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Abstract: Due to the growth of users and linked devices in networks, there is an emerging need
for dynamic solutions to control and manage computing and network resources. This document
proposes a Distributed Wireless Operative System on a Mobile Ad-hoc Network (MANET) to manage
and control computing resources in relation to several virtual resources linked in a wireless network.
This prototype has two elements: a local agent that works on each physical node to manage the
computing resources (e.g., virtual resources and distributed applications) and an orchestrator agent
that monitors, manages, and deploys policies on each physical node. These elements arrange the
local and global computing resources to provide a quality service to the users of the Ad-hoc cluster.
The proposed S.O.V.O.R.A. model (Operating Virtualized System oriented to Ad-hoc networks)
defines primitives, commands, virtual structures, and modules to operate as a distributed wireless
operating system.
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1. Introduction

The inclusion of communications on computer systems has allowed for new dynamics between
devices and users, the deployment of new services, and the demand for new features. The constant
evolution of hardware and communication systems enables new kinds of technologies that increase the
productivity of traditional systems such as the Internet, education, surveillance, monitoring systems,
networks, and others.

Therefore, there are more wireless technologies embedded in a mobile device and supporting
different cellular networks such as 2G (GSM CSD, GPRS); 3G (UMTS/HSDPA); 4G (WiMAX, LTE,
LTE-A (HSPA + LTE)); and 5G technologies. These rely on a central base station and a set of cells
to provide services and coverage. However, these systems are prepared to support short-range
communications that have rapidly evolved by reducing the size and increasing the computing capacity
of microchips, allowing for overlapping networks within the same device. Two technologies are
outstanding in that evolution: Bluetooth and IEEE802.11.x. When using wireless mobile devices, it is
possible to build networks known as MANET (Mobile Ad-hoc Networks), which can be configured
autonomously, do not require centralized control, and can automatically recover in case of failure.
An alternative to exploit the features offered by MANET is to use mobile clouds [1] as a platform to
sharing resources in a cluster lead to take advantage to MANET features.
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The massive number of users and services linked together brings new challenges due to the dynamic
and stochastic behavior of distributed systems such as the Internet. Users consume applications and
computing resources that are eventually shared on the network. The newly developed architectures
provide users with Information Technologies services (IT), applications, platforms, information,
monitoring, control systems, etc., to manage services and administer resources between the edge and
the core network.

Currently, the devices and systems deployed on the edge layer can be classified in three types [2]:
Mobile Edge Computing (MEC), Fog Computing (FC) and Cloudlet Computing (CC). The MEC
includes interactions with cellular networks and offers some cloud services in the cellular cell; the FC
has a computing layer before the Cloud layer to store and process data; finally, the CC is deployed on
dedicated devices with robust computing capacities, commonly called micro data centers.

The main contribution of this paper is the design and implementation of a distributed wireless
operating system, dedicated to the dynamic management of computing resource in MANET devices [3].
The goal is to find a solution to dynamically (re-)organize computation tasks on available network
resources and node status. The operating system uses two elements to create and deploy virtual
resources: abstraction and the primitives, which are managed by the Local Agent (LA) that resides
as an instance on each physical node and the Orchestrator (OR) that work on one or more nodes to
monitor and deploy policies on the distributed operating system.

This paper is organized as follows: Section 2 presents a review of the existing solutions similar
to the one proposed here. Section 3 introduces the reference models adopted in the debate for the
system architecture and application workload. Section 4 describes the implemented prototype and
the experimental demonstration of the proposed solution, showing its effectiveness. Finally, Section 5
presents the final observation and future work.

2. Wireless Distributed Systems

Distributed systems were developed to manage resources in different locations and computing
devices through network links. Today, services and systems need mobility as an extra feature
in addition to cloud computing architectures that mitigate the problem of processing and latency.
Since issues related to latency and computational load can arise, it is essential to manage workflows
between applications and final devices. In this context emerges the concept of Edge Clouds [4,5],
which have been proposed to improve the Quality of Experience (QoE). In this paper, we use the
Wireless Distributed Computing (WDC) [6] concept as a framework to develop and validate the
S.O.V.O.R.A. Model proposed. WDC exploits wireless connectivity to share processing-intensive tasks
among multiple devices.

2.1. Network Management

To manage a network, wired or wireless, a lot of protocols, architectures, tiers and abstraction levels
exist and are used to deliver services to the users, and this condition made the network management
and control complex. The SDN proposes to decouple the control plane from the data plane on a
network. With this architecture, the routers and switches became logical elements of the network
provided by an external entity called Network Operation System (NOS). This controller allows for
the generation of abstractions that deploy orchestrated services at logical and virtual levels allowing
automation and control.

