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Abstract: The problem of evacuating two robots from the disk in the face-to-face model was first
introduced by Czyzowicz et al. [DISC’2014], and has been extensively studied (along with many
variations) ever since with respect to worst-case analysis. We initiate the study of the same problem
with respect to average-case analysis, which is also equivalent to designing randomized algorithms
for the problem. In particular, we introduce constrained optimization problem 2EVACF2F, in which
one is trying to minimize the average-case cost of the evacuation algorithm given that the worst-case
cost does not exceed w. The problem is of special interest with respect to practical applications,
since a common objective in search-and-rescue operations is to minimize the average completion time,
given that a certain worst-case threshold is not exceeded, e.g., for safety or limited energy reasons.
Our main contribution is the design and analysis of families of new evacuation parameterized
algorithms which can solve 2EVACF2F, for every w for which the problem is feasible. Notably, the
worst-case analysis of the problem, since its introduction, has been relying on technical numerical,
computer-assisted calculations, following tedious robot trajectory analysis. Part of our contribution
is a novel systematic procedure, which given any evacuation algorithm, can derive its worst- and
average-case performance in a clean and unified way.

Keywords: evacuation; disk; face-to-face model; average-case analysis

1. Introduction

In search-type problems, several searchers (robots or mobile agents) are moving within a domain
with the objective to identify the location of a (hidden) item. Several variations have been introduced for
the problem that range among others with respect to the domain, to searcher specs, to the termination
criterion (definition of feasibility) and to the objective of the underlying optimization problem. When in
particular there are more than one searchers, and the termination criterion is that all searchers
reach the hidden item (also known as exit), then the search problem is usually referred to as an
evacuation-type problem. The term was introduced recently by Czyzowicz et al. in [1] who studied
the problem of locating a hidden item on the perimeter of the unit disk with at least two robots.
Once all searchers reach the hidden item (hence the name of the problem), the cost of the solution was
defined as the time that the last searcher reaches the item ( The termination criterion should not be
confused with how the cost is quantified.). The problem was studied extensively also by subsequent
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publications exclusively under the lens of worst-case (competitive) performance, i.e., with the objective
to minimize the worst-case (over all placements of the hidden item) time that the last searcher reaches
the exit. In contrast, real-life applications are usually concerned with minimizing the average-case
performance of an algorithm, especially if one must solve several instances of the problem. In our case,
evacuation-type problems resemble search-and-rescue operations where on one hand it is desirable to
minimize the average rescue time, but on the other hand one has to set hard thresholds regarding the
possible worst-case performance of the operations (for example, due to safety concerns of the missing
person/hidden item).

As a result, we are motivated to revisit existing evacuation-type problems in the realm of
average-case performance, where the feasibility criterion is altered so as to also comply with possible
bounds on the worst-case performance. Alternatively, one may think of an evacuation-type problem
(or even search-type problem) as the multi-objective problem of minimizing simultaneously the
worst-case and the average-case cost of feasible evacuation algorithm. In this direction, we study
the evacuation problem [1] under the lens of average-case analysis with hard constraints on
the worst-case performance, i.e., we study average-case worst-case trade-offs for the underlying
optimization problem. More specifically, we introduce new evacuation-type problem 2EVACw

F2F with
two searchers, in which the objective is to optimize the average-case evacuation time (or equivalently
to minimize the performance of a randomized algorithm with unbounded access to randomness)
condition on that the worst-case evacuation time does not exceed value w. The latter optimization
problem seems to be particularly challenging in light of all previous results for the problem that
relied on tedious calculations and/or on arguments tailored to the proposed algorithmic solutions.
In that direction, we rely on a simple, novel and systematic theoretical approach that allows us to
analyze the performance (both average-case and worst-case) of any evacuation algorithm based on
computer-assisted calculations. Taking advantage of this approach, we introduce new families of
algorithms for 2EVACw

F2F. Interestingly, their worst-case analysis can be done rigorously, giving this
way feasible evacuation protocols for the entire spectrum of values w. To motivate our results further,
we also investigate the performance of existing algorithms of 2EVACw

F2F, and we actually show that
our new algorithms indeed outperform them for many values of w.

1.1. Related Work

In search problems, robots (or commonly referred to as mobile agents or searchers) are equipped
with the task of efficiently locating a hidden item in a geometric domain. Studied in many variations
since the 1960s, see seminal results [2,3], search problems first focused on identifying optimal
probabilistic search and hiding strategies. Several subsequent studies of search-variations gave rise
to numerous publications, and eventually to surveys, e.g., [4,5], and books [6–9] that also coined the
umbrella term Search Theory. Over the years, search problems were also studied under the lens (i) of
exploration by single [10–13] or multiple robots [14–16], (ii) of terrain mapping [17–19] and (iii) of
hide-and-seek and pursuit-evasion objectives, e.g., see [20–23].

Although the first reference to a theoretical evacuation problem seems to date back to [24,25],
the problem we study follows the line of research of Czyzowicz et al. [1]. Among the many results
reported in [1], the one relevant to the current paper pertains to searching with two unit-speed robots
for an item/exit hidden at the perimeter of a unit circle. The two searchers operate in the so-called
face-to-face model that does not allow exchange of information from distance, and their goal is to
minimize the worst-case evacuation time, i.e., the worst-case (over all placements of the exit) time
that the last searcher reaches the exit. The first reported upper bound of 5.73906 [1] used a basic
evacuation algorithm, according to which robots choose an arbitrary point on the circle, search in
opposite directions, while the exit finder detours once the exit is found in order to catch and notify
her peer before the evacuate together from the exit. By analyzing the worst placement of the exit [26],
improved the upper bound to 5.628 by introducing a carefully chosen detour, before even the exit
was reported, that was meant to expedite the catching phase in case the exit was found in a critical
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time window. The detour trajectory was later simplified and coupled with an elegant performance
analysis that resulted in a further improvement of 5.625 [27]. Only recently, [28] reported yet another
improvement of 5.6234, which was achieved by employing multiple detours. In contrast, the best
lower bound known of 5.255 is due to [26], and no improvement has been reported since.

Since the inception of 2EVACF2F in [1], numerous search and evacuation-type variants have
emerged that studied different robot specs and/or number of searchers, different communication
models, and different domains. Some notable examples include search and/or evacuation in the disk
with more than 1 exits [29,30], in triangles [31,32], on multiple rays [33], in graphs [34,35], on a line
with at least two robots [36,37] (generalizing the seminal result of [38]), with faulty robots [39–41] or
with probabilistically faulty robots [42], with advice (information) [43], with priority specification on
the searchers [44,45], with immobile agents [46,47], with time/energy trade-off requirements [48,49],
with speed bounds [50], and with terrain dependent speeds [51], just to name some. The interested
reader may also see the recent survey [52] that elaborates more on some selected topics.

In a different direction, Baeza-Yates et al. posed the question of minimizing the worst-case
trajectory of a single robot searching for a target point at an unknown location in the plane [38].
This was generalized to multiple robots in [53], and later has been studied in [54,55]. More recently,
Refs. [56,57] gave lower bounds for related problems. However, in these papers, the robots cannot
communicate, and moreover, the objective is for the first robot to find the target.

1.2. Discussion on Closely Related Literature and Improvements

The problem of evacuating robots from the disc was first introduced in [1]. Among the many
results reported in the latter paper, the one we expand upon is that of evacuating 2 robots in the
face-to-face model. The algorithmic analysis was done exclusively in the deterministic model,
and hence was worst-case. The reported upper bound of 5.628 was achieved by a simple algorithm,
call it A, that deploys both robots in an arbitrary point on the perimeter of the unit disc, and then
makes them search in different directions. When the exit is found, the finder follows the shortest
trajectory (straight line) in order to catch the non-finder in her trajectory so that together they return to
the exit.

