
 information

Review

Monte Carlo Based Statistical Model Checking of
Cyber-Physical Systems: A Review

Angela Pappagallo * , Annalisa Massini * and Enrico Tronci *

Computer Science Department, Sapienza University of Rome, Via Salaria 113, 00198 Rome, Italy
* Correspondence: pappagallo@di.uniroma1.it (A.P.); massini@di.uniroma1.it (A.M.);

tronci@di.uniroma1.it (E.T.)

Received: 2 November 2020; Accepted: 7 December 2020; Published: 21 December 2020
����������
�������

Abstract: The ever-increasing deployment of autonomous Cyber-Physical Systems (CPSs)
(e.g., autonomous cars, UAV) exacerbates the need for efficient formal verification methods. In this
setting, the main obstacle to overcome is the huge number of scenarios to be evaluated. Statistical
Model Checking (SMC) is a simulation-based approach that holds the promise to overcome such an
obstacle by using statistical methods in order to sample the set of scenarios. Many SMC tools exist,
and they have been reviewed in several works. In this paper, we will overview Monte Carlo-based
SMC tools in order to provide selection criteria based on Key Performance Indicators (KPIs) for the
verification activity (e.g., minimize verification time or cost) as well as on the environment features,
the kind of system model, the language used to define the requirements to be verified, the statistical
inference approach used, and the algorithm implementing it. Furthermore, we will identify open
research challenges in the field of (SMC) tools.

Keywords: statistical model checking; Cyber-Physical Systems; Monte Carlo sampling

1. Introduction

The ever-increasing deployment of autonomous Cyber-Physical Systems (CPSs) [1]
(e.g., autonomous cars, Unmanned Autonomous Vehicles) exacerbates the need for efficient formal
verification methods [2]. In this setting, the huge number of scenarios to be evaluated (scenario explosion)
is the main obstacle to overcome. Statistical Model Checking (SMC) [3] holds the promise to overcome
this obstacle by using statistical methods to sample the set of scenarios.

SMC algorithms use a simulation-based approach and statistical inference over observations in
order to establish the correctness of the System Under Verification (SUV), within statistical confidence
bound. Statistical inference can be applied for two different purposes: (i) Hypothesis Testing (HT),
allowing to infer whether the observations provide statistical evidence of the satisfaction of a property
defined over the system; (ii) estimation, allowing to compute approximated values for some system
parameters, whose probability distribution has to be known a priori.

Many SMC tools have been developed, suggesting how to carry out simulations and how many
simulations to perform. The simulation runs affect the performance of each tool, which significantly
varies according to several features. As a consequence, it is hard to know a priori the best tool suited
for the verification problem at hand. In this work, we will overview a set of the Monte Carlo based
SMC tools, currently available for research purposes, in order to provide selection criteria based on
Key Performance Indicator (KPI) about: the verification activity (e.g., minimize verification time or
cost); the environment; the kind of system model; the property specification language; the statistical
inference approach; and, the algorithm that implements it. For example, if the verification KPI is to ease
the parallelization of the simulation activity, our analysis allows us to identify the tools that compute
beforehand the number of simulation runs needed to attain given statistical confidence. On the other

Information 2020, 11, 588; doi:10.3390/info11120588 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-2932-4423
https://orcid.org/0000-0002-0377-3119
http://dx.doi.org/10.3390/info11120588
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/12/588?type=check_update&version=2

Information 2020, 11, 588 2 of 24

hand, if the main verification KPI is the number of simulation runs, our analysis allows for us to
identify the tools that minimize the number of scenarios to be sampled.

Of course, many SMC reviews are available. For example, Agha et al. in [4] give a very extensive
survey of most of the tools available to the academic community, giving details about the kind of
input models, the logic used to define properties, which emphasizes current limitations and trade-offs
between precision and scalability. In [5], Reijsbergen et al. present a comprehensive overview of
different algorithms performing HT (that will be discussed in Section 4.1). For each algorithm,
the work in [5] focuses on its characteristics and performance. In [6], some of the most popular and
well-maintained SMC tools are reviewed. The tools are compared based on their modelling and
property specification languages, capabilities, and performances, in order to help users to select the
most suitable tool to use.