In this sense, NFVs are in charge of generating Virtualized Network Functions (VNF) by
separating the network functions from the hardware and offering it through virtualized services
or in general-purpose servers [7–9]. This deployment of functions requires less hardware but includes
more software abstractions for better traffic management.
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2.2. Distributed Architectures

For this case study, the enabling technologies are wireless communication, embedded system with
high multiprocessing capabilities and the virtualization techniques, which allows for the development
of a virtual system on a wireless cluster or network in order to provide systems with real time data
capture, processing and dissemination, information sharing between users and nodes, robust process
control and resource management. In order to reach this goal, it is necessary to identify and analyze
the distributed architectures that are used nowadays.

As classical distributed architecture Cloud computing allows for the modeling of ubiquitous
or on-demand network access and resource sharing capabilities to be quickly and automatically
provisioned. In this sense, customers only pay for what they use. The service models in cloud
computing are divided into three categories: Software as a Service (SaaS), Platform as a Service
(SaaS), and Infrastructure as a Service (IaaS). Orchestration services involve the dynamic deployment,
administration, and maintenance of services on the mentioned platforms, according to the needs of
customer’s. However, on wireless networks, distributed architectures such as MANETS, Fog Computing,
and IoT systems exist as study cases [10,11].

2.2.1. MANET Mobile Ad Hoc Network

A MANET [12] is a set of wireless mobile devices (nodes), which can form a network without
the support of any infrastructure or centralized control. MANETs are multi-hop networks in which
a packet is sent from a source to its destination and must cross a path formed by two or more hops
(nodes).

Therefore, every node has a dual behavior in a MANET as a router and host. MANETs are
autonomous networks that can determine their configuration parameters and recover in the case
of failure by themselves. Further, they are implemented to set up communications for specialized
applications where there is no pre-existing infrastructure or the one available is not the most suitable
for the operation’s needs.

There can be two types of MANETs: Wireless Mesh Networks (WMNs) [13] and Wireless Sensor
Networks (WSNs) [14]. As is common in MANETs, a node can function as a router and as a host,
while the WMN nodes are classified as mesh routers or mesh nodes. On the one hand, mesh routers
have minimal mobility, provide access for normal nodes and mesh nodes, and can communicate with
other mesh routers; besides, they are in charge of routing, bridging and network functions and do
not have power limitations. On the other hand, mesh nodes can be stationary or mobile and require
the efficient use of their energy supply like MANET nodes. WSNs are made up of a set of wireless
sensor nodes that are usually deployed in hostile environments and are used for event detection
(e.g., temperature and pressure measure, etc.). These sensors can perform some processing over the
information obtained and transmit the data through the network, which provides the final user with a
better understanding of the current state of the environment.

Compared to common wireless mobile devices, WSN nodes are smaller, less expensive, and have
fewer hardware characteristics and power consumption. However, due to their operating nature,
once a node has depleted or damaged its battery, it may never be retrieved.

2.2.2. Fog Computing

It is possible to deploy an architecture with heterogeneous devices and to extend the characteristics
of the cloud to edge devices, avoiding the network bottlenecks. Since the edge devices consume data
that can provide elastic computing, they can be connected ubiquitously and share their resources,
in many cases collaboratively, achieving the primary purpose of fog computing [15].

Fog computing is the relationship between edge devices and network core (cloud) [16–18].
Fog computing resources are the same for all nodes (networking, computing, and storage), and in most
cases, share the same logical abstractions of virtualization and multi-tenancy. Fog computing is typically
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used for low latency and geo-distributed applications (e.g., sensor networks and surveillance systems).
Additionally, they are used in large-scale distributed control systems as smart grids, smart buildings
and smart farming.

Inside the fog environment, tenants perceive the resources as dedicated. This is the result of sharing
resources, using virtualized file systems and a network infrastructure (e.g., Software Defined Networks
(SDN)) [19]. In Reference [20], the author proposes a set of features to deploy services and an application
within a fog environment, including node configuration, nodal collaboration, resource/service
provisioning metrics, service level objectives, applicable networking system, and security.

The fog computing is possible to implement and design with the addition of MANET features as
the duality node/router on each node, without infrastructure to exploit the computing resources on
the fog environment and scale the scope to cloud computing. In References [21,22], some architecture
is proposed to deploy services and share resources. The main objective is to optimize the Quality of
Service (QoS) of heterogeneous resource attributes and applications known as a fog colony similar
to an ad hoc cluster. In Reference [23], the infrastructure as a service approach is introduced for fog
and cloud computing. The authors proposed a resource pool manager to detect and resolve deadlock
and manage resources within the fog environment, and to achieve this objective, they employed a
so-called free space fog resources. In this case, our model is oriented to probe the feasibility to use a
fog computing or Ad Hoc Network as a cluster of resources on the paradigm of the mobile cloud.