The first improvement of [26] was motivated by the monotonicity of the cost of A as a function
of the time that the exit is found. A careful analysis shows that the cost function is concave,
with the maximizer corresponding to the placement of exit that induces the worst-case performance.
The weakness of the underlying communication model is that the (potential) non-finder, call it R1 has
no way to know whether her peer, R2 has found the exit. At the same time, if enough time has passed
and if R1 has not been caught (notified) by R2, then R1 can deduce that her peer might have found the
exit in the “dangerous” neighborhood of the placement inducing the worst-case cost, and hence R2

might be already moving toward R1 in order to notify her. As a result, R1 has the incentive to deviate
from searching the perimeter and to move toward the interior to expedite the (possible) rendezvous.
Such a detour needs to be carefully chosen so that it is long enough to save cost in case the exit was
indeed found in the dangerous neighborhood and short enough so that the detour does not add much
in the cost in case it did not. Overall, the time that the detour occurs together with the direction
and length of the detour give three degrees of freedom with an objective to optimize the cost in two
different cases; when the exit is found in the “dangerous neighborhood” and when it is not. Call this
(family of) algorithm(s) A0. The search space for choosing the three optimal parameters for A0 is
indeed enormous, and at a high level [26] considered only a restriction of the previous idea in which
robots agree on a forced meeting on the diameter of the circle, effectively reducing the degrees of
freedom of the algorithm but simplifying the already technical and theoretical analysis of its worst-case
cost, which eventually relied on numerical calculations.

The upper bound was later improved to 5.625 in [27]. The novelty of the latter work pertained
to the introduction of an elegant theoretical analysis of algorithms A0, which on one hand avoided
the forced meeting and on the other improved upon the bound of [26] by choosing optimally its three
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parameters, which were eventually computed by numerical calculations. The authors of [27] further
mentioned that their results could potentially be improved by introducing, at a high level, a recursively
defined sequence of detour points aiming to address the reduction of the optimal worst-case cost,
should the detour points were one less (so the improvement of A to A0 can be thought as the basic
step in the inductive argument). Indeed, ref. [28] used exactly that idea and reported a new upper
bound of 5.6234.

Quite interestingly, all previous results pertaining to the worst-case analysis relied on arguments
that were somehow tailored to the aforementioned algorithms (robot trajectories). In contrast,
we provide a framework that allows us to compute, with computer-assisted calculations, the worst-case
cost of any evacuation algorithm, as long as robot trajectories are described by unit-speed-inducing
parameterized curves. It is the same framework that allows us also to also compute the average-case
cost for any such algorithm.

The main improvement upon the previously results of the same problem pertains to minimizing
the average-case cost. In one extreme, one can analyze the naive algorithm in which searchers always
stay together, inducing very low average-case cost, but very high worst-case cost. In the other extreme,
the optimal algorithm A0 of [27] has very low worst-case cost (nearly the best known) and, according
to our results, relatively high average-case cost. As a result, we are motivated to minimize the
average-case cost, subject to the worst-case cost ranges between the cost of the naive algorithm
that of the optimal A0 (or equivalently to consider the multi-objective optimization problem of
minimizing simultaneously the average-case cost and worst-case cost). Quite surprisingly, we verify,
using our technical framework, that among the family of algorithms A0, the one inducing the
minimum average-case cost is that of A. It is the latter observation that gives the main motivation for
introducing the three new parameterized families of evacuation algorithms that attempt to minimize
their average-case cost, inducing worst-case cost that range, continuously, over the two extreme
worst-case costs.

1.3. Outline of Our Results and Paper Organization

We introduce and study a multi-objective analog of the well-studied problem of evacuating
two robots from the disk, performing in the face-to-face communication mode. More specifically,
we introduce evacuation problem 2EVACw

F2F in which the two searchers need to evacuate in worst-case
time no more than w, while still minimizing their average-case performance. One of our main
contributions is a systematic method that allows us to perform both worst-case and average-case
analysis for any evacuation algorithm that admits an analytic description. We apply our method to
verify that previously known algorithms are not efficient (or not feasible) to 2EVACw

F2F, for certain values
of w. As a result, we also motivate the introduction of three new families of evacuation algorithms
that are feasible to 2EVACw

F2F for a wide spectrum of values w, and that induce a continuous bound for
the efficient (pareto) frontier for the underlying multi-objective optimization problem. For our results
we employ a rigorous analysis for the worst-case performance of the new algorithms, and we rely on
numerical computer-assisted calculations and on the aforementioned novel systematic method for
estimating their average-case performance.

The formal definition of our problem, along with a high-level exposition of our results appears in
Section 2.1. In Section 2.2 our cornerstone observation pertaining to a systematic process for computing
the average-case (and worst-case) performance of any evacuation algorithm that admits a convenient
representation (as described in Section 2.3). Then in Section 3 we analyze two basic (benchmark)
algorithms for 2EVACw

F2F. This allows us to motivate our problem for a range of w values that are
related to the benchmark algorithms. In the same section, we also show that the families of previously
proposed evacuation algorithms fail to be efficient for 2EVACw

F2F. In Section 4 we present new families
of evacuation algorithms, which is also one of our main contributions. For these algorithms we
give a rigorous worst-case performance analysis in Section 5, and computer-assisted average-case
performance analysis in Section 6, based upon our results in Section 2.2. The reader can also find in the
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same section a formal quantification of our results for 2EVACw
F2F. Lastly, in Section 7 we conclude by

discussing our findings and propose some future directions.

2. Preliminaries

2.1. Problem Definition and Main Results

The geometric domain of 2EVACF2F is a unit disk, centered at the origin of the Cartesian plane.
Two unit-speed searchers, starting from the origin, can move anywhere in the disk, and aim to identify
a hidden object (exit) located at its perimeter (boundary). The object can be identified only by co-located
robot, i.e., a robot that passes over it.

The two robots search in parallel, and perform under a centralized setting, i.e., they know each
other’s trajectories under the assumption that no exit is found. The underlying communication model
is the so-called face-to-face that does not allow robots to exchange messages from distance, rather only
when they meet. A feasible evacuation algorithm is a pair of trajectories, one for each robot, in which for
every placement of the exit, both robots reach it eventually. For a technical reason, but also without
loss of generality, we also require that robots will eventually stay at the exit idle. Placements of the exit
i.e., instances to our problem, will be identified by cycle(x) := (cos (x) , sin (x)), where x ∈ [0, 2π).
The evacuation time (cost) C(x) of a feasible evacuation algorithm on instance cycle(x) is defined as
the first time until both robots reach the exit. t.

In this work we are concerned with determining trade-offs between the worst-case and the
average-case performance (of uniform placements of the exit) of evacuation algorithms for 2EVACF2F.
More specifically, we say that an evacuation algorithm A with evacuation cost C(x) on instance
cycle(x) is (a, w)-efficient if

Avg (A ) := Ex∈[0,2π)[C(x)] ≤ a,

Wrs (A ) := sup
x∈[0,2π)

{C(x)} ≤ w.

where the expectation is with respect to the uniform distribution over [0, 2π). Special to our problem is
that Avg (A ) can also be interpreted as the expected performance of a randomized algorithm based on
A . Indeed, consider an algorithm which first performs a random rotation of the disk around the origin
of angle θ, where θ is chosen uniformly at random from [0, 2π), and then simulates A . Please note that
theoretically, this step requires infinitely many random bits, but one can simulate with any precision by
enough many random bits. This random step is equivalent to choosing a deployment point uniformly
at random on the disk. Due to the symmetry of the domain, it is irrelevant where the adversary
will place the unique exit, and hence the expected performance of this randomized algorithm equals
Avg (A ).

