant differences between the photo-taking and net-surfing behaviors.
Meanwhile, the differences among these behaviors are obvious when observing Figures 10a and 11a.
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components cannot be calculated. In such a situation, the coordinates of the undetected joint in a 
specific frame are predicted by performing interpolation using the information of preceding frame 
and succeeding frame. The misdetection, on the other hand, introduces a sudden change in the 
numerical values of the investigating joint components as shown in Figure 10b,c. Figure 13 shows an 
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Figure 10. Arm’s length and angle of bending arms of subject 1 when taking photo. (a) Right upper
and right lower arm’s lengths; (b) left upper and left lower arm’s lengths; (c) angles of right bending
and left bending arms. In (a,b), vertical axis represents distance between joints (length) in pixel2.
The horizontal axis indicates frame number it means time (in frames). In (c), the vertical axis represent
angle in degree. The horizontal axis indicates frame number it means time (in frames).
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Figure 11. Arm’s length and angle of bending arms of subject 1 when performing net-surfing. (a) Right
upper and right lower arm’s lengths; (b) left upper and left lower arm’s lengths; (c) angles of right
bending and left bending arms.

4.1.2. Data Pre-Processing

In order to eliminate non-detection and misdetection caused by OpenPose, data pre-processing
is needed. Figure 12 illustrates an example of non-detection where the numerical values of the joint
components cannot be calculated. In such a situation, the coordinates of the undetected joint in a
specific frame are predicted by performing interpolation using the information of preceding frame and
succeeding frame. The misdetection, on the other hand, introduces a sudden change in the numerical
values of the investigating joint components as shown in Figure 10b,c. Figure 13 shows an example
(Example 1) of misdetection in both captured video frame and visual graph. Note that Figure 13a,b are
the same graphs as Figure 10b,c, respectively. In these graphs, the 139th frame in which a joint was
mis-detected, was emphasized by a yellow rectangle. Figure 13c illustrates 135th, 139th, and 142nd
frame extracted from video.
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Figure 13. Example 1 of misdetection generated by OpenPose (taken from P1). (a) Left upper and left
lower arm’s lengths; (b) angles of right bending and left bending arms; (c) Example frame (135th, 139th,
and 142nd).

Figure 14 shows another example of misdetection (Example 2). In Figure 14a, the ideal detection
result is drawn in white color. According to this figure, the result obtained from OpenPose was
different from the ideally estimated result. Figure 14b shows some numerical values calculated from
the coordinates of joints of the subject. The values fluctuate several times due to such a misdetection.
In fact, both non-detection and misdetection create noise in the obtained data. Thus, in order to remove
the noise, low pass filter (LPF) was used. Thereby, we first extracted the frequency components from
the obtained data by using fast Fourier transform (FFT), then the cut-off frequency was assigned. In this
case, a general Butterworth filter was considered as the filter, whereas the desirable cut-off frequency of
the LPF was determined as 40 Hz from the preliminary experiment. Figure 15 visualizes the processed
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photo-taking behavior data of subject 1, after performing LPF. Vertical axes indicate the am length in
pixel2 and the angle in degrees. The horizontal axis indicates the frame corresponding to time. The line
in red in each graph indicates the result of the filtering. Qualitatively, it is obvious that the transitions
of joint components become smoother, allowing us to apply data to further analysis steps.

Information 2020, 11, 468 14 of 20 

 

the frame corresponding to time. The line in red in each graph indicates the result of the filtering. 
Qualitatively, it is obvious that the transitions of joint components become smoother, allowing us to 
apply data to further analysis steps. 

 

 
(a) (b) 

Figure 14. Example 2 of misdetection generated by OpenPose (taken from P5). (a) Misdetection frame 
(white line presents an expected detection result); (b) result of the right upper and lower arms’ lengths 
and the angle of right/left bending arms. In (b), first vertical axis indicates distance between joints 
(length) (pixel2). Second vertical axis indicates angle (degree). Horizontal axis indicates frame number 
corresponding to time (frames). 