In Reference [24], another model was proposed that employs three tiers: the first, Things tier that
manages wireless sensors, actuator networks, and mobile devices. These devices send information to
the Fog (second tier), which includes the fog nodes (switches and routers) that link the system to the
Cloud (third tier). This approach implies more computation for complex applications that cannot be
executed by a fog node alone. The authors present an algorithm called unit-slot optimization, based on
Lyapunov’s optimization technique to balance the average response time, average cost, and average
number of application loss (three-way trade-off).

These prototype sets are based on cloud computing and edge network devices to reduce latency
and improve the resources time consumption. The control is reduced and system changes are limited;
however, they can be managed by each cloud’s control systems and edge devices. Our approach is a
prototype based on this kind of architecture in order to validate the feasibility of management and to
create virtual operative systems as Wireless Distributed Computing.

In some cases, the most interesting element in a fog computing architecture is the orchestrator [25].
The orchestrator is a useful abstraction to manage and control distributed systems. It observes, decides,
and acts, through policies defined by the system administrator, an artificial agent, or some script.
This kind of computing artifact, used at different tiers of computing infrastructure and services [25],
is commonly shown in systems such as Software Defined Networks (SDN), Network Virtualization
Functions (NFV), and Cloud computing application resource management. These three technologies
converge in the same artifact: the orchestrator, as shown in Figure 1.
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The development of this kind of computational artifact adds a new set of policies to manage
fog nodes and interact with cloud nodes. The framework for the management and orchestration of
smart cities applications is presented, following the guidelines of the European Telecommunications
Standards Institute (ETSI) and NFV Management and Orchestration (MANO) architecture. The fog
orchestrator is responsible for managing the life-cycle of micro-services, monitoring and analyzing the
system, generating an interface with the fog decision model, and registry of the new VNF and Network
Services (NS).

Other architecture used to deploy distributed wireless systems such as the Wireless Sensors
Networks (WSN) as a low cost computing system that provide scalable features at communication,
architecture and resources, for the frameworks to manage the sensors and the communications,
the theoretical solutions are based on algorithm that evaluate the performance and state the sensors,
while they perform measurements simultaneously, the comparison of distributed algorithms is
presented at Reference [27] with a simulation tool on two different network topologies.

2.2.3. Operating Systems for Distributed Systems

For deploy distributed systems such as IoT/Fog environments, it is common to use embedded
system such as main devices, exist software and operating systems to manage the computing resources
and communications on these devices. Some of them are for general purpose end devices used for
deploy services and to create environments between end devices and services on the cloud or local
servers. A taxonomy for IoT operating systems is proposed at Reference [28], based on the amount of
computing resources, communication features, energy consumption, multi threading capability and
support programming languages.

An example of an Iot operating system is RIOT ([29]), which is based on microkernel architecture to
manage computing resources on IoT devices creating resource abstractions on each board. The operating
system mapping the CPU and creating a software abstraction based on APIs for the create modular
application, which is a compact and modular model to improve the requirements from IoT environments.
However, there is no distributed approach to share and manage resources on an IoT environment
or network cluster, instead of allowing the optimal use of board resources and exploiting the
device capabilities.

Other approaches for IoT architecture include the frameworks that help manage some resources
or to control the processing in some of the system’s member nodes. A case study is the prototype
of a service-oriented middleware CoTWare [30] for the management of large-scale IoT applications,
which visualize resources such as services to deploy applications, and this prototype was made with
Arduino devices and three computers to simulate service calls under the RESTful APIs model.

Another framework based on layer architecture for Iot proposes the use of Named Data Networking
for edge architectures and cloud computing [31]. In the NDN architecture, the content is treated as the
first-class citizen rather than host and names, which are used for network layer communication instead
IP addresses. This paper shows, in order to solve the challenges of real-time services and to improve
the performance of real time services, a combination of well-known innovative technologies Named
Data Network and Edge Cloud Computing to reduce the latency between services and to resolve the
user request.

The new approaches are based on container technologies such as Docker to deploy distributed
services that are joined with a middle-ward, as shown in Reference [32], which adds concepts such
as real-time containers, presented in Reference [33]. Finally, the most similar approach to this paper
was simulated with the GNS3 Simulator on a Fog Computing architecture based on virtual objects,
created on the simulator as computing resources, sensors and applications. The model and results are
included in Reference [34].
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3. S.O.V.O.R.A. Wireless Distributed Systems

One of the main problems within the architectures and structures presented so far is data
management, i.e., how can you control and improve the operation of a system that has a distributed
behavior? It is relevant to highlight that a distributed system operates at different stations. This means
that the resources are in different machines and users are not aware of the interactions between
them [35]. These distributed characteristics bring a variety of challenges for information management
and monitoring the entire status of the system. It is key to identify which services require information
consistency, availability, and partitions tolerance [36].