For algorithms A (p) parameterized by parameter(s) p, the pair (Avg (A (p)) , Wrs (A (p))) will
correspond to a subset of R2 (and a curve if p is only one parameter) that we will refer to as the Efficient
Frontier. We also adopt an optimization perspective of the problem, and we introduce the following
optimization problem 2EVACw

F2F on parameter w:

min
1

2π

∫ 2π

0
C(x)dx (2EVACw

F2F)

s.t. C(x) ≤ w, ∀x ∈ [0, 2π).

Please note that the problem above is equivalent to the multi-objective optimization problem
min{Avg (A (p)) , Wrs (A (p))}, and the conversion to the constrained problem above is due to the
well-known ε-constraint method, e.g., see [58]. At the same time, no optimal lower bound is known for
the worst-case cost in the case of unconstrained average-case cost, not to mention that lower bounds
for similar problems are notoriously difficult. Consequently, under the current state-of-the-art it seems
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particularly challenging to determine the pareto frontier of the multi-objective optimization problem.
Nevertheless, our arguments directly imply bounds for the pareto frontier.

As we show later, the values of w that make 2EVACw
F2F interesting lie between some special

values w1, w2. Values w1, w2 are associated with benchmark algorithms, B1, B2, where in particular
Wrs (B1) = w1 ≈ 5.739, Avg (B1) = a1 ≈ 5.1172, Wrs (B2) = w2 ≈ 7.283, Avg (B1) = a2 ≈ 7.28319.
As a result, the reader may think of B1 as being inefficient in average case and efficient in worst case.
Similarly, B2 is inefficient in worst case and efficient in average case.

As is the case for many variations of 2EVACF2F, the cost of best solutions known are computed
numerically. Our results pertain to upper bounds for a continuous spectrum of parameter w for
problem 2EVACw

F2F. In particular we propose families of algorithms A (over some parameters) so
that as their parameters vary, we obtain Wrs (A ) = w and Avg (A ) = g(w), for each w ∈ [w1, w2].
The curve (g(w), w) summarizing our results is depicted in Figure 1, and it is later quantified in
Theorem 7 (see Section 5).

Algorithm 𝒜𝒜1 𝛼𝛼

Algorithm 𝒜𝒜2 𝛼𝛼

Algorithm 𝒜𝒜2
′ 𝛼𝛼,𝛽𝛽

Avg(ℬ1), Wrs(ℬ1)

Avg(ℬ2), Wrs(ℬ2)
𝑤𝑤2

𝑤𝑤1

𝑎𝑎2 𝑎𝑎1
Average Case Performance

W
or

st
 C

as
e 

Pe
rf

or
m

an
ce

Figure 1. Illustration of the performance of our solution to 2EVACw
F2F, for every w ∈ [w1, w2].

Depicted curve corresponds to parametric curve (g(w), w), where w, g(w) are the worst-case
performance and average-case performance of three different families of evacuation algorithms
A1, A ′2 , A2, discussed formally in Section 4. Please note that the magenta curve is not a straight
line and, as we show next, induces decreasing worst-case performance (as the average case performance
increases).

Please note that an (a, w)-efficient algorithm gives a solution of value a for 2EVACw
F2F.

Our approach to prove Theorem 7 is to define families of evacuation algorithms A (p) parameterized
by parameter(s) p. We will prove that these algorithms are (u(p), v(p))-efficient for some functions
u(p), v(p), and in particular the evaluation of the worst-case performance will be exact and monotone
in p, while the computation of v(p) will be computer-assisted. Then we will set p = v−1(w), and will
be able to describe the average-case performance as a function of w as g(w) := u(v−1(w)).

2.2. Computing Evacuation Times

For any feasible evacuation algorithm, we denote by S(x), the first time, after spending time 1
to reach the perimeter that cycle(x) is visited by any robot. In other words, S(x) is the time robots
spend searching till the exit is found for the first time, assuming that robots do not waste time in
the interior of the circle before they start searching. Clearly, when a robot, say R1, locates the exit at
cycle(x), it may attempt to catch R2 while moving along R2’s trajectory along the shortest line segment,
say of length E(x). Once robots meet, they return together to cycle(x), inducing total evacuation cost
C(x) = 1 + S(x) + 2E(x).
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All existing results for 2EVACF2F, from a worst-case complexity perspective, rely on numerical
computer-assisted estimation of supx C(x), after identifying properties of the maximizer. In this section,
we elevate existing arguments, and we propose a generalized and unified approach for computing
C(x), for any x and for any robot trajectories. For the sake of formality, as well as for practical purposes,
robot trajectories will be defined by parametric functions F (t) = ( f (t), g(t)), where f , g : R 7→ R are
continuous and piecewise differentiable. In particular, search protocols for the two robots will be given
by trajectories R1(t), R2(t), where Ri(t) will denote the position of robot Ri at time t ≥ 0. Therefore,
any evacuation algorithm will be identified by a tuple (R1, R2). To simplify notation, we will only
determine the trajectories from the moment the two robots reach the perimeter of the circle, and until
the entire circle is searched (under the assumption that no exit is found), and we will silently assume
that robots stay put after exploration is over.

Lemma 1. Consider instance cycle(x) of 2EVACF2F, and suppose that for a feasible evacuation algorithm
(R1, R2), robot 1 is the first robot that finds the exit. Then E(x) = t̄− S(x), where t̄ = t̄(x) is the smallest
root, no less than S(x), of function

hx(t) := ‖R2(t)−R1(S(x))‖ − t + S(x). (1)

Proof. The reader may consult Figure 2 that complements our argument.

cycle 𝑥𝑥 = ℛ1 𝒮𝒮(𝑥𝑥)

ℛ2 ̅𝑡𝑡
ℛ2 ̅𝑡𝑡 − ℛ1 𝒮𝒮(𝑥𝑥)

ℛ2 𝒮𝒮(𝑥𝑥)

̅𝑡𝑡 − 𝒮𝒮(𝑥𝑥)

Figure 2. An abstract depiction of the trajectories of R1, R2, assuming that R1 is the finder of the
exit, located at cycle(x) at time S(x). Time t̄ is the time, after they start searching for the exit on the
perimeter that the two robots meet at R1(t̄) = R2(t̄).

First observe that hx(t) is continuous. If the robots find the exit together then result holds trivially.
So we may assume that that the two robots are not co-located when the exit is found, in which case we
have hx(S(x)) > 0. At the same time, since the evacuation algorithm is feasible, R2(t) is eventually a
constant, and hence for big enough t we have that hx(t) becomes eventually negative. By the mean
value theorem, there is t0 > 0 for which hx(t0) = 0.

Now consider the smallest positive root t̄ of hx, no less than S(x). At time t̄, R2 is located at point
R2(t̄), and it is ‖R2(t̄)−R1(S(x))‖ away from the location cycle(x) of the discovered exit. At the
same time, R1 moves with speed 1 along the shortest path to catch R2 in her trajectory. Hence it
takes R1 some t̄− S(x) extra time from the moment the exit is found until she reaches point R2(t̄).
By definition we have R1(t̄) = R2(t̄), and therefore E(x) = t̄− S(x) as claimed.