Summing up, the output of our analysis is the following. First, providing tool selection criteria
based on the five-tuple consisting of: SMC tool, environment model, SUV model (e.g., Discrete-Time
Markov Chain (DTMC), Continuous-Time Markov Chain (CTMC), etc.), property specification,
and statistical inference approach. On the other hand, making a comparison with the above-mentioned
reviews: [4] focuses on tool selection criteria that are based on the pair consisting of SMC tool,
SUV application domain (e.g., CPS, biological system, etc.); [5] focuses on identifying which SMC tool
implements a given verification algorithm; and, [6] focuses on tool selection criteria based on the triple
consisting of SMC tool, SUV model, property definition language.

Second, identifying open research challenges in the field of SMC tools, namely suggesting
the deployment of SMC tools for the unbounded verification of hybrid systems with discrete or
continuous time.

This paper is structured, as follows. In Section 2, we give a brief introduction to CPSs. In Section 3,
we give some background information on the models that are used to represent the system to be
verified and on the logics used to define properties. In Section 4, we discuss the main differences
between the two approaches to statistical inference in SMC, i.e., HT, and Estimation. We also give
some hints about Bayesian Analysis (see, e.g., [7]), although we will not go into details. In Section 5,
we provide a taxonomy of the tools implementing Monte Carlo based SMC techniques. In Section 6,
we analyze our taxonomy and discuss open research topics.

2. Cyber-Physical Systems

Our verification setting consists of three main components: the environment, the System Under
Verification (SUV), and the specifications (see Figure 1).

SUV
Model

ENVIRONMENT SPECIFICATIONu x y

Figure 1. Simulation-based verification setting. Signal u models exogenous inputs, signal x models the
SUV state, and signal y models the verification output.

For verification purposes, we need to model both the set of operational scenarios (SUV
environment) as well as our SUV. This can be done by considering deterministic systems with stochastic
inputs (the typical Control Engineering approach) or by considering stochastic systems (the typical
Computer Science approach). When considering that from a uniformly distributed random variable
in the real interval [0, 1], we can obtain a random variable with any specific (possibly dependent on
the SUV state) distribution (e.g., as in Chapter 2. of [8]), and we can easily transform one modelling
approach into the other. Accordingy, for example, a Discrete-Time Markov ChainM can be modeled
with a hlDiscrete-Time Dynamical System S with a uniformly random stochastic input, from which we
getM state-dependent transition probability while using techniques, like the those in [8]. Finally,

Information 2020, 11, 588 3 of 24

from a practical point of view, we note that simulators will generate random numbers while using a
pseudo-random number generator. Thus, both modelling approaches lead to the same implementation.
Accordingly, for our purposes, we will consider them equivalent.

Many statistical model checkers work in a black box fashion by interfacing with widely used
commercial as well as open source simulators for the design and the verification of CPSs in many
application domains (e.g., automotive, avionics, IoT). Examples of such simulators are: Simulink [9],
Dymola [10], SimulationX [11], Wolfram SystemModeler [12], MWorks [13], and Open Modelica [14].
Because the SUV model is not visible to such black box statistical model checkers (they will just
run the simulator and check its outputs), we will not make any distinction between synchronous
or asynchronous systems for them. Of course, the the situation is quite different for white box
model checkers. They typically address this problem by defining probabilistic or non-deterministic
schedulers, as done, for example, in PRISM [15] or SMV [16], e.g., following the approach in Chapter 2
of [17]. Using such approach, white box model checkers can also model both synchronous as well as
asynchronous systems.

Because most statistical model checkers work in a black box fashion with simulators, here,
we will follow the Control Engineering approach and model our SUV as a deterministic system
with stochastic inputs.

2.1. Modelling the Environment

The environment (Figure 1) for the SUV defines the set of operational scenarios our SUV is supposed
to withstand. In other words, an environment defines the set of admissible inputs for our SUV.
Such inputs are usually named exogenous or uncontrollable inputs, since they are not under the control of
the SUV. Typical examples of uncontrollable inputs are faults, change in system parameters, inputs from
users, or from other systems.

In this section, we formalize the notion of space of input functions for a system. Such a space defines
the system environment, i.e., the set of admissible operational scenarios for our SUV. To this end, first of all,
we define the set of time instants, time set (Definition 1). In the following, as usual, the notation BA

denotes the set of functions from A to B.

Definition 1 (Time set). A time set T is a subgroup of (R, +).

For example, when considering discrete-time systems T will be the set Z of all integer numbers,
whereas, for continuous-time systems, T will be the set R of all real numbers.