3.1. Architecture

The architecture used on the prototype is one of the microservices. The software architecture
provides autonomy, isolation, and the definition of a task for each service or software module, so the
set of microservices composes the overall software architecture for the Distributed Wireless Operating
System. The microservices architecture is based on a simple concept: the creation of a system from
the set of services, each one of them with its small, independent, isolated, scalable, and resilient to
failure data. The decomposition of the systems into a discrete and isolated subsystem is reported in
well-defined protocols.

The key factor in microservices is the isolation, which is a prerequisite for resilience and elasticity.
It requires asynchronous communication to decouple the limits of microservices in time to allow for
concurrency and distribution. In addition, it requires Space that allows the services to move around
the system (mobility).

Figure 2 shows a set of microservices defined for the local and the OR agents to create the
minimum components to deploy S.O.V.O.R.A. on a MANET: the client and multi-thread servers for
wireless communication and message passing, the module to monitor resources, a monitor device,
log information and command execution of some message from the orchestrator or the user.

1 

 

 

Figure 2. Local Agent-Orchestrator Model.

The primitives of S.O.V.O.R.A. are oriented to the distribution of resources over a MANET cluster
to define the need for communication schemes. The distribution of tasks in the system makes it
necessary to identify the elements called objects:

• Nodo (Node): Represents the physical devices.
• GGlobal (Ggroup): Represents a gorup of physicial nodes on the same MANET.
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• Group (Group): Represents a set of local agents.
• Local Agent (Agl): Represents an instance of local agent on the physical node. On each node can

exist one or more instances of LA.
• Orchesrator (Orch): Represents a global controller the system. On each MANET cluster can exist

one or more instances.

Table 1 shows the commands that are available for users on the wireless operating system.

Table 1. S.O.V.O.R.A. terminal commands.

Local Agent

is_alive()[options-node, ip] Verify the nodes on line and linked with SOVORA

node()[options-node,ip] show information about the node resources, IP and UUID

process()[options-node,ip] Show the process running on execution time on local node

Orchestrator

sstatus [options][ip, port] Shows the system status

nstatus [options][ip, port] Show the MANET status

SOVORA

server [options][ip, port] Create a multi thread server on specific node

global()[options-ssid] Shows the node member on the MANET cluster

org()[options-ssid] Shows the network organization

gglobal()[options-nodes] Create a communication group between local agents

disk()[options-app] Provision disk space

cpu()[options-app] Provision a thread

mem()[options-app] Provision distributed memory

io()[options-app] Provision I/O devices connection

pidg()[options-nodes] Shows the process on all systems nodes

dprocess()[options-node,ip] Create a process on specific node

mess()[options] Create a broadcast message

clock()[options] Set the systems clock

3.2. The Orchestrator

The OR is a process that runs periodically on the fog controller node(s) in the user space at the
top of the OS. As a centralized controller, the main tasks are: (i) to collect the status information from
each node to build an overview of the distributed system’s status, and (ii) to send the commands to
compose the workload or user requests to the distributed applications.

The Ad hoc mode supports communications between the local agents and the applications on the
system. It has the following microservices:

• Server: It is a microservice that create a server multi-thread for the communication between nodes
and applications.

• Client: A microservice managed by the local agent that creates a multi-thread client to collect
information about the node applications, send messages to deploy applications, and set the
throughput and the resources consumption in each node.

• B.A.T.M.A.N. protocol: Proactive network protocol that works on ad hoc mode on IEEE 802.11
standard. The Protocol allows for communication between nodes and orchestrator due to the best
route based on transmission quality factor. The communication is a multi hop on the cluster.
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• Alfred Service: A microservice used as module to enable the node discovery service, on the
network through B.A.T.M.A.N. protocol that allows signaling and to identify the orchestrator on
the network.

• Server Apps: It is a microservice that receives the information or results from the applications and
sends it to the user or destination node.

The orchestrator has the policies with the information about the current state of the system, which is
the desired state. To reach it, the task distributor microservice program the tasks via the scheduler
and the network manager that has the information about the network state and the identification of
the nodes.

The resource manager is a module that has microservices to monitor and make the assignment
of computing resources in the network, deploying more services among MANET clusters.
Microservices are applications, containers (Docker containers used to deploy distributed applications),
networks, and computing resources.