For some special trajectories, E(x) admits a simpler description that we describe next. Before that,
we introduce some notation pertaining to a function δ : [0, π] 7→ R+, which we widely use in the
remaining of the paper:

δ(x) := unique non-negative root (regarding d) of “ 2 sin
(

x +
d
2

)
= d ”. (2)

To simplify notation, we will also abbreviate δ(x) by δx. To show that δx is well-defined, consider
function fx(d) = 2 sin

(
x + d

2

)
− d. The derivative of the function is f ′x(d) = cos x + d

2 − 1 ≤ 0.
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Since f ′x(d) has also a unique root in [0, π], it follows that fx(d) is strictly decreasing. Observe now
that fx(0) = 2 sin (x) ≥ 0, while fx(2) = 2 sin (x + 1)− 2 ≤ 0. We conclude that due to the strict
monotonicity of fx(d), the latter function has indeed unique root in d ∈ [0, 2]. Finally, it is easy to see
that fx(d) < 0 when d > 2.

Lemma 2. For some instance cycle(x) of 2EVACF2F, suppose that for a feasible evacuation algorithm (R1, R2),
R1 is the finder of the exit, say at time t0 = S(x). Assume that both R1(t0), R2(t0) lie on the circle at arc
distance 2α, and suppose that R2’s movement is along the perimeter of the circle toward the complementary arc
of length 2π − α. Then, E(x) = δα.

Proof. The lemma follows by applying transformation t − S(x) = d in the definition of hx(t) in
Lemma 1, so that E(x) = t− S(x) = d.

We are ready to conclude with a corollary that will be handy for computing evacuation times
numerically, and without relying on excessive case analysis, as was the case before.

Corollary 1. Consider feasible evacuation algorithm (R1, R2) for 2EVACF2F. For any instance cycle(x) for
which R1 is the exit finder, the evacuation cost can be computed as C(x) = 1 + 2t̄− S(x), where t̄ = t̄(x) is
the smallest root, at least S(x), of hx(t) := ‖R2(t)−R1(S(x))‖ − t + S(x).

2.3. Trajectory Description

Robot trajectories will be described in phases. We will always omit the “deployment phase”,
i.e., the movement from the circle center to its perimeter, and we will only describe the trajectories
from the moment robots start searching the circle. In each phase, robot R, will be moving between two
explicit points, either along an arc, or along a line segment (chord of an arc), see Observations 1 and 2
below. We will summarize robot trajectories in tables of the following format.

Robot Phase # Trajectory Duration

R 1 R(t) t1
2 R(t) t2
...

...

To ease notation, trajectory R(t) of phase i will be described with parametric equations as if the
time is reset to 0 after time t0 + t1 + t2 + . . . + ti−1, where t0 = 1 (this is the time that robots reach
the circle). The two fundamental trajectory components are movements along arcs and movements
along line segments.

Observation 1. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object moving at speed 1 on the
perimeter of a unit circle with initial location cycle(b) is given by the parametric equation cycle(σt + b) =
(cos (σt + b) , sin (σt + b)). If σ = 1 the movement is counterclockwise (ccw), and clockwise (cw) otherwise.

Proof. It is immediate that when t = 1, the object is located at cycle(b). Its speed is given by calculating∥∥∥ ∂
∂t cycle(σt + b)

∥∥∥. Indeed, we have

(
d
dt

cos (σt + b)
)2

+

(
d
dt

sin (σt + b)
)2

= σ2 (− sin (σt + b))2 + σ2 (cos (σt + b))2 = 1,

as wanted.
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Observation 2. Consider distinct points A = (a1, a2), B = (b1, b2) in R2. The trajectory of a speed 1 object
moving along the line passing through A, B and with initial position A is given by the parametric equation

line(A, B, t) :=
(

b1 − a1

‖A− B‖ t + a1,
b2 − a2

‖A− B‖ t + a2

)
.

Proof. By definition, the parametric equation above corresponds to a line. Elementary calculations
show that line(A, B, 0) = A and line(A, B, ‖A− B‖) = B, that is the object starts at A, and that it
passes through B. Object speed is calculated as

∥∥∥ ∂
∂t line(A, B, t)

∥∥∥. In that direction we have

(
d
dt

(
b1 − a1

‖A− B‖ t + a1

))2
+

(
d
dt

(
b2 − a2

‖A− B‖ t + a2

))2
=

(
b1 − a1

‖A− B‖

)2
+

(
b2 − a2

‖A− B‖

)2
= 1

as promised.

Finally, the analysis of our algorithm trajectories will give rise to several constants. For the
reader’s convenience, we list here the numerical values of the most common constants that will be
encountered later. w1 ≈ 5.73906, w0 ≈ 6.11953, w′ ≈ 6.12851, w2 ≈ 7.28319, α′ ≈ 1.15468, ᾱ ≈ 1.54419,
β′ ≈ 0.0241653, β0 ≈ 0.04388.

All constants are formally defined when they are first introduced.

3. Two Benchmark Algorithms and Motivation

In this section, we describe two benchmark algorithms for 2EVACF2F, as well as perform
average-case analysis to algorithms previously proposed in the literature. The reader may consult
Figure 3 for the algorithms analyzed in this section.

Benchmark Algorithm ℬ2Benchmark Algorithm ℬ1

𝐵𝐵 = 𝑏𝑏1,𝑏𝑏2

𝐵𝐵𝐵 = 𝑏𝑏1,−𝑏𝑏2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝛼𝛼

1-Detour Algorithm 𝒜𝒜0 𝛼𝛼,𝐵𝐵

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝛼𝛼𝛿𝛿𝛼𝛼/2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2𝛼𝛼 + 𝛿𝛿𝛼𝛼/2

𝛿𝛿𝛼𝛼/2

Algorithm 𝒜𝒜2 𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝛼𝛼

𝛿𝛿(𝛼𝛼+𝛽𝛽)/2

𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐
𝑐𝑐
2𝛼𝛼

+
𝛽𝛽

+
𝛿𝛿 (
𝛼𝛼
+
𝛽𝛽

)/
2 𝛿𝛿(𝛼𝛼+𝛽𝛽)/2

𝛽𝛽

𝛽𝛽

𝛿𝛿𝛽𝛽/2

𝛿𝛿𝛽𝛽/2

Algorithm 𝒜𝒜2
′ 𝛼𝛼,𝛽𝛽

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

𝛼𝛼

𝛿𝛿𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝛼𝛼 − 𝛿𝛿𝛼𝛼

𝛿𝛿𝛼𝛼

Algorithm 𝒜𝒜1 𝛼𝛼Figure 3. Robot Trajectories for algorithms B1, B2, A0. The depicted trajectories show the search of the
circle, and not the evacuation step that is performed once the exit is found.

Czyzowicz et al. [1] were the first to introduce an evacuation algorithm for 2EVACF2F, which we
denote here by B1 (see Figure 3 on the left).

Definition 1 (Benchmark Algorithm B1). For all t ∈ [0, π], R1(t) = cycle(t) and R2(t) = cycle(−t).

Observation 3. Benchmark Algorithm B1 is (5.1172, 5.73906)-efficient.

Proof. Please note that it takes time π to search the entire circle, and that the two trajectories are
symmetric with respect to horizontal axis. Therefore, we may assume that the instance cycle(x)
satisfies x ∈ [0, π].
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Clearly, for any such x, we have that S(x) = x. By Lemma 2, we have that C(x) = 1 + S(x) +
2E(x) = 1 + x + 2δx. Numerical calculations (software assisted) show that

Wrs (B1) = sup
x∈[0,π]

{C(x)} = sup
x∈[0,π]

{1 + x + 2δx} ≈ 5.73906,

Avg (B1) = Ex∈[0,π][C(x)] =
1
π

∫ π

x=0
(1 + x + 2δx) dx ≈ 5.1172.

B1 should be understood as being efficient in the worst case, but inefficient on average. The claim
becomes transparent by introducing the following naive algorithm for 2EVACF2F that we depict in the
middle of Figure 3.