Definition 2 (Space of input functions). Given a set U (of input values) and a time set T, a space of input
functions U on (U, T) is a subset of UT = {u | u : T → U.}

This allows for us to easily model application domain-dependent probability distributions on the
SUV input functions as well as stochastic sampling strategies on the SUV input functions.

The above approach is quite convenient, since, in a simulation-based verification, setting the
simulation model is typically deterministic and stochastic behaviors stems from uncontrollable events.

Of course, the more liberal the environment model, the larger the set of operational scenarios
under which our SUV will be verified. On the other hand, the more liberal the environment model,
the heavier the computational load entailed by the verification activity. Accordingly, a trade off
is typically sought by verification experts between the degree of assurance (i.e., to which extent all
meaningful operational scenarios have been considered) and the computational cost (and, thus,
time cost) of the verification activity.

Information 2020, 11, 588 4 of 24

2.2. Modelling the SUV

We mainly focus on the case, where the System Under Verification (SUV) is a Cyber-Physical
System (CPS), i.e., a system consisting of both hardware and software components. CPSs can be found
basically in any domain. Examples are: biomedical devices, aerospace (e.g., airplanes, Unmanned
Autonomous Vehicle (UAV), satellites), automotive, smart grid, etc. Indeed, many CPSs are safety
or mission-critical systems, which, through software components, are endowed with some degree of
autonomous behavior. From this stems the need for thorough verification of correctness of the software
controlling the CPS. This motivates our focus on formal verification of CPSs.

From a formal point of view, a CPS is basically a dynamical system whose state variables can
undergo continuous as well as discrete changes. Typically, continuous dynamics model the physical
components of a CPS, whereas the discrete dynamics model the software components.

To formalize our notion of system, the following definition will be useful.

Definition 3 (Restriction). Let I be a time interval (i.e., an interval I ⊆ T). Given a function u ∈ UI (see
Definition 2) and two positive real numbers t1 ≤ t2, we denote with u |[t1,t2)

the restriction of u to the interval
[t1, t2), i.e., the function u |[t1,t2)

: [t1, t2) → U , such that u |[t1,t2)
(t) = u(t) for all t ∈ [t1, t2). We denote

U [t1,t2) the restriction of UI to the domain [t1, t2). That is, U [t1,t2) = {u |[t1,t2)
| u ∈ UI}.

The above considerations lead us to model (Definition 4) our SUV as a dynamical system, along the
lines of [18].

Definition 4 (Dynamical System). A Dynamical System,H is a tuple (X, U, Y, T, U , ϕ, ψ), where:

• X, the space of state values ofH, is a non-empty set whose elements are said states ofH;
• U, the space of input values ofH, is a non-empty set whose elements are said input values forH;
• Y, the space of output values ofH, is a non-empty set whose elements are said output values forH;
• T is a time set;
• U , the space of input functions ofH, is a non-empty subset of UT ;
• ϕ : T × T × X×U → X, is the transition map ofH;
• ψ : T × X×U → Y is the observation function ofH.

Function ϕ satisfies the following properties:

• Causality. For all t0 ∈ T, t ≥ t0, x0 ∈ X, u, u′ ∈ U :

u |[t0,t)= u′ |[t0,t)⇒ ϕ(t, t0, x0, u |[t0,t)) = ϕ(t, t0, x0, u′ |[t0,t))

• Consistency. For all t ∈ T, x0 ∈ X, u,∈ U :

ϕ(t, t, x0, u) = x0

• Semigroup. For all t0 ∈ T, t > t1 > t0, x0 ∈ X, u ∈ U :

ϕ(t, t0, x0, u |[t0,t)) = ϕ(t, t1, ϕ(t1, t0, x0, u |[t0,t1)
), u |[t1,t))

In the following, unless otherwise stated,H denotes the tuple (X, U, Y, T, U , ϕ, ψ).
From a formal point of view, a CPS is just a dynamical system, where T is the set of nonnegative

real numbers and state variables may undergo continuous (to model the physical part of the system)
as well as discrete (to model the software part of the system) changes. This typically means that
ϕ is not continuous (but, typically, may be assumed continuous almost everywhere). Definition 4
is general enough to encompass discrete as well as continuous-time systems and finite as well as
infinite-state systems.