3.3. The Local Agent

Similarly to the OR, the LA is a process that runs periodically in the user space at the top of the OS
as one or multiple instances on the node to manage different resources or applications. The LA interacts
with the OS to collect information related to the status of hardware resources, running applications,
and MANET. Perform resources and workload control are based on that information. As shown in
Figure 3, the LA has a set of microservices to allow for interaction with the running applications
and to carry out monitoring and control at the application-level, estimating the computing resources
consumption of the node, communicating periodically with the OR, sharing the status of the node and
receiving execution requests. The modules are as follows:

• Ad hoc Mode: This module enables the communication between the LA and the OR to send and
receive the commands or the log information with the Alfred service.

• Monitor App: A microservice that monitors the application performance. A controller links the
LA to applications designed for use in the system.

• Information: A microservice that collects the local information such as computing resources (CPU,
Memory, Storage, I/O) and applications state, and the LA sends it to the OR.

• Monitor Device: A microservice that shows the information in real-time executed as a thread.
• Log: A microservice that stores all logging information about resources, messages,

network interface state, and local and global interactions in each node or instance.
• Command Exec: A microservice that receives the messages from the users or the OR to execute,

stop, or exit some distributed application.
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Algorithm 1 shows the LA routine and the tasks carried out to keep the system in operation and
communication between member nodes of the system and the OR. The input for the algorithm are
the main services for the framework as the communication in the Ad hoc mode, as well as the OR
discovery service and the communication servers with the different entities signalized in the system.
Subsequently, the applications are deployed in docker containers, where the application controller is
located and deployed, considering the number of cores available for execution.
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Algorithm 1. Local Agent Algorithm.
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The main process occurs on lines 5 to 28, where arrangements to save the history of resources are
consumed in the node. For example, the %CPU is the resource to be saved as a value. This task is done
globally at the node level and locally at the container level. In the same way, the performance of the
running applications is monitored. These values are stored and sent to the OR (lines 29 to 31). In this
process, it is important to highlight the execution of policies (lines 1–4) where there is a server thread
that waits for the instructions to execute the application policies contained in the LA.

3.4. Network

In the proposed empirical model, the MANET was deployed with the B.A.T.M.A.N. protocol [37]
that works on an ad hoc mode in the IEEE 802.11 standard set on the wireless NIC. The self-configuration
is based on the avahi-daemon for setting an IP address dynamically. The discovered node uses the
ALFRED messaging service [38] that publishes in the MANET and the information of each node as
messages with an ID. Only nodes in the same cluster or ESSID can reach the messages on the network.

While each node has a label to link and register with the OR, the LA enables the ALFRED protocol
to send information over the MANET (Figure 4). The messages that pass between the nodes are
through MANET control messages, while the ALFRED protocol messages are used as a json file with
information about the node label, local states, available resources, application states, and network
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status. The information is collected by the local agent and sent to the OR to be analyzed and saved in
its repository. The information collected is used to manage resources, applications, and tasks in the
distributed wireless OS. The B.A.T.M.A.N. routing protocol is useful to reduce the latency and to know
the location of the nodes according to the number of jumps between the nodes and the MAC address
of the wireless NIC.
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The second phase is controller-LA communication, as shown in Figure 5. This communication is
made from the LA to the distributed application; in this case, the application is located in a Docker
container with the controller, which links the applications to monitor the performance. Thanks to this
communication, it is also possible to adjust the operation speed of the applications, and in this sense,
the number of resources used by the application. This scheme allows for monitoring at three levels:
the hardware, the state of the mapped resources, and the applications deployed in the system.

The model proposed by S.O.V.O.R.A. is modular, despite being deployed on top of the operating
system, and there is a hierarchy of layers (Figure 3). The first modules are necessary for the
implementation of the wireless ad hoc communication mode with the B.A.T.M.A.N. routing protocol.
The node discovery module works on the ad hoc mode using the messaging service provided by
ALFRED. For deploy applications, the Community Edition (CE) docker engine, and the micro-services
architecture are used to create, deploy, and monitor applications. The modular model allows for the
transition from edge networks to cloud computing.
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The second layer is composed of three elements: the communication module that connects to the
ad hoc kernel module and generates multi-thread servers and client services in the MANET; the load
balancer that defines the abstractions of the control and data planes through the flow control strategies;
and the local agent that manages the other two elements of the layer are present in each node (minimum
one instance per node), and this also performs the execution and monitoring of tasks and service
requests from users.

Monitoring local resources and application states is one of the basic services, and the OR executes
this feature. The working layer is deployed in a single physical node for the control of the operating
system (it is possible to deploy one or more ORs for MANET cluster). The last layer creates a simple
distributed surveillance application with a monitoring service inside with some micro-services such as
monitoring and web services deployed in docker containers.