Definition 2 (Benchmark Algorithm B2). For each t ∈ [0, 2π], R1(t) = R2(t) = cycle(t).

Observation 4. Benchmark Algorithm B2 is (1 + π, 1 + 2π)-efficient.

Proof. It is easy to see that for all x ∈ [0, 2π) we have t̄(x) = S(x) = x and E(x) = 0.
Therefore C(x) = 1 + x, and hence

Wrs (B2) = sup
x∈[0,2π)

{C(x)} = 1 + 2π,

Avg (B2) = Ex∈[0,2π)[C(x)] =
∫ 2π

x=0
(1 + x) dx = 1 + π.

B2 should be understood as highly efficient on average, but inefficient in the worst case. Moreover,
it should be clear that B1, B2 are feasible solutions to 2EVACw

F2F, for w = 5.1172 and w = 1 + 2π,
respectively. We conjecture that B1 is indeed the optimal evacuation algorithm among all algorithms
with worst-case performance no more than 1 + 2π. At the same time, below we show that B2

is the best algorithm for 2EVACw
F2F, when w = 5.1172, among those previously used to improve

upon the worst-case performance up to the third decimal. The importance of this observation is
two-fold; first we are motivated to study 2EVACw

F2F for the entire spectrum of w ∈ [Wrs (B1) , Wrs (B2)],
and second we deduce that in order to perform well on average, we need to devise and analyze new
evacuation algorithms.

Upper bounds for the worst-case performance of B1 were later improved first to 5.628 [26],
then to 5.625 [27], and then to 5.623 [28]. The main idea behind the improvement is to understand
the monoticity of C(x) for algorithm B1. Indeed, the following lemma was implicit in both [26,27],
and can be obtained numerically.

Lemma 3. There is α0, where α0 ≈ 0.96782, so that evacuation cost C(x) of B1 for 2EVACF2F on instance
cycle(x) is strictly increasing for x ∈ [0, α0], and strictly decreasing in x ∈ [α0, π]. In particular,
Wrs (B1) = C(α0) ≈ 5.73906.

Consider now an execution of B1 in which one of the robots, say R2 continues searching on
the circle and is close to approach a location that would be the meeting point if the instance was
cycle(α0). In an attempt to help expedite a potential meeting (in case R1 is approaching) and effectively
reducing the cost of the worst case, R2 would make a minor detour toward the interior of the disk,
before returning back to the exploration of the circle. This simple idea was explored in [26] and in [27]
where the following family of algorithms were introduced, parameterized by α ∈ [0, π] and point B
within the unit disk, see also right of Figure 3 (the simplified version presented here is due to [27]).
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Definition 3 (1-Detour Algorithm A0(α, B)). For all t ∈ [0, π + 2 ‖cycle(α)− B‖], the trajectory of R1 is
defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), B, t) ‖cycle(α)− B‖
3 line(B, cycle(α), t) ‖cycle(α)− B‖
4 cycle(t + α) π − α

The trajectory of R2 is symmetric with respect to the horizontal axis.

The crux of the contribution of [26] was to prove that there exists α, B for which the worst-case
performance is no more than 5.644 (and a delicate refinement is needed to achieve 5.628). Notably, their
analysis is tedious and lengthy, whereas we can obtain the same result, relying again on numerical
calculations, with minimal effort. Then, [27] proposed variations of A0(α, B) in which each robot
performs more than 1 detours (see Phases 2,3 of A0(α, B)), giving rise to [28]. Hence, t-detour
algorithms are parameterized by a sequence α1, . . . , αt, where αi ≥ 0 and ∑i αi ≤ π, and points Bi in the
disk. Even 2-detour algorithms achieve worst-case performance 5.623, while for each t ≥ 2, t-detour
algorithms do induce strictly improved performance (for appropriate choices of the parameters) but
the improvement seems to be negligible.

Motivated by the results in [26,27], one is tempted to ask whether any algorithm in the family
A0(α, B) improves upon B1 with respect to the average-case analysis. The next claim is due to
exhaustive, computer-assisted numerical calculations, see also Figure 4.

Theorem 5. For every α ∈ [0, π) and for every B in the unit disk Avg (A0(α, B)) ≥ Avg (B1).

Theorem 5 provides strong motivation for studying problem 2EVACw
F2F, since it shows that in

order to establish good upper bounds, i.e., our main results depicted in Figure 1 and quantified
later in Theorem 7, one needs to employ new evacuation algorithms. Recall that even Wrs (B1) and
Wrs (A0(α, B)) were estimated with computer-assisted calculations. Due to the nature of the problem,
we are bound to rely on computer-assisted calculations as well. Notably, our much more intense
computational work is feasible only because we employ the new method for computing evacuation
times due to Corollary 1 and Definition 3 of A0(α, B) trajectories. Overall, to verify Theorem 5 we
compute pairs (Avg (A0(α, B)) , Wrs (A0(α, B))) for more than 500,000 different parameter values and
we depict them in Figure 4.
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Figure 4. Performance analysis of A0(α, B) for various values of parameters α, B. Blue points
(a, w) correspond to (a, w)-efficient algorithms A0(α, B). The red point is (Avg (B1) , Wrs (B1)), i.e.,
the performance of B1 in the average-worst-case space. Please note that no algorithm A0 performs
better on average than B1, while all A0(t, cycle(t)) is exactly B1 for every point t ∈ [0, π]. Notably,
all points lie above the threshold of worst-case performance 5.625, and some are arbitrarily close to that
value (corresponding to choices of α, B that give the algorithm of [27]).

4. New Evacuation Algorithms

In this section, we propose families of evacuation algorithms for problem 2EVACw
F2F, for the entire

spectrum of w ∈ [Wrs (B1) , Wrs (B2)]. Our algorithms are summarized in Figure 5.

Benchmark Algorithm ℬ2Benchmark Algorithm ℬ1

𝐵𝐵 = 𝑏𝑏1,𝑏𝑏2

𝐵𝐵𝐵 = 𝑏𝑏1,−𝑏𝑏2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝛼𝛼

1-Detour Algorithm 𝒜𝒜0 𝛼𝛼,𝐵𝐵

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝛼𝛼𝛿𝛿𝛼𝛼/2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2𝛼𝛼 + 𝛿𝛿𝛼𝛼/2

𝛿𝛿𝛼𝛼/2

Algorithm 𝒜𝒜2 𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝛼𝛼

𝛿𝛿(𝛼𝛼+𝛽𝛽)/2

𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐
𝑐𝑐
2𝛼𝛼

+
𝛽𝛽

+
𝛿𝛿 (
𝛼𝛼
+
𝛽𝛽

)/
2 𝛿𝛿(𝛼𝛼+𝛽𝛽)/2

𝛽𝛽

𝛽𝛽

𝛿𝛿𝛽𝛽/2

𝛿𝛿𝛽𝛽/2

Algorithm 𝒜𝒜2
′ 𝛼𝛼,𝛽𝛽

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

𝛼𝛼

𝛿𝛿𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝛼𝛼 − 𝛿𝛿𝛼𝛼

𝛿𝛿𝛼𝛼

Algorithm 𝒜𝒜1 𝛼𝛼

Figure 5. Robot Trajectories for algorithms A1, A2, A ′2 . The depicted trajectories show the search of
the circle, and not the evacuation step that is performed once the exit is found. Arcs that are searched
by both robots are also searched simultaneously, i.e., robots are co-located and search together.

First we define families of evacuation algorithms that, as we show next, perform well for 2EVACw
F2F

in the “neighborhood of B1”, i.e., for w close to Wrs (B1). Our algorithms are parameterized by α,
and their circle exploration lasts 2π − α.