Information 2020, 11, 588 5 of 24

We refer the reader to Section 1 of [18] for examples of how familiar systems fit Definition 4.
In particular, on how from a state-based description of the system dynamics (e.g., through Ordinary
Differential Equation (ODE) for continuous-time systems or through recurrence equations for
discrete-time systems) we can compute the transition function ϕ. In this respect, we note that, typically,
the transition function ϕ is computed by simulation while using numerical techniques (e.g., see [19]),
since it is seldom available in a closed form (except, e.g., for linear, time-invariant systems).

2.3. Modelling the Specifications

A specification (Figure 1) defines the requirements that our SUV should satisfy for all operational
scenarios. In our simulation-based setting, a specification is also defined through a system,
as outlined below.

Notation 1 (Product of input spaces). Let T be a time set and U ⊆ UT , V ⊆ VT be input spaces. By abuse
of language we denote with U × V the set {θ ∈ (U ×V)T | ∃u ∈ U , v ∈ V s.t. θ(t) = (u(t), v(t))}.

A specification takes, as input, the SUV input (operational scenario) and state and returns a real
value assessing the extent to which requirements are satisfied. This is formalized in Definition 5.

Definition 5 (CPS Specification). Let H = (X, U, Y, T, U , ϕ, ψ) be a system. A specification for H is a
system Q = (Z, U × X, R, T, U × XT , µ, θ), where:

• Z is the space of state values of the system Q;
• U × X is the space of input values of the system Q;
• R is the space of output values of the system Q;
• T is the time set of the system Q (andH);
• U × XT is the space of input functions of Q;
• µ is the transition map of Q; and,
• θ is the observation function of Q.

Example 1 (Example of CPS Specification). LetH be the system defined by the ODE

ẋ = −3x + u

with u constant. Subsequently,H = (X, U, Y, T, U , ϕ, ψ) with:

• X = U = Y = T = R;
• U is the set of constant functions from T to U;
• ϕ(t0, t, x0, u) = e−3(t−t0)(x0 − u

3) +
u
3 ;

• η(t, x̄, u) = x̄.

Of course, in general, the function ϕ is not available in a closed form and it can only be computed through
simulation (e.g., using simulators, like Simulink, Dymola, or Open Modelica).

Suppose that we want to check that the output fromH is always close enough to u
3 . This could be assessed

by computing the Root Mean Squared Error (RMSE) of x with respect to u
3 . This leads to the specification Q

= (Z, U × X, R, T, U × XT , µ, θ), where: Z = U = X = T = R and the space of input functions of Q consists of
pairs of functions (u, x), where u is a constant function and x maps reals to reals.

Finally: µ(t0, t, z0, u, x) = z0 +
∫ t

t0
(x(τ)− u

3)
2dτ (RMSE) and θ(t, z̄, u, x) = z̄.

In order to formalize the relationship between a system and its specification, we need to define the
notion of monitored system (Definition 6) [20–22] (in the following, as usual in modern programming
languages (e.g., Java, Python), the lambda notation λt. f (t) denotes the function f that, applied to t
returns f (t)).

Information 2020, 11, 588 6 of 24

Definition 6 (Monitored system). LetH be a system and Q be a specification for it. The (H, Q) monitored
system is the systemM = (X× Z, U, R, T, U , Φ, Ψ) where:

Φ(t, t0, (x0, z0), u) = (ϕ(t, t0, x0, u), µ(t, t0, z0, (u, λt.ϕ(t, t0, x0, u))))

and
Ψ(t, (x, z), v) = θ(t, z, (v, x))

Example 2 (Example of monitored system). Using the systemsH and Q from Example 1, we have that the
monitored system (H, Q) is the systemM = (X× Z, U, R, T, U , Φ, Ψ) with:

• X, Z, U, T and U as in Example 1;
• Φ(t, t0, (x0, z0), u) = (e−3(t−t0)(x0 − u

3) +
u
3 , z0 +

∫ t
t0
((e−3(τ−t0)(x0 − u

3) +
u
3)−

u
3)

2dτ);
• Ψ(t, (x̄, z̄), u) = z̄

Thus, the output Ψ(t, Φ(t, t0, (x0, z0), u), u) of the monitored system at time t is z0 +
∫ t

t0
((e−3(τ−t0)(x0−

u
3) +

u
3)−

u
3)

2dτ.

The real value that is returned by Ψ defines our KPI evaluating to which extent the system meets
its requirements under the operational scenario that is defined by input function u. If a KPI is Boolean
(i.e., it takes only values in {0, 1}, then we have a crispy classification (i.e., the system will pass or fail to
meet the given specification), or else we have a metric classification measuring the extent requirements
are violated. On such a basis, our verification problem can be formulated, as follows.