 
Figure 15. Sample P1 data after applying LPF. 

4.2. Determination of DP Threshold 

In order to determine the DP threshold (denoted as ThDP), we first performed DP matching on 
dataset 1. Since the data volume was small, we used cross-validation. It means that the data of a 
participant was used as the reference data for the rest of data in DP matching. 

Figure 14. Example 2 of misdetection generated by OpenPose (taken from P5). (a) Misdetection frame
(white line presents an expected detection result); (b) result of the right upper and lower arms’ lengths
and the angle of right/left bending arms. In (b), first vertical axis indicates distance between joints
(length) (pixel2). Second vertical axis indicates angle (degree). Horizontal axis indicates frame number
corresponding to time (frames).

Information 2020, 11, 468 14 of 20 

 

the frame corresponding to time. The line in red in each graph indicates the result of the filtering. 
Qualitatively, it is obvious that the transitions of joint components become smoother, allowing us to 
apply data to further analysis steps. 

 

 
(a) (b) 

Figure 14. Example 2 of misdetection generated by OpenPose (taken from P5). (a) Misdetection frame 
(white line presents an expected detection result); (b) result of the right upper and lower arms’ lengths 
and the angle of right/left bending arms. In (b), first vertical axis indicates distance between joints 
(length) (pixel2). Second vertical axis indicates angle (degree). Horizontal axis indicates frame number 
corresponding to time (frames). 

 
Figure 15. Sample P1 data after applying LPF. 

4.2. Determination of DP Threshold 

In order to determine the DP threshold (denoted as ThDP), we first performed DP matching on 
dataset 1. Since the data volume was small, we used cross-validation. It means that the data of a 
participant was used as the reference data for the rest of data in DP matching. 

Figure 15. Sample P1 data after applying LPF.



Information 2020, 11, 468 15 of 20

4.2. Determination of DP Threshold

In order to determine the DP threshold (denoted as ThDP), we first performed DP matching on
dataset 1. Since the data volume was small, we used cross-validation. It means that the data of a
participant was used as the reference data for the rest of data in DP matching.

Table 3 tabulates an example of DP matching scores of each joint component when data P1 was
considered as the reference data. Since the monitored videos were taken from the right side of the
photographer rather than from their front, thus, it was expected that not all the joint components
are equally important. Therefore, to select the appropriate components for further investigation, the
average DP scores with error bars of all joint components across participants are obtained in Table 3
and plotted in Figure 16. Accordingly, the right upper arm (length-23) shows the biggest difference
between photo-taking and net-surfing behaviors. Meanwhile, there is not so much difference between
these two behaviors can be found in other components. Note that the cases where monitored videos
are captured in other sides of the photographer will be considered in future work. Therefore, in this
study, we only focus on length-23 in determining DP threshold and in performance evaluation of our
proposed approach.

Table 3. DP scores obtained from the case where P1 was used as the reference data (Reference data: P1,
Input data: P2, P3, . . . , P7 and N1, . . . , N3).

Length-23 Length-34 Length-56 Length-67 Angle-234 Angle-567

Photo-taking
behavior

P2 1.69 2.41 5.84 6.23 9.11 4.33
P3 6.54 14.57 3.41 4.62 8.98 2.73
P4 3.39 3.36 4.76 4.38 2.28 1.65
P5 3.92 6.40 10.28 17.9 14.53 21.34
P6 30.64 10.93 16.87 5.9 4.44 3.91
P7 10.89 7.21 13.2 4.4 3.91 4.80

Average 9.51 7.48 9.06 7.24 7.21 6.46
S.T. 9.89 4.20 4.84 4.82 4.15 6.74

Net-surfing
behavior

N1 58.88 8.50 28.6 2.04 3.48 6.31
N2 21.48 3.18 11.17 3.26 2.73 8.20
N3 29.05 3.27 9.5 1.25 1.39 6.94

Average 36.47 4.98 16.42 2.18 2.54 7.15
S.T. 16.15 2.49 8.64 0.83 0.86 0.78
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The next step is to calculate the values of FAR, FRR, and EER. In our study, FAR and FRR can be
calculated by using the equations