Definition 4 (Algorithm A1(α)). For all t ∈ [0, 2π − α], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle(−α− δα), t) δα

3 cycle(−α− δα − t) 2π − 2α− δα

where δa is defined in (2). The trajectory of R2 is defined as R2(t) = cycle(−t), for all t ∈ [0, 2π − α].

A1 is depicted in Figure 5 on the left. At a high level A1(α) is a modification of B1 that is based
on the following idea. The execution of A1(α) is the same as in B1 until each robot searches an arc of
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length α (and hence A (π) coincides with B1). After time α, R1 abandons her trajectory and catches
R2, on the perimeter of the circle resembling a trajectory as if the exit was located at R1(α). It is not
difficult to see that the definition of δα above satisfies R1(α + δα) = R2(α + δα) = cycle(−α− δα).

Next we define a family of algorithms A2 which, as we show later, perform well in the
“neighborhood of B2”, i.e., for w close to Wrs (B2). For this recall definition (2) of δa. We let γ0 ≈ 2.2412
be the root of 2α + δα/2 = 2π. For every α ≤ γ0 we define a family of algorithms on parameter α

whose circle exploration lasts 2π − α.

Definition 5 (Algorithm A2(α)). For all t ∈ [0, 2π − α], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle(2α + δα/2), t) δα/2
3 cycle(2α + δα/2 + t) 2π − 2α− δα/2

The trajectory of R2 is defined as R2(t) = cycle(α + t), for all t ∈ [0, 2π − α].

A2 is depicted in the middle of Figure 5. The condition that α ≤ γ0 is added for simplicity to
ensure that the latest catching point occurs while the other robot is still searching, and is not mandatory.
At a high level A2(α) is a generalization of B2 (note that A2(0) = B2). For the first α time units, robots
search in the same direction until R1 arrives at the deployment point of R2. Then, R1 catches R2 on
the circle, as if the exit was located at R1(α) (which by Lemma 2 happens in δα/2 extra time).

Finally, we introduce a family of evacuation algorithms which will perform well for 2EVACw
F2F

for intermediate values of w ∈ [Wrs (B1) , Wrs (B2)]. For this we generalize family A2 so that the two
robots perform two alternating jumps, with parameters α, β satisfying 2α + 2β + δ(α+β)/2 + δβ/2 ≤ 2π,
see right of Figure 5.

Definition 6 (Algorithm A ′2 (α, β)). For notational convenience, we set ζα,β := 2α + β + δ(α+β)/2. For all
t ∈ [0, 2π − α− β], the trajectories of R1, R2 are defined as follows

Robot Phase # Trajectory Duration

R1 1 cycle(t) α

2 line(cycle(α), cycle
(

ζα,β

)
, t) δ(α+β)/2

3 cycle
(

ζα,β + t
)

2π − 2α− β− δ(α+β)/2

R2 1 cycle(α + t) α + β + δ(α+β)/2

2 line(cycle
(

ζα,β

)
, cycle

(
ζα,β + δβ/2

)
, t) δβ/2

3 cycle
(

ζα,β + β + δβ/2 + t
)

2π − 2α− 2β− δ(α+β)/2 − δβ/2

Next we describe the meaning of parameters α, β of the Robot trajectories above. As in the family
of algorithms A2, parameter α represents the arc distance the two robots have before the one preceding
decides to jump ahead. In A2 the two robots meet again once the jumper reaches the perimeter of
the circle. In A ′2 the jumper deploys a little further away on the circle so that when the other robot
reaches the deployment point of the jumper, the two robots are at arc distance β. As a result, the time it
takes both robots to complete searching the entire circle is 2π− α− β, as well as A2(α, 0) coincides with
A2(α). Finally, note that even though A ′2 will be eventually invoked for seemingly restricted values of β

(β ≤ β0 ≈ 0.04388), the deviation in the performance will be significant enough (e.g., δβ0/2 ≈ 0.977997)
to account for its use in our upper bounds.

5. Worst-Case Performance Analysis

In this section, we perform worst-case analysis for all algorithmic families A1, A2, A ′2 with respect
to their parameters. Notably, results in this section are quantified formally and exactly by closed
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formulas. At a high level, each of A1, A2, A ′2 will be invoked to solve 2EVACw
F2F for different values of

w ∈ [Wrs (B1) , Wrs (B2)], and each of them will have competitive average-case performance for the
corresponding worst-case performance w. As an easy warm-up, we analyze A1.

Lemma 4 (Worst-Case Analysis for A1). Let ᾱ = 1 + 2π − w1, where w1 = Wrs (B1). Then, for all
α ∈ [0, π], we have that

Wrs (A1(α)) =

{
1 + 2π − α , ∀α ∈ [0, ᾱ)

Wrs (B1) , ∀α ∈ [ᾱ, π]
.

Proof. First it is easy to show that the worst-case evacuation time is induced either when R1 finds the
exit while moving from cycle(0) to cycle(α), or while R1, R2 are exploring the circle together (after
having met). By Lemma 2, the cost in the first case would be

max
0≤x≤α

{1 + x + 2δx} =
{

1 + α + 2δα , if α ≤ α0

Wrs (B1) , otherwise

where the values of the piecewise function above follow from Lemma 3. In the other case, the worst
placement of exit is obtained using instances cycle(α + ε) for arbitrary small values of ε > 0 in which
case the evacuation cost becomes 1 + 2π − α.

Overall, is is easy to see that 1 + α0 + 2δα0 ≤ 1 + 2π − α0 showing that the dominant evacuation
cost when α ≤ ᾱ is 1 + 2π − α. For α > ᾱ the evacuation cost becomes equal to w1.

In a similar fashion, we can easily analyze A2.

Lemma 5 (Worst-Case Analysis for A2). For all α ≤ π − 2, we have Wrs (A2(α)) = 1 + 2π − α.

Proof. We distinguish three cases as to where the exit is. If x ∈ [0, α), then the worst instance cycle(x)
is when x = α − ε for arbitrarily small ε > 0, and the cost is 1 + α + 2δα/2. In the second case
x ∈ [α, 2α + δα/2) and it is not difficult to see that the worst-case induced cost in this case is not
more than that of the first case. Finally, in the third case x ∈ [2α + δα/2, 2π), and the two robots
move together, so the total cost, in the worst-case, is 1 + 2π − α, when x = 2π − ε for arbitrarily
small ε > 0. It is not difficult to see that the dominant case is actually the third one, and in fact
the two cases induce the same cost when π = α + δα/2. By the definition of δα/2 we know that

δα/2 = 2 sin
(

α+δα/2
2

)
= 2 sin (π/2) = 2. Hence, the costs become equal when α = π − 2.

Next, we analyze A ′2 (α, β), which requires more technical arguments. For this we will invoke
A ′2 only for special parameters, whose choice is motivated by the following observation pertaining
to the performance of A2 (whose generalization is A ′2 ). From the proof of Lemma 5, it follows that
among all algorithms A2(α), where α ≤ γ0 (see discussion before Definition 5), the one with minimum
worst-case evacuation cost is A2(π− 2), and the cost becomes 3 + π. In fact, for all w ∈ [3 + π, 1 + 2π]

there are two different values of α for which Wrs (A2(α)) = w, and we restrict α ∈ [0, π − 2] so that
we obtain evacuation algorithms with minimum average-case cost. Moreover, α = π − 2 is the only
parameter for which Wrs (A2(α)) = 3 + π and as a byproduct, it is the algorithm in the family A2 that
minimizes the worst-case.

By Lemma 5 we know that as β → 0, the value of α that minimizes Wrs (A ′2 (α, β)) approaches
π− 2. That value of α is what made the evacuation cost of A2(α) attain the same value in two different
(worst-case) exit placements. Motivated by this, and for values of β > 0 not too big, we still find the
optimal choices of α that minimize the worst-case performance.