Definition 7 (Verification problem). LetH be a system, Q be a specification forH and t0 ∈ T a time instant.
We say that H satisfies its specification Q from t0 if for all (x0, z0) ∈ (X × Z), for all u ∈ U , for all t > t0,
we have that: Ψ(t, Φ(t, t0, (x0, z0), u), u(t)) > 0.

The verification problem (H, Q, t0) consists in checking ifH satisfies its specification Q from t0 (PASS)
or, otherwise (FAIL) in providing a counterexample, i.e., a state (x0, z0) ∈ (X × Z), an admissible input
(operational scenario) u ∈ U and a time instant t > t0, such that Ψ(t, Φ(t, t0, (x0, z0), u), u(t)) ≤ 0.

To limit complexity, an upper limit h (horizon) is usually given to the value of t in Definition 7.
In this case, we have a time-bounded verification problem.

2.4. Statistical Model Checking

From Definition 7, we see that a verification problem can be cast as the problem of finding a state,
an admissible input (operational scenario), and a time instant, such that the system KPI is negative
(i.e., requirements are violated).

Of course, the above problem is computationally prohibitive in general. Thus, many techniques
have been developed to compute an approximate solution to it with formal assurance about
the verification outcomes. Basically, we have two main options: first, focus on simple models
(e.g., finite state systems) to make the problem tractable; second, use statistical techniques in order to
sample the environment (set of operational scenarios) in order to answer the verification problem
(Definition 7) with some given statistical confidence.

We note that probabilistic model checking (e.g., PRISM [15]) is an exact approach, since it
computes exactly the probability of reaching certain states and it suffers of the state explosion problem,
much as the deterministic model checking. In order to overcome this, statistical techniques are
used. Furthermore, non exhaustive approaches, for example falsification [23], do not provide a formal
guarantee about the verification outcome. Thus, both probabilistic model checking (see [24]) and non
exhaustive verification are out of our scope, because: probabilistic model checking returns an exact
result; and, non exhaustive verification does not provide a statistical confidence level.

Information 2020, 11, 588 7 of 24

SMC follows the second approach and, indeed, offers a set of methods and software tools to solve
the above problem in many different settings.

In the following, we will survey the available tools to carry out formal verification via SMC and
categorize them on the basis of the environment model (i.e., space of input functions in Definition 2),
SUV model (i.e., system in Definition 4), and specification model (i.e., SUV specification in Definition 5)
they can support. This will help users in deciding which tool to use for a given verification
task, trading off between the completeness of the environment model (all operational scenarios
represented), faithfulness of the SUV model (all possible behaviors represented), and expressiveness of
the specification language (all requirements are adequately formalized).

Finally, from a computational perspective, we will categorize tools with respect to the SMC
algorithm used. This will enable users to evaluate which kind of parallelism they can expect to easily
implement on the basis of the sampling mechanism used.

3. Background

By defining a probability measure on our set of operational scenarios U (space of input
functions—see Definition 2), we can regard the deterministic system (SUV) in Definition 4 as a
stochastic system. In such a context, the verification problem in Definition 7 will aim at estimating the
probability that the system specification is satisfied. Such a probability can be computed while using
numerical as well as statistical techniques.

Numerical Model Checking (NMC) techniques (e.g., [25,26]) need an explicit finite state model
(white box) for the SUV. They compute accurate results, but they do not scale very well to large systems,
because they suffer from the state space explosion problem.

SMC methods avoid an explicit representation of the SUV state space. They use a simulation-based
approach and statistical inference over observations in order to establish whether a property, specified
through a stochastic temporal logic (which is then transformed into a specification for the SUV as in
Definition 5), is true within statistical confidence bounds. When compared to numerical techniques,
SMC overcomes the state explosion problem and scales better to big systems, but only guarantees
correctness in a statistical sense. Nevertheless, it is sometimes the only feasible approach to the problem.

SMC takes as input a model defining the dynamics of a system S and a property ϕ, defined as a
logical formula. The goal of SMC is to decide whether S satisfies ϕ with a probability that is greater
than or equal to a certain threshold α. In formal terms, we denote the SMC problem as S |= P≥α(ϕ).