The prototype contains two artifacts for its operation, the LA agent and the OR agent, both working
over a MANET. Considering that the nodes can work as routers and clients, the artifacts use the
Better Approach To Mobile Adhoc Networking (B.A.T.M.A.N.) as routing protocol, giving this model
the ability to mitigate problems associated with coverage and hidden nodes, as well as allowing
node discovering.

The LA acts with two roles: first, as a reactive agent, which executes the resources control policy,
this model allows for controlling the applications to be deployed. In this case, each application is in
a container and has a controller for its deployment. The model allows for having one or more local
agents in one device to control resources and to monitor the applications. Second, as a deciding agent,
the agent decides to apply the policies by sending them across the MANET. The local agent decides the
amount of resources in the application container for the applications. The second element is the OR is
an agent that can be deployed on unique node or each node on the network. It decides if an application
is executed and continues the load balancing policy for the devices on the network. The agent has
information about the global and local states of each device (CPU throughput, memory consumption,
available bandwidth, network availability, and apps performance). This information is periodically
received from local agents that inform the status of each node. In this environment, the OR model offers
the possibility of monitoring different nodes and applications, allowing for the control of variables
such as energy consumption, application distribution, and computing resources. These experiments
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only use one instance of an orchestrator agent due the limited physical nodes to manage the network
(the experiment has six physical nodes).

The OR also allows for the control of distributed wireless operative systems and their interactions,
e.g., communication between nodes, allocation, and assignment of computing resources on all cluster,
distribution and management of throughput of the applications distributed on each node.

4. Experiment and Results

To validate the report of this work, the abstraction of a distributed wireless operating system was
implemented, which dynamically manages computing resources in Devices on a MANET.

The experiment and test bed were based on the embedded devices referenced in Table 2 and the
goal was to demonstrate the feasibility and viability and of this approach. These devices have LA and
OR similar to the distributed applications in docker containers (launched and monitored by the LA).
Global states are sent to a multi-thread server in the OR and are stored for use when the tasks are
distributed in the system (workload). The first part of the deployment is the MANET creation and
the discovery of nodes and resources. Then, the OR processes the user’s requests as a workload for
the wireless OS. The test application was designed as a distributed video-conferencing application
segmented into containers, as shown in Figure 6. Each container has a microservice of the application
processing, as shown in Table 3, which comes from the benchmarking suite MiBench [39]. In addition,
each application is launched in a core or a different node depending on the OR policy. The throughput
is set in the same way to manage and distribute workloads evenly on the network nodes; the results are
sent to the source or a client for display. This model makes it possible to control computer resources
such as energy, and to reduce the processing time of distributed applications; the power was measured
with the smart power 2 [40] with more granularity and precision to create a consumption power model
for each device on the MANET.

Table 2. Board information.

Device Architecture Processor Fam. Chip Cores Arm_Freq
(MHz)

Gpu_Freq
(MHz)

Mem
(MB) Wifi_Chip

RPi 3 ARM ARM Cortex-53 Broadcom
BCM2837 4 1200 400 1024 CypressCYW43438

RPi zero
w ARM ARM11 Broadcom

BCM2835 1 1000 400 512 CypressCYW43438

Rpi 2 ARM ARM-Cortex-A7 Broadcom
BCM2836 4 900 250 1024 External

Odroid ARM ARMV8 Samsung
Exynos5422 8 2000 533–295 2048 External

Table 3. Selected applications for the use case.

Application Algorithm Resources

Security SHA CPU, Mem, Bandwidth
Image Processing JPEG CPU, Mem, Bandwidth

Audio ADPCM CPU, Mem, Bandwidth
Image Processing SUSAN CPU, Mem, Bandwidth
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4.1. Proposed Testbed

To characterize the energy consumption, an experimental validation was carried out with the
MiBench benchmarking suite, with the algorithms listed in Table 3 to measure the energy consumption
at different CPU rates, which were controlled through processor frequency. The linearization of the
output function can be seen in Figure 7. This generated output function is the basis of the OR policy to
select the destination node in terms of the task to be performed on the network or application selected
by the user.

In the same way, communication in the ad hoc mode was validated through the proactive routing
protocol B.A.T.M.A.N. With the transmission of data (14 MB for test) validating the routes and the TQ
value—Transmit Quality—as an additional factor for the selection of the destination node, taking the
measurement of power consumed by each transmission carried out; the results can be seen in Table 4
for network protocol and in Table 5 for energy on a RPI 3.