Lemma 6 (Worst-Case Analysis for A ′2 ). Let β0 = 0.0438855, and set αβ := π − β/2− 2 cos (β/4).
Then for all β ∈ [0, β0] we have Wrs

(
A ′2 (αβ, β)

)
= 1 + π − β/2 + 2 cos (β/4) .
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Proof. Let w(β) = 1 + π − β/2 + 2 cos (β/4). First we show that w(β) is the worst-case performance
of A ′2 (αβ, β) for two specific placements of the exit.

We proceed by describing evacuation cost C(x) assuming two arbitrary α, β for two different
instances cycle(x). Using Lemma 2, we see that

lim
ε→0+

C(α− ε) = 1 + lim
ε→0+

S(α− ε) + 2 lim
ε→0+

E(α− ε) = 1 + α + 2δα/2. (3)

Since the total search time is 2π − α− β, we also see that

lim
ε→0+

C(2π − ε) = 1 + 2π − α− β. (4)

Now we claim that (3), (4) are equal when α = αβ. Indeed, equating (3), (4) gives

a + δα/2 = π − β/2. (5)

However, then, using (2), we see that

δα/2 = 2 sin
(

α + δα/2

2

)
= 2 sin

(
π − β/2

2

)
= 2 cos (β/4) . (6)

Substituting (6) into (5), we see that the value of α for which (3), (4) are equal satisfies
α = π − β/2− 2 cos (β/4), as promised. Substituting this special value of α = αβ either in (3) or
in (4) induces evacuation cost w(β) = 1 + π − β/2 + 2 cos (β/4).

Next we show that as long as β is not too big, w(β) is indeed the worst-case evacuation cost.
We consider the following cases x ∈ Ii, i = 1, . . . , 4 for possible instances cycle(x);

I1 :=[0, α),

I2 :=[α, 2α + β + δ(α+β)/2),

I3 :=[2α + β + δ(α+β)/2, 2α + 2β + δ(α+β)/2 + δβ/2),

I4 :=[2α + 2β + δ(α+β)/2 + δβ/2, 2π).

Clearly, (3), (4) demonstrate the worst-case evacuation costs for instances in I1, I4, respectively, and the
cost in both cases, for α = αβ is equal to w(β).

If x ∈ I2 then C(x) = 1 + S(x) + 2E(x). It is easy to see that both S(x), E(x) are monotone in I2,
so the worst-case evacuation in this case is

lim
ε→0+

C(2αβ + β + δ(αβ+β)/2 − ε) = 1 + αβ + β + δ(αβ+β)/2 + 2δβ/2. (7)

Denote δβ/2 satisfying (2) by δ′β. Using (2) and the definition of αβ, we see that

δ(αβ+β)/2 = 2 sin

(
αβ + β + δ(αβ+β)/2

2

)
= 2 cos

(
cos (β/4)− β/4− δ(αβ+β)/2

)
.

For simplicity, we denote δ(αβ+β)/2 that satisfies the equation above by δ′′β . Then, continuing
from (7), the worst-case evacuation cost when x ∈ I2 becomes 1 + π + β/2− 2 cos (β/4) + δ′′β + 2δ′β,
an expression that depends exclusively on β. The latter cost is no more than w(β) if and only if
4 cos (β/4) − β − δ′′β − 2δ′β ≥ 0, and numerically we verify that this is satisfied as long as β ≤ β0

(see also Figure 6).
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Figure 6. The behavior of expression 4 cos (β/4)− β− δ′′β − 2δ′β, for β = 0, . . . , 0.8.

Finally, it is easy to verify that δβ/2 and |I4| are increasing and decreasing, respectively, for β ≤ β0,
and that δβ0/2 = 0.977997 ≤ 1.01099 = |I4| (for β = β0). As a result, the worst-case evacuation cost of
case x ∈ I3 cannot exceed that of case x ∈ I4, and hence the lemma follows.

It is important to note that the worst-case performance of A ′2 (αβ, β) of Lemma 7 is decreasing in
β. Indeed, ∂

∂β Wrs
(
A ′2 (αβ, β)

)
= 1

2 −
1
2 sin (β/4) < 0. For values of β close to 0, the derivative is nearly

a constant. This also explains why in Figure 1, the performance of algorithm A ′2 seems to have nearly
invariant worst-case performance, which however is provably decreasing in β.

Lemma 7 (Worst-Case Analysis for A ′2 ). Let β0 = 0.0438855, and set αβ := π − β/2− 2 cos (β/4).
Then for all β ∈ [0, β0] we have Wrs

(
A ′2 (αβ, β)

)
= 1 + π − β/2 + 2 cos (β/4) .

6. Average-Case Performance Analysis and the Efficient Frontier

In this section, we perform average-case analysis for all algorithmic families A1, A2, A ′2 ,
with respect to their parameters. For the sake of exposition of our results, we set
w1 = Wrs (B1) ≈ 5.73906, w2 = Wrs (B2) = 1 + 2π ≈ 7.28319 and for β0 ≈ 0.04388, as in Lemma 7,
we set w0 := Wrs

(
A ′2 (αβ0 , β0)

)
≈ 6.11953. We also recall ᾱ ≈ 1.54419 of Lemma 4. Finally, we set

v(α) := 1 + 2π − α

v2(β) := 1 + π − β/2 + 2 cos (β/4)

u1(α) := 0.00889α3 − 0.16944α2 + 0.71518α + 4.23089

u′2(β) := 530.673β3 − 78.5498β2 + 7.36219β + 4.70493

u2(α) := 0.093056α2 + 0.346659α + 4.1719

Combined with our findings of Section 5, the main result of the current section is the following.

Theorem 6. For every w ∈ [w1, w2] there is algorithm A ∈ {A1, A ′2 , A2} and unique parameter(s) p such
that Wrs (A (p)) = w. In particular,

- for all α ∈ [1, ᾱ], A1(α) is (u1(α), v(α))-efficient, and v([1, ᾱ]) = [w1, 2π],
- for all β ∈ [0, β0], A ′2 (αβ, β) is (u′2(β), v2(β))-efficient, and v2([0, β0]) = [w0, 3 + π],
- for all α ∈ [0, π − 2], A2(α) is (u2(α), v(α))-efficient, and v([0, π − 2]) = [3 + π, w2].

Proof. The claims for the worst-case performances of A1, A ′2 , A2 follow directly from Lemmata 4, 7
and 5, respectively. Next we argue that as the parameters vary in their specified range, we obtain the
entire spectrum of w ∈ [w1, w2], and this for unique values of the parameters. For this, we will rely on
that for all evacuation algorithm families, the worst-case cost is monotone in the parameters.
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First, we argue about A1. We observe that by the definition of ᾱ, Wrs (A1(ᾱ)) = w1,
and Wrs (A1(1)) = 1 + 2π− 1 = 2π. Together with the fact that v(α) is strictly decreasing, we see that
Wrs (A1(α)) is 1-1 and onto to [w1, 2π] as α ranges in [1, ᾱ].

Second, we study A ′2 whose worst-case cost v2(β) is strictly decreasing in β. Moreover,
by definition of β0, we have Wrs

(
A2(αβ0 , β0)

)
= w0. Then we note that for β = 0, A2(αβ, β)

coincides with A2(π − 2), and in particular the induced worst-case cost becomes 3 + π. Therefore
Wrs

(
A ′2 (αβ, β)

)
is 1-1 and onto to [w0, 3 + π] as β ranges in [0, β0].