In the next sections, we describe the models that can be used to represent the system and the kind
of temporal logics used to express the properties. Because all of the approaches are simulation-based,
we have that all SUV models and languages to define properties discussed in the following can be
transformed, respectively, into the general definitions in Definitions 4 and 5.

3.1. System Models

Quite often, rather than considering deterministic systems with stochastic inputs as in Definition 4,
SMC considers systems without inputs with nondeterministic or stochastic transitions. This can be
accomodated in our setting, as discussed at the beginning of Section 2. Accordingly, in our context,
we will consider these two modelling approaches to be equivalent.

SMC input systems can be modelled through different kind of structures, such as DTMC or
CTMC [26,27], and by Generalized Semi Markov Process (GSMP) [28].

A DTMC is defined as a tuple M = (S, s0, P, L), where: S is a set of states (state space), s0 ∈ S is the
initial state, P : S× S→ [0, 1] is the transition function, and L is a function labeling states with atomic
propositions. A CTMC is a Markov Chain, where time runs continuously. GSMP [29] is a stochastic
process where the transition from one state to another depends on a set of several possible events that
are associated with the current state.

Furthermore, SMC can be applied to Discrete Event Stochastic Processes (DESPs), consisting of a set
of states, which can be infinite, and whose dynamic depends on a set of discrete events. DESPs can be

Information 2020, 11, 588 8 of 24

modelled as Generalized Stochastic Petri Net (GSPN) [30], which is a bi-partite graph that consists of
two classes of nodes: places, representing the state of the modelled system; transitions, encoding the
model dynamics.

SMC algorithms for Probabilistic Timed Automaton (PTA) are also available [31]. Using PTA, we can
represent systems with probabilistic and real-time features.

More recently, SMC has been applied also to timed and hybrid systems with a stochastic behavior,
like Stochastic Hybrid Automaton (SHA) and Stochastic Timed Automaton (STA) (see [32]). Some SMC
algorithms also accept, as input models, Markov Decision Processes (MDPs) [33], which are particular
sequential decision models [34] that are characterized by a set of states, a set of actions, probabilistic
transitions, and rewards, or costs, which are associated to the actions, such that each decision only
depends on the current state and not on the past. MDPs are often used to model concurrent process
optimization problems.

SMC tools, like VeSTa or MultiVeSTa, which will be discussed in the following Sections 5.1 and 5.2,
take, as input, models whose behavior is described through Probabilistic rewrite theories [35], which is a
general high-level formalism to specify probabilistic systems.

The SMC tool SAM (in Section 5.16) works on systems that are modelled through StoKLAIM [36],
which is a Markovian extension of KLAIM (Kernel Language for Agents Interaction and Mobility) [37],
a language that is used to model mobile and distributed systems.

3.2. System Properties

The properties to be evaluated represent a set of behaviors of the system under verification
and can be qualitative or quantitative. Verifying a qualitative property means deciding between two
mutually exclusive hypotheses, namely if the probability to satisfy the property is above or below a
certain threshold. Quantitative properties concern computing the estimation of a stochastic measure,
i.e., the expected value of the probability that a given property is satisfied.

Properties are expressed through a temporal logic and, in literature, many different kinds of logics
exist, as outlined below.

Linear Temporal Logic (LTL) [38] is the top family of temporal logics that reason along linear traces
through time, where each instant is followed by only one future step. Bounded Linear Temporal Logic
(BLTL) extends LTL by adding upper time bounds (bounded time of steps when the time domain is
discrete) to temporal operators. Probabilistic Bounded Linear Temporal Logic (PBLTL) adds probabilistic
operators to BLTL. PBLTLc corresponds to PBLTL with numeric constraints. Metric Temporal Logic
(MTL) [39] and Metric Interval Temporal Logic (MITL) [40] both extend LTL by introducing an explicit
representation of time.

Another class of stochastic logics considers time evolving in a branching fashion, rather than on a
line. This class includes the Computational Tree Logic (CTL) [41], which is used to express qualitative
properties over (non-stochastic) transition systems. Probabilistic Computational Tree Logic (PCTL) [42]
extends CTL by including operators and time bounds to express the quantitative properties of a DTMC,
say M. If s is a state of M and ϕ is a PCTL formula, then s |= P≥α(ϕ) means that “the probability that
ϕ is satisfied in the next state of outgoing paths from state s is greater than or equal to α”.

Several extensions of PCTL exist, like Continuous Stochastic Logic (CSL) [43], which can be used
to express quantitative properties of CTