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Abstract: Pulsed Wave Doppler (PWD) is a traditional ultrasound technique used for the diagnosis
of cardiovascular disease. The conventional diagnostic method is based on hemodynamic parameters
obtained from the PW spectrum. However, it relies on the clinical experience of sonographers,
and especially focusing on severe carotid stenosis. This paper proposes a classification method for
the hemodynamic parameter using the RUSBoost algorithm. The proposed method improves the
performance of RUSBoost by setting the empirical weight of each sample. The experimental results
show that the proposed method reaches the accuracy of 90.1%, the sensitivity of 70%, and the specificity
of 94%, which are 4%, 6%, and 2% higher than the original RUSBoost respectively. In addition, the
proposed method is objective, since the empirical weights are computed based on Mahalanobis
distance without any expert input. It can be used for the early detection of cardiovascular disease.
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1. Introduction

Vascular ultrasound is now widely used in the diagnosis of diseases, including arterial stenosis [1,2],
fetal anomalies [3], diabetes and atherosclerosis [4]. The hemodynamic parameters obtained by the
Doppler ultrasound technique [5] can be used for evaluating vascular and cardiac. When the angle
between the ultrasound scanning beam and the blood flow direction is fixed, there is a positive
correlation between the phase shift and blood flow velocity which can be calculated through the
spectrum [5]. The PW spectrum shows blood’s movement in vessels, is to assess the location, extent and
severity of vascular lesions. In the clinical application of hemodynamic parameters, arterial stenosis is
mainly diagnosed by Peak Systolic Velocity (PSV) [6–8] and End-diastolic Velocity (EDV) [6–9], and the
fetal anomaly is characterized by abnormal Pulsatility Index (PI) [10], Resistance Index (RI) [11], and
Systolic/Diastolic ratio (S/D) [12,13]. The traditional method usually relies on a particular hemodynamic
parameter, such as PSV during severe carotid stenosis. However, some of the hemodynamic parameters
may already be abnormal in the early stages of the disease and just cannot be detected visually. For the
patients, early detection of vascular abnormalities can allow them to seek medical attention before the
disease becomes severe.

Some researchers proposed the PSV and EDV index as a diagnostic criterion for the degree of
carotid stenosis, such as Carpenter J P [6], Moeta G L [7], Suwanwela N [8]. However, these methods
are only based on severe carotid stenosis samples. They meet the challenge when applying to periods
of mild carotid stenosis or plaque. Furthermore, as mentioned above, traditional methods focus only
on typical parameters such as peak systolic velocity and end-diastolic velocity. They ignore the other
parameters and the relationships between them. When stenosis is in the early stage, the PSV or EDV
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may not change significantly, so it is complicated and inefficient for clinicians to detect and diagnose
diseases through hemodynamic parameters.

In summary, traditional methods have the disadvantages: (1) relying on typical parameters;
(2) detecting severe carotid stenosis only; (3) not using the relationships between parameters. To solve
the above problems, this paper proposes an abnormal carotid hemodynamic parameter detection
method using RUSBoost with empirical weights. This method still has high accuracy when the sample
has mild stenosis or plaque. Furthermore, we analyze the testing process and the weights of the
parameters to assist the physician in making decisions. Our method acquires data easier than the
traditional method which requires a large number of severe carotid stenosis patient samples. We collect
negative samples randomly in the community, and patients’ samples are required to have plagues
or mild stenosis only. The proposed method intends to detect abnormalities in the early stages of
carotid artery stenosis. It is based on not only a typical parameter, but also the correlations between
different parameters.

In terms of the original RUSBoost, the initial weight of each sample is equal. Limited samples
with high-specificity probably make the classifier over-fitted. Thus, we calculate empirical weight
by Mahalanobis Distance [14] for each sample. Because of the reciprocal of distance is considered
as the weight of the samples, we increase intra-cluster similarity and reduce the weight of samples
that are further away from the cluster center. With decreasing intra-class distance, the accuracy of the
algorithm increases accordingly. On the one hand, the proposed method achieves an accuracy of 90.1%,
sensitivity of 70%, and specificity of 94%, which are higher than the original RUSBoost, respectively.
On the other hand, the proposed method requires only fewer weak learners and maximum splits
of decision trees to reach high accuracy. Compared to the original RUSBoost, the proposed method
improves accuracy while reducing the time and space complexity of the algorithm.

Decision Trees, Support Vector Machine (SVM), and Logistic Regression are common methods
of disease prediction. For example, Mathan K [15] predicts heart disease, Olanow CW [16] predicts
Parkinson’s disease. Both methods use Decision Trees. Qinghua Jiang [17] predicts microRNA-disease
using SVM. Norman E Breslow [18] uses Logistic Regression to analyze survival proportions for
children treated for neuroblastoma. In this paper, we compare the proposed RUSBoost with empirical
weights with the traditional classification method, Decision Trees [16], SVM [19], RUSBoostd Trees [20]
and Logistic Regression [21]. Experimental results show that the accuracy of the proposed method
is 90.1%, which is 1.5% higher compared to the best performing Gaussian SVM in the traditional
methods. Moreover, the sensitivity of our method improves at least 36% compared to Gaussian
SVM. In general, our method has the advantage of maintaining the highest accuracy and significantly
increased sensitivity, also has the highest Area Under Curve (AUC) value. Compare to traditional
diagnostic methods, our method has the advantages of high accuracy, highest sensitivity, combining
the relevant parameters, and suiting for screening in the early carotid stenosis.

This paper is organized as follows. In the Methodology section, the theoretical part of the proposed
RUSBoost with empirical weights is explained in detail. In the Experimental section, we present the
details of the data collection algorithm implementation, and the experimental results compared with
traditional statistical analysis methods. Finally, the conclusion is drawn in the Conclusions section.

2. Algorithm Description

The changes in hemodynamic parameters of cardiovascular disease are gradual, so it is more
clinically valuable to detect them in the early stages of the disease. However, the traditional method
relies on the clinical experience of sonographers, and especially focusing on severe carotid stenosis.
This paper proposes an abnormal detection method for hemodynamic parameters of carotid ultrasound
by using the RUSBoost algorithm. The proposed method improves the performance of RUSBoost by
setting the empirical weight based on Mahalanobis distance.
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2.1. Neighborhood Components Analysis (NCA) for Dimension Reduction

The dataset needs to be pre-processed before classification. Firstly, Neighborhood Components
Analysis (NCA) [22] is used for feature selection. NCA is a non-parametric method for selecting
features with the goal of maximizing the prediction accuracy of the classification algorithm. Feature
selection reduces the dimensionality of data by selecting only a subset of measured features so as to
improve prediction performance, and to provide a faster and more effective classifier.

2.2. RUSBoost with Empirical Weights

2.2.1. Empirical Weight

Before proceeding with the boosted tree algorithm, we consider finding samples that are far away
from the cluster center. Hadi, A.S [14] proposes a method for detecting outliers based on Mahalanobis
Distance (MD). The Mahalanobis distance is defined as:

MD =

√
(x− µ)TΣ−1(x− µ) (1)

If the samples are assumed to form a multivariate normal distribution with p degrees of freedom,
then the MD2 can be regarded as the sum of normalized normally distributed variables, which fall into
a Chi-squared X2 distribution with p degrees of freedom. The Quantile-Quantile Plot (QQ-plot) will
appear linear if the distribution of samples is the same as the specified distribution [23].

Chi-squared X2 distribution is defined as:

f (x|p) =
1

2p/2Γ(p/2)
e−x/2x

p
2−1, (2)

where Γ(x) is a gamma function, Γ
( p

2

)
=

∫
∞

0 t
p
2−1e−tdt.

The empirical weights wi for the samples of i is defined as

wi =
1/MDk(xi) ×Nk∑

k={−1,1}
∑N

j=1

(
1/MDk

(
x j

)
× (yi == k)

) , (3)

where Nk is the number of samples of class k ∈ {−1, 1}, and N is the number of total samples.

N∑
i=1

wi = N,
∑

k

Nk = N (4)

D1(i) =
wi∑N

i=1 wi
, (5)

where D1(i) denotes the initial weight of individual i.

2.2.2. RUS

The imbalanced datasets will influence the classification method, for example, samples from
minority class will be partially or completely ignored [24]. The sRandom Under-sampling (RUS)
method [20] is used to address the problem of class imbalance by deleting samples from the majority
class. The number of samples for positive and negative after RUS processing is close to 50%.

2.2.3. Boosted Tree

The Boosted Tree algorithm takes a greedy approach in each iteration to find a decision tree that
is optimal to the objective function. The generated weak classifier Gt(x) is then used to calculate the
weight Dt+1(i) of the samples in the next iteration, where the weight of the misclassified samples will
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be increased. Appendix A, step 2 demonstrates this process. The split criteria for the decision tree is
the Gini Impurity [24].

The deeper the tree, the higher the accuracy of the result, but correspondingly, a tree with high
complexity may lead to overfitting. Similarly, the number of weak learners T also affects the final
result. The number of iterations and the maximum number of splits are determined experimentally.

In the original RUSBoost algorithm, the initial weights are set to equal. In the proposed method,
they are replaced with the empirical weights D1(i) expressed in Equation (4), in order to reduce the
impact of outliers. The complete workflow is denoted in Algorithm A1.

In the training stage of the RUSBoost tree, the adjustable parameters include the number of weak
learners and the number of maximum splits. If the number of weak learners or maximum splits is too
large, the accuracy of the classifier for the training set data will increase, but it will cause overfitting
and unnecessary computational cost. On the other hand, if the number of weak learners or maximum
splits is too small, the classification model is under-fitted and the performance is poor. Therefore,
the optimal parameters can be obtained by the 2D loss function with the number of weak learners s
and the number of maximum splits t as the independent variables. A five-fold cross-validation is used
to ensure the stability and reliability of the model. Both the values of s and t are traversed within a
predefined range of values, and then the loss function is averaged along each dimension to search for
the minimization. The variables take a wide range during the experiment for algorithmic convergence,
where t is from 5 to 200 and s is from 1 to 30.

L(t, s) =
|H(x|t, s) − y|

|2y|
(6)

Ls =

∑T
t=5 L(t, s)
|T|

, s = 1, 2, . . . , S (7)

Lt =

∑S
s=1 L(t, s)

S
, t = 5, 10, . . . , T, (8)

where H(x|t, s) denotes the label predicted with the number of weak learners t and the maximum
number of splits s. H(x|t, s) is defined in Appendix A.

2.3. Positive Sample Analysis

After obtaining the classifier model, we are concerned with the features that are classified as
positive samples. The features of each learner are first counted at the splitting point through which the
sample passes in each learner. Then, the number of each feature in all learners is added together by its
weight. As shown in

w j(x) =
T∑

t=1

αtFt j(x), (9)

where Fi j denotes the occurrence frequency of feature j which is passed by the sample x in the weak
learner Gt(x).

Finally, each sample judged to be positive has its own typical characteristics, thus aiding the
physician’s diagnosis.

3. Experiments and Results

3.1. Data Acquisition and Processing

The number of hemodynamic parameters [25,26] calculated from the PW spectrum is 13, and the
parameters are obtained by averaging the measurements of several cardiac cycles. The measurable
hemodynamic parameters are shown in Figure 1 and Table 1, where vu(t) is the maximum velocity
of time t, vb(t) is the minimum velocity of time t, S indicates peak systolic velocity, D indicates
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end-diastolic velocity, and M indicates time-averaged velocity. The systolic period is T0 to T1, and the
diastolic period is T1 to T2.
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Table 1. List of hemodynamic parameters.

Item Parameter Description

1 Acceleration (ACCL) (S−D)/(T1 − T0)
2 Acceleration Time (ACCT) T1 − T0
3 End-diastolic Velocity (EDV) D
4 Heart Rate (HR) 60× 1/(T2 − T0)
5 Pulsatility Index (PI) (S−D)/M
6 Peak Systolic Velocity (PSV) S
7 Resistance Index (RI) (S−D)/S
8 Spectral Broadening (SB)

∫ T2

T0
(vu(t) − vb(t))/vu(t)dt/(T2 − T0)

9 Systolic/Diastolic Ratio (S/D) S/D
10 Time Average Velocity (TAV) M =

∫ T2

T0
(vu(t) + vb(t))/2dt/(T2 − T0)

11 Volume Flow per Cycle (VFC) M×A, A indicates cross-sectional area of vessel.
12 Volume Flow per Minute (VFM) M×A×HR
13 Velocity Time Integral (VTI) M× (T2 − T0)

Our dataset consists of 279 common carotid artery samples, collected from university, community
and Hi-tech South China Hospital in Chengdu. Moreover, the ultrasonographer assessed the individual’s
carotid artery status. In this study, we consider 50 patient samples with plaque or stenosis from the
hospital as positive samples and the remaining samples as negative samples.

Before data collection, we informed subjects in detail about the study, the risks of ultrasound,
our affiliation, assured the data would be used only for scientific research, and sought their consent.
Only sex, age, and spectral data were stored for each acquisition, and no other data were collected.
We acquired raw spectral images and calculated hemodynamic parameters based on Table 1.

In this research, the used scanner was Stork’s wireless handheld ultrasound equipment, H31L.
The sampling location was at a distance of 2 to 3 cm from the bifurcation of the common carotid artery,
the Doppler angle was fixed at about 60◦, and a sampling gate was placed in the center of the vessel,
the acquisition time was ten cardiac cycles.

The features obtained after NCA selecting were ACCT, EDV, HR, PSV, RI, SB, S/D, VFC and VTI,
as shown in Figure 2. As mentioned above, PSV and EDV are the clinically adopted diagnostic criteria
for stenosis, and SB implies the presence of turbulence, which is an early sign of vascular stenosis [26].
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3.2. Training Process

This paper calculates the MD for the downscaled dataset, then make QQ-plot separately with a X2

distribution with 9 degrees of freedom. The MD for positive and negative samples is shown in Figure 3.
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Figure 3. (a) Mahalanobis Distance (MD) for positive samples; (b) MD for negative samples.

As shown in Figure 4, we compare the distribution of positive or negative samples’ MD2 to
the chi-square distribution through QQ plots. The MD2 of both positive and negative samples are
falling into chi-square distribution, which proves the assumption that the sample obeys a multivariate
Gaussian distribution.

Information 2020, 11, x FOR PEER REVIEW 6 of 11 

 

 

Figure 2. The feature weights calculated by Neighborhood Components Analysis (NCA). 

3.2. Training Process 

This paper calculates the MD for the downscaled dataset, then make QQ-plot separately with a 

 𝒳2 distribution with 9 degrees of freedom. The MD for positive and negative samples is shown in 

Figure 3. 

  
(a) (b) 

Figure 3. (a) Mahalanobis Distance (MD) for positive samples; (b) MD for negative samples. 

As shown in Figure 4, we compare the distribution of positive or negative samples’ 𝑀𝐷2 to the 

chi-square distribution through QQ plots. The 𝑀𝐷2 of both positive and negative samples are falling 

into chi-square distribution, which proves the assumption that the sample obeys a multivariate 

Gaussian distribution. 