FAR =
Number of mis−recognition as Photo−taking behavior

Number of all Net−surfing behavior (10)

FRR = 1− Number of correct recognition as Photo−taking behavior
Number of all Photo−taking behavior (11)

The calculated FAR and FRR were plotted along with the so-called ‘assigned DP threshold’ which
was ranged from 0 to 35 with an increasing step of 2.5. If the DP score of each joint component in
the reference data of particular participant (as an example of P1 in Table 3) is less than ‘assigned
DP threshold’, it is determined that this participant performed a photo-taking behavior. Oppositely,
a net-surfing behavior was determined when the DP score is more than ‘assigned DP threshold’.
Similarly, with the data of seven participants who performed photo-taking behavior, we could obtain
seven graphs depicting the visual values of FAR and FRR of these participants. Figure 17 depicts two
of seven graphs of the reference data P1 and P6. Thereby, seven values of EER were easily extracted.
As mentioned earlier, EER is the intersection point of FAR and FRR where both of those values are
equal. To determine DP threshold, a general value of EER across all the participants must be obtained.
Figure 18 depicts all of seven EER values. Accordingly, most of EER values which are less than 0.2
represent photo-taking behavior. On the other hand, the data with an obviously high error rate was
recognized as outliers and must be removed. Thereby, we excluded two data points: P6 and P7 with
EER values higher than 0.4. The average value of eligible EER was then calculated as about 0.17.
Therefore, in accordance with the average value of 0.17 of EER, the DP threshold for our proposed
approach was determined as ThDP = 15.9. In the next subsection, the performance of our approach is
evaluated by using this DP threshold and dataset 2.
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4.3. Performance Evaluation of the Proposed Approach

In order to evaluate the proposed approach, DP matching was performed on the dataset2 using
the dataset1 as the reference data. We removed P6 and P7 from the reference data because they were
considered as outliers with very high EER values (shown in Figure 18). The obtained DP scores were
then compared with the DP threshold to identify photo-taking behavior. The DP matching results are
presented in Table 4. Note that, as explained in Section 4.2, we only focused on the joint of length-23,
thus, Table 4 provides the results of DP matching with respect to this joint. In addition, the detection
decision is expressed in cell colors. Accordingly, the yellow cells indicate that the behaviors were
decided as photo-taking behavior whose DP scores are less than the threshold (ThDP= 15.9). In other
words, the yellow cells show the correct detection using DP score. In addition, the light gray cells
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indicate the correct decision in net-surfing behavior since those DP scores are higher than the threshold.
On the other hand, the gray cells with white numbers indicate the incorrect decision.
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Table 4. DP matching result of dataset2 when using dataset1 as the reference data (Reference data:
dataset1 except outlier [P1, . . . , P5], Input data: dataset2 [P8, . . . , P15 and N3, . . . , N6]).

Reference Data: Photo-Taking
Behavior (Dataset1)

length-23(Right Upper arm)
P1 P2 P3 P4 P5

Input Data
(Dataset2)

Photo-taking
behavior

P8 8.10 7.89 5.69 8.27 3.40
P9 4.60 6.68 3.84 4.04 5.91

P10 0.93 2.84 5.17 2.96 3.28
P11 8.44 9.49 2.07 3.33 3.22
P12 1.14 2.30 5.74 2.81 2.91
P13 5.61 6.00 1.42 1.93 3.65
P14 21.10 28.43 7.01 17.08 10.18
P15 13.59 13.74 10.18 13.51 3.14