The OR monitors the network nodes’ status and its resources, creating a virtual abstraction of the
resources mapping on each node and the amount of resources free for use on the distributed wireless
OS and managing it. The test policy is quite simple but it can be customized, for the purposes of the
experiment, when mapping the available resources from the information provided by each local agent,
and it is stored in the orchestrator which compares it with the information referring to the energy
consumption model, the TQ value and the state of charge of the processors of each node. Based on
this information, it creates a workload and dispatches it depending on the state of resources and the
available route for delivery of the task.

Table 4. Test Ad hoc-batctl/batman-adv RPi 3.

RPi_3batctl 14 MB Rpi_Zero 14 MB Odroid

%CPU 100.00 100.00
Time (s) 10.19 10.54

Power (mW) 2211.88 2230
Energy (J) 2211.88 2230

Throughput (MB/s) 0.8893 1.7
MB Send 7.605 18.5
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Table 5. Power Consumption RPI 3 + Wifi.

POWER +WIFI RPi 3

APP IDLE 50%THR_MIN 75%THR_MAX THR_MAX

SHA 1689.95 1839.75 1938.41 1991.14
ADPCM 1689.95 1856.52 1906.49 1995.51
SUSAN 1689.95 1850.2 1902.81 1942.54

JPEG 1689.95 1852.39 1905.52 1929.54

4.2. Logs and Events

The OR main goal is to manage, with equality, the resources available in the MANET cluster
depending on the user’s requests and the global status of the system. For the users, a simple terminal
as an interface to send the requests to the system to processing with the OR is available. Figure 8
shows the output of information collected for the OR of the network, OS resources available and tasks
running on each node.

Based on the events and the information generated by all nodes sent through the local agent
(Figure 9), the operating system abstraction generates an event log (Figure 10) with data of connectivity
state, application status and workload of each of the local agents in the system. It is important to
indicate that, given the number of devices, the experiment can be performed with a single orchestrator
and the local agent instances in each of the member nodes of the ad hoc network. This information is
local and sent to the orchestrator who is signaled through the network as the only member with the
correct information of the system, making consensus between the members of the network and the
operating system for its operation. If there are more orchestrators, the raft consensus algorithm [41]
is used to guarantee the integrity and availability of the information among the local agents that are
members of the network.
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4.3. Experiment Results

With the test bed on execution, we ran some application on the system as an operating system
task, and then take the measure of energy and application throughput on each node, as shown in
Figure 11, which shows the measure of the energy consumption of the Odroid node carried out when
using the smart power meter 2. In this case, the peak shows the maximum CPU consumption of these
nodes with a simple task and as these measure, which is stabilized through the orchestrator messages
and parameters sent to a local agent on this node. In this way, the CPU heartbeats resource, available in
the MANET, is managed, and their relationship with the energy consumption is controlled. The peaks
occur at the beginning of the execution of each application since the application is always trying to use
100% of the resources. The OR sets the processing rate and sends the desired throughput to the LA
that processes it on the docker container.Information 2020, 11, x FOR PEER REVIEW 16 of 22 

 

 

Figure 11. Odroid power consumption. 

The first study case is with one node performing the deployment of six containers in each 

core of the embedded system Odroid (Figure 12). This parallel application can be executed in the 

Odroid due to its capabilities (Table 2), which have four little architecture cores, four of big 

architecture, and a variable frequency on each core. This test shows the possible execution of 

concurrent applications, in this case the set of algorithms from MiBench as workload created by a 

users that do not have a huge load for processing. These set of applications running concurrently are 

the model of a distributed application, as a paradigm to deploy services and applications on the 

wireless distributed operating systems, the traditional application models do not allow for the 

deployment of services in a distributed way. 

 

Figure 12. Application performance over Odroid node 0. 

The second experiment was performed using five nodes (4 RaspBerry PI-3 and 1 RaspBerry Pi-

Zero W) running different applications distributed on them. Nodes 2 and 4 run the SHA encryption 

algorithm, while nodes 1 and 5 perform images processing using JPEG coding-encoding and node 3 

performs ADPCM audio coding. After processing of all this information, it is sent through the MANET 

and to the LA, which delivers the result to the final user. 

Figure 13 shows the results of the execution of each core on each node begin with the maximum 

throughput and then converge to the throughput indicated for the OR, for instance node 2 begins 

with a throughput of 16 heartbeats by second and converge at 10 heartbeat at second, at the same 

way the other nodes reach the performance given for the orchestrator policy. 

Figure 11. Odroid power consumption.

The first study case is with one node performing the deployment of six containers in each core of
the embedded system Odroid (Figure 12). This parallel application can be executed in the Odroid due to
its capabilities (Table 2), which have four little architecture cores, four of big architecture, and a variable
frequency on each core. This test shows the possible execution of concurrent applications, in this case
the set of algorithms from MiBench as workload created by a users that do not have a huge load for
processing. These set of applications running concurrently are the model of a distributed application,
as a paradigm to deploy services and applications on the wireless distributed operating systems,
the traditional application models do not allow for the deployment of services in a distributed way.
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Figure 12. Application performance over Odroid node 0.