  
(a) (b) 

Figure 4. (a) QQ-plots of 𝑀𝐷2 and  𝒳2 distribution for the negative sample; (b) QQ-plots of 𝑀𝐷2 

and  𝒳2 distribution for the positive sample. 
Figure 4. (a) QQ-plots of MD2 and X2 distribution for the negative sample; (b) QQ-plots of MD2 and
X

2 distribution for the positive sample.

In the RUSBoost Trees training process, the parameters are the number of weak learners and the
maximum number of split points. Respectively, we regard them as variables to find the lowest point
of loss. According to Figure 5, with the increase in the number of weak learners and the maximum
number of splits, the lowest point is taken as the optimal parameter for training. That is, the number of
weak learners is 145, and the maximum number of splits is 10.
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3.3. Comparison of Methods

This paper compared RUSBoost with empirical weights to the original RUSBoost and other
common classification methods, such as SVM, Decision Trees, and Logistic Regression.

We used the previous NCA to select nine features, so the feature vector of the raw data is
nine-dimensional. The validation method is cross-validation, in which we divide the raw data into five
parts, and one part is the validation set in turn, while the remaining four parts are the training set.
The final results are averaged over the five experiments.

Since other classification methods also have problems with parameter selection, we take the same
approach as RUSBoost and find the parameter with the best performance of the results by five-fold
cross-validation with different parameters. The final parameter selection is (1) the split criterion is
Gini’s diversity index, and the maximum number of splits is 20 for the Decision Trees, (2) the kernel
function is Gaussian Radial Basis Function with scaling factor 3.6 for Gaussian SVM.

Table 2 shows that RUSBoost with Empirical Weights has a significant improvement in sensitivity.
It maintains the recognition of positive samples while keeping the classifier unbiased towards the
majority class. The overall accuracy of each method is around 87.5%, with fluctuations of no more
than 2.6%. No one method shows an excellent advantage for accuracy, so we compare the sensitivity
and specificity of the methods. In the traditional method, the Gaussian kernel SVM has the highest
accuracy among these methods, but its sensitivity is only 34%. Our method’s accuracy is only 1.5%
higher than the Gaussian SVM’s, but it has a sensitivity of 70%. Compared to the original RUSBoostd
Trees, the proposed method’s accuracy, sensitivity, and specificity are improved by 4%, 6%, and 2%
respectively. Moreover, its AUC is also the highest among these methods at 0.89. The highest accuracy,
highest sensitivity and highest AUC prove that RUSBoost with Empirical Weights achieves better
performance in the experiments presented in this paper.

Table 2. Comparison of classifier performance.

Method Accuracy Sensitivity Specificity AUC

Linear SVM 87.9% 27% 100% 0.82
Gaussian SVM 88.6% 34% 99% 0.88

Logistic Regression 86.4% 41% 95% 0.80
Decision Trees 87.5% 57% 93% 0.83

RUSBoostd Trees 87.1% 64% 92% 0.83
RUSBoost with Empirical Weights 90.1% 70% 94% 0.89

This paper also compares our method with traditional clinical diagnostic methods for carotid
stenosis, focusing on the accuracy, sensitivity and specificity of PSV diagnostic criteria. The comparative
papers proposed different diagnostic criteria such as 170 cm/s (Carpenter et al., 1995 [6]), 180 cm/s
(Heijenbrok-Kal et al.1, 2006 [27]), 213 cm/s (Ali et al., 2011 [28]), 152 cm/s (Scissons et al., 2012 [29]),
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and 130 cm/s (Tokunaga K et al.1, 2016 [30]). We calculate the accuracy, sensitivity and specificity of
these criteria with the collected data in our study.

Table 3 indicates the low sensitivity of traditional methods for the identification of mild stenosis
or plaque in the carotid artery. From this, it can be seen that these methods are not suitable for the
early detection of carotid stenosis.

Table 3. Accuracy of traditional methods for carotid stenosis.