Third, we study A2, for which we know that Wrs (A2(π − 2)) = 3 + π. Again, the worst-case
cost is monotone in α and A2(0) coincides with benchmark algorithm B2, which is Wrs (A2(0)) = w2.
Hence, Wrs (A2(α)) is 1-1 and onto to [3 + π, w2] as α ranges in [0, π − 2].

Finally, we argue that

Avg (A1(α)) ≤ u1(α), ∀α ∈ [1, ᾱ]

Avg
(
A ′2 (αβ, β)

)
≤ u′2(β), ∀β ∈ [0, β0]

Avg (A2(α)) ≤ u2(α), ∀α ∈ [0, π − 2]

For this, we numerically compute Avg (A1(α)) , Avg
(
A ′2 (αβ, β)

)
, Avg (A2(α)) for various values

of parameters α, β, and we heuristically choose u1, u′2, u2 so as to upper bound the average-case
performance of A1, A ′2 , A2, effectively verifying our claim numerically. For each evacuation algorithm,
we use Corollary 1, which together with the analytic description of our evacuation algorithms
(see Definitions 4, 6, and 5) allow us to compute their average-case performance using
computer-assisted calculations. Our numerical calculations are depicted in Figure 7.
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Figure 7. On the right u1(α)−Avg (A1(α)), for α′ ≤ α ≤ ᾱ. In the middle, u′2(β)−Avg
(
A ′2 (αβ, β)

)
,

for 0 ≤ β ≤ β0. On the right u2(α)−Avg (A2(α)), for 0 ≤ α ≤ π − 2.

Finally, we aim to formally quantify the efficient frontier of our algorithms as depicted in Figure 1
(see Section 2.1). The parametric curves described in Theorem 6 provide, strictly speaking, an upper
bound for the parametric curve of Figure 1. Next, we compute g : R 7→ R, so that the parametric
curves of Theorem 6 are written in the form {(g(w), w)}w∈[w1,w2]

. That would also imply that there is
a solution to 2EVACw

F2F of cost at most g(w).
In that direction, we study each evacuation algorithm family A (p) with worst-case performance,

say, v(p), and average-case upper bound, say, u(p). For each w ∈ [w1, w2] in the range of A (p), we set
p = v−1(w) so that the average-case performance achieved becomes u(v−1(w)).

Recall that Wrs (Ai(α)) = v(α), so that v−1(w) = 1+ 2π−w, and hence for algorithms Ai we can
easily compute ui(v−1(w)), i = 1, 2. For A ′2 we recall that Avg

(
A ′2 (αβ, β)

)
is decreasing in β. Since v−1

2
does not admit a closed form, we need to observe that 2.999 + π − β/2 ≤ v2(β) ≤ 3 + π − β/2 for all
β ∈ [0, β0] so that an upper bound for Avg

(
A ′2 (αβ, β)

)
admitting worst-case performance w can be

computed by u′2(12.2812− 2w).
Now for each w ∈ [w1, w2] we need to specify which of the evacuation algorithms we will invoke.

Please note that in Theorem 6 we chose the range of α in A1 to start from 1 so that as to guarantee that
Wrs (A1(1)) ≥ w0. We note that u′2(12.2812− 2w) = u1(1 + 2π − w) for w′ ≈ 6.12851, so algorithm
A1 should be invoked for w ∈ [w1, w′] (and w′ is obtained for α′ := 1 + 2π − w′ ≈ 1.15468), then A ′2
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for w ∈ [w′, 3 + π] (and w′ is obtained for β′ so that v2(β′) = w′, where β′ ≈ 0.0241653), and A2 for
w ∈ [3 + π, w2]. We conclude with the next Theorem (for convenience, the values of all constants are
summarized at the end of Section 2.3).

Theorem 7. For every w ∈ [w1, w2], the optimal solution to 2EVACw
F2F is at most g(w), where

g(w) =


−0.00889w3 + 0.0248026w2 + 0.338241w + 3.88629 , w ∈ [w1, w′] (A1(α), α ∈ [α′, ᾱ])

−4245.38w3 + 77893.3w2 − 476397.w + 971235 , w ∈ [w′, 3 + π] (A2(αβ, β), β ∈ [0, β′])

0.093056w2 − 1.70215w + 11.6328 , w ∈ [3 + π, w2] (A2(α), α ∈ [0, π − 2])

7. Conclusions and Open Problems

We offered a new perspective to the well-studied problem of evacuating two robots from
the disk, in the face-to-face model, first introduced in [1]. A series of results pertaining especially
to the same domain have focused exclusively on deterministic algorithms and their worst-case
(competitive) analyses. Our work can be understood as a first attempt to study the same problem
in the realm of randomized algorithms. More specifically, in light of known positive results for
the problem, we asked the question of minimizing the average-case performance of an evacuation
algorithm, condition on that the worst-case performance remains bounded. We allowed that latter
bound to range between the best known guarantee of a simple yet efficient evacuation algorithm (that
was introduced in [1]) and that of a naive algorithm that simulates the optimal solution of one searcher.
Our main contribution is the introduction of three new evacuation algorithms that perform well for
different values of the worst-case bound, inducing a continuous bound of the efficient (pareto) frontier
for the underlying multi-objective optimization problem (that of minimizing both the worst and the
average-case performance). We also motivated our results by verifying, somehow surprisingly, that
among the family of algorithms introduced in [27], which gave the second subsequent improvement
of the worst-case performance, none of them could improve the average-case performance of the
simple algorithm presented in [1]. In that sense our new algorithms outperform the best algorithms
known for the problem, but in the new multi-objective setting. Our findings give rise to several
open questions and directions that aim to better understand 2EVACw

F2F as well as multi-objective
optimization search-type problems.

Open questions specific to our problem 2EVACw
F2F are:

- Prove lower bounds for 2EVACw
F2F, for any w. Is any of our algorithms, for any w optimal?

- For the value w = Wrs (B1), we designed algorithm A1(α) for 2EVACw
F2Fwhich for a proper value

of a has worst-case performance exactly w, while its average-case performance is strictly less
than Avg (B1). Is it feasible to attain worst-case performance strictly less than w, while having
average-case performance at most Avg (B1)?

- The bound to the efficient (pareto) frontier we derived for problem 2EVACw
F2F is indeed continuous,

with respect to parameter w, but not differentiable. Is the optimal pareto frontier smooth, or is
there any other family of algorithms that improves upon our results and gives a smooth transition
between families of evacuation algorithms?

- The algorithmic families we derived for 2EVACw
F2F exhibit the following property. A2 is a natural

extension to B2. Similarly, A ′2 is a natural extension to A2. Finally, A1 is a natural extension to B1.
However, A1 and A ′2 have different behavior (there are no values of their parameters that induce
the same evacuation protocol), even though for a proper choice of their parameters, they induce
algorithms with the same worst-case and average-case performance.

- Observe that the average-case performance of B2 is 1 + π. All our evacuation algorithms induce
average cost at least 1+π. We conjecture that even in the wireless model, as well as for any number
of robots, 1 + π is tight lower bound for the average performance of evacuation algorithm.
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We conclude with some future directions that are inspired by our work and pertain to more
general problems:

- Our algorithms can also be interpreted as randomized algorithms that have access to infinitely
many bits (or enough many bits, in order to simulate a uniformly random deployment point on
the circle). What if the algorithm has access only to a limited number of random bits?

- To the best of our knowledge, the current paper is the first attempt to study multi-objective
optimization search-type problems. It was followed by [48,49] who considered time energy
trade-offs for a search problems on the line. This line of research admits many future
directions based on any combination of multiple objectives, e.g., worst-case, average-case and
competitive cost, time, energy and any other efficiency measure, or even trade-offs involving
number of faults or even complexity resources, e.g., memory, communication or randomness.
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