The second experiment was performed using five nodes (4 RaspBerry PI-3 and 1 RaspBerry
Pi-Zero W) running different applications distributed on them. Nodes 2 and 4 run the SHA encryption
algorithm, while nodes 1 and 5 perform images processing using JPEG coding-encoding and node
3 performs ADPCM audio coding. After processing of all this information, it is sent through the
MANET and to the LA, which delivers the result to the final user.
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Figure 13 shows the results of the execution of each core on each node begin with the maximum
throughput and then converge to the throughput indicated for the OR, for instance node 2 begins with
a throughput of 16 heartbeats by second and converge at 10 heartbeat at second, at the same way the
other nodes reach the performance given for the orchestrator policy.Information 2020, 11, x FOR PEER REVIEW 17 of 22 
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Figure 13. Application performance over each node.

If a new service is required, information about the status of the resources of each node is sent
to the OR, which is the source of the application distribution. Figure 14 shows the constant energy
consumption of node 2 in the second experiment when a distributed application (containers) is
deployed. To send the task, the Orchestrator sends messages every second to neighboring nodes and
local agent instances to validate their status based on the CPU consumption and the node’s energy
measurement, in the same way it validates the available resources to assign the task, and this, with the
orchestrator’s clock, is a measure of time in the operative system.
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Figure 14. RPI node 2 power consumption.

Figures 15–17 show the cases in which an application was deployed in each core available in
each node, and its throughput was controlled to manage energy and CPU consumption. This process
allows for the management of the resources distributed in a MANET in a stochastic and dynamic
medium. In the same model, it is possible to manage other distributed resources as memory, storage,
and I/O devices.
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The OR verifies the global performance and tries to converge the throughput in all the nodes
to optimize the resources consumption and the workload distribution among the MANET nodes.
Figure 18 shows the performance results of each node in the distributed wireless OS.
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Figure 18. Throughput for node; workload controlled by OR.

With this test scheme, we have demonstrated the possibility of having an implementation of
a distributed wireless operating system with two abstractions, the local agent and the orchestrator,
which can exist as instances in the nodes of an ad hoc network. In this case, the control of the nodes is
by the orchestrator agent based on a policy of energy consumption, which is used to distribute loads
through the wireless network, together with the information sent by each node on the state of the
resources computation of the nodes and their load at the 468 application level.
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This method allows for the generating of an abstraction of the operating system in order to
manage distributed computing resources, to create a model to distributed applications, with all of them
running on a MANET, even though these models can be replicated on other wireless infrastructures
and technologies. Our first approach was with the IEEE802.11x ad hoc mode. Taking advantage of
proactive routing protocols as a mechanism for discovering nodes, routes and services available in the
S.O.V.O.R.A. without the traditional load in the IEEE 802.11 infrastructure mode.

5. Conclusions

The wireless distributed operating systems are a paradigm that involves the network stochastic
and dynamic behavior, due the mobility and the channel shared conditions on wireless networks.
On our approach, the nodes on the network are a pool of computing resources that are available
for the users in order to deploy applications and services as a distributed operating system. For the
deployment, this system is needed to create a model of distributed applications in order to test the
complete scenario for a wireless distributed operating system.

Wireless distributed OS have potential in environments such as IoT, fog computing,
edge computing, and similar, as they allow for load balancing, sharing and managing computing
resources under the mobile cloud model. Our approach uses two kinds of agents: the Local Agent
and Orchestrator based on a scheme that can check the local and global data from each node on
the network to control the distributed computing resources of the network—in this case, a MANET.
Thanks to its auto-configuration properties, this kind of network allows for the deployment of services
without infrastructure and to mitigate some routing problems. Due to continuous communication
and signaling supplied by the B.A.T.M.A.N. protocol, the proactive routing protocol allows for the
distributed application approach, and the deployment of the isolated micro-services in containers on
each node as instances, setting the amount of resources needed for the deployment of applications
in different nodes of the distributed wireless OS. This is similar to how B.A.T.M.A.N.-adv works on
the second network layer, which reduces the traditional network layers workload, if it compares the
infrastructure mode on IEEE 802.11.

The model proposed allows for deploy services as the node discovery, node signaling, fail detector,
instant messaging and so on, due to the updating of routes on all networks, and the disseminated
of routes and system information in all nodes on the network every second, these features allow
for the distribution of tasks, to know the status of resources on the network, to create software and
hardware abstractions by passing messages onto the agents (LA and OR) on ad hoc mode and to
deploy distributed applications.
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