Net-surfing
behavior

N4 35.44 43.55 15.57 32.08 22.06
N5 24.26 33.34 10.02 22.68 12.71
N6 14.62 19.47 11.26 17.28 6.67

In order to obtain detection accuracy, Equation (12) was utilized. In overall, by using proposed
approach, we achieve 92.5% of accuracy in recognizing photo-taking behavior. Looking at the result
in detail, the detection accuracy when particular reference data is applied, is not the same. It might
be varied, but not introducing so big difference. For example, if the reference data P1, P2, or P4 are
used, the detection accuracy of the photo-taking behavior is 87.5%, whereas, when either the reference
data P3 or P5 is used, the accuracy is 100%. Such variations might come from individual differences
in term of photo-taking posture. On the other hand, based on Equation (12), the detection accuracy
of net-surfing behavior is calculated as 60%, which is not so as high as we expected. We speculate
that some subjects, especially subject 3, might turn his body while performing net-surfing behavior;
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thus, the arm lengths and the angle of bending arms subsequently changed. Additionally, too small
dataset of net-surfing behavior could be the reason. In the future works, the proposed method will be
evaluated with larger datasets. It is worth noting that the high accuracy in the detection of photo-taking
behavior and sufficient accuracy in the detection of net-surfing behavior confirm the reliability of
determined DP threshold.

Accuracy =
number o f correct detection
total number o f DP scores × 100% (12)

4.4. Overal Discussion and Future Works

Overall, this study provides a potential approach to privacy-protection of photographed person.
Most of the state-of-the-art methods have been proposed for working at photographer site. However,
this does not provide any opportunity to the photographed person to control his facial privacy. This
becomes a serious problem when the photographers ignore the photographed person’s facial privacy
preferences, and intentionally take photos and share the photos on social networks or use the photos
without hiding the photographed person’s identity for some purposes. Our proposed method, on the
other hand, allows the photographed person to make proactive decisions based on his facial privacy
preferences. This method potentially works even in the case of protecting the facial privacy of a
‘bystander’ who was not intentionally captured by the photographers. Once the photo-taking behavior
is detected, the photographed person will receive notifications from his smart phone. This enables
him to flexibly perform physical actions such as leaving the shared space or asking the photographers
to stop taking photos. However, there are some concerns which would be considered in the future
works. First, to apply this method, the photographed person must record videos of the photographers
all the time, this leads to the facial privacy issue for such persons and other unwanted photographing
people. In this study, we tried to mitigate this problem by making an assumption that only the arms of
a photographer were recorded. However, this assumption might not be sufficient to guarantee that
the proposed method can completely solve the problem since the face part is probably captured in
the video. Therefore, we believe that using a thermographic camera, which can produce long-wave
infrared images, is more realistic approach. Indeed, the facial information of bystanders will not be
easily recognized from such long-wave infrared images [26]. Second, there are several real scenarios
that have not been considered in this study. In practice, the photographed person probably has to
protect his facial privacy in a crowded place. In fact, OpenPose can generate the skeleton information
of many subjects in a video, providing potential of recognizing photo-taking behavior of more than one
subject in real-time. For the feasibility of this study, we do not take into account the “crowded case”,
instead, we assume that the photographed person can use our method in situations/events if he is aware
that his facial privacy can be violated by an individual. In addition, the cases where recorded videos
are taken from different sites of the photographer should be considered. Third, computational cost of
real-time processing is also a considerable challenge. However, by leveraging the power of fog/edge
computing in addition to offloading techniques [28], the limitations such as the lack of computational
power, restrictions in storage capacity, and processing delay will be potentially solved.

5. Conclusions

We have presented the proposed approach to prevent the unintended appearance in photos by
recognizing photo-taking behavior performed by photographer. In this study, we argue that it is
difficult to differentiate photo-taking behavior and net-surfing behavior because they are formed by
very similar motions of moving arms. Thus, to correctly recognize photo-taking behavior, human
skeleton information was proposed to be analyzed. The analysis was based on DP matching technique.
In a real scenario, our proposed approach allows a photographed person proactively to protect his facial
privacy, especially in the case where a particular photographer is intentionally capturing them in the
photos for some purpose. In the future, we will further investigate various aspects related to real-time
processing problems as well as scenarios where the photographed person is in a crowded place.
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