Study, Year PSV, cm/s Accuracy Sensitivity Specificity

Carpenter et al., 1995 >170 83.5% 4% 100%
Heijenbrok-Kal et al.1, 2006 >180 83.5% 4% 100%

Ali et al., 2011 >213 82.1% 0% 100%
Scissons et al., 2012 >152 82.1% 4% 99%

Tokunaga et al., 2016 >130 79.6% 12% 95%

3.4. Positive Sample Analysis

After obtaining the prediction model, all the weak learners were ranked in descending order of
weight. We take the top 95% of weak classifiers with cumulative weights as Figure 6a. When a new
test sample enters the model, the decision-making path is calculated and the final feature weights are
shown in Figure 6b.
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4. Discussion

Hemodynamic parameters can be used to diagnose vascular disease, but since the traditional
diagnostic criteria are only applicable to severe stenosis patients with few parameters. In this paper, we
propose a classification method for the hemodynamic parameter to detect early carotid stenosis. On the
one hand, it is able to combine different hemodynamic parameters. On the other hand, the detection of
early stenosis and plaque has greatly improved compared to traditional methods.

From Figure 4, the MD2 of both positive and negative samples are falling into chi-square
distribution, which proves the assumption that the sample obeys multivariate Gaussian distribution.
From Figure 4a, there are only limited samples that do not fall into the multivariate Gaussian distribution,
so the weights of these samples are reduced. In future work, the collection of more samples may obtain
more accurate final results.

In the comparison experiment, the accuracy rate of the proposed method is as high as 90.1%
compared to other traditional classification methods. Other methods, while also achieving an accuracy
of more than 80%, sacrifice sensitivity and lead to missed diagnoses.

Traditional clinical methods have a reasonable detection rate only for severe stenosis. However,
our method is able to achieve 90.1% accuracy in the period of mild stenosis and plaque. Therefore,
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our method is able to find potential relationships between parameters and act as a warning in the early
stages of stenosis relative to traditional methods.

In the analysis of the positive sample, the first four features are similarly weighted to the NCA
downscaling analysis, but the last five features are weighted lower, and this phenomenon can be
analyzed in the next work.

From the above experimental results, it has been demonstrated that the proposed method is
effective and accurate in classifying early carotid stenosis for hemodynamic parameters.

5. Conclusions

This paper proposes a classification method for a hemodynamic parameter using RUSBoost with
Empirical Weights. In the early stages of carotid stenosis, abnormalities in PSV and EDV are not
apparent, but in other parameters, they may already be presented. This article identifies individuals in
the early stages of stenosis based on the correlation between hemodynamic parameters. Moreover,
the proposed method calculates weights for abnormal parameters to assist physicians in detecting
and diagnosing disease. In the clinical treatment of cardiovascular disease, the earlier the disease is
detected, the more likely it is to be cured, which is why our abnormal carotid hemodynamic parameters
detection method can guide patients to seek further medical checking and consultation.
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Appendix A

Algorithm A1. Training procedure of the proposed approach

Input: Set S of examples (x1, y1), . . . , (xN, yN). yr
∈ Y, |Y| = 2

Number of iterations T
Output: The final hypothesis H(x).

1: Initialize D1(i) =
wi∑N

i=1 wi
for sample i.

2: Do for t = 1, 2, . . . , T.
a. Create temporary training dataset S′t with distribution D′t using random undersampling.

b. Calculate weak learner Gt(x) based on examples S′t and their weights D′t .
c. Calculate the classification error rate for Gt(x):

et =
N∑

i=1

Dt(i)I(Gt(xi) , yi)

d. Calculate the weight of Gt(x): αt =
1
2 ln 1−et

et

e. Update the weight of samples: Dt+1(i) =
Dt(i)
zm

exp(−αtyiGt(xi))

zm =
N∑

i=1

Dt(i)exp(−αtyiGt(xi))

3: Return H(x) = sign
(

T∑
t=1

αtGt(x)
)
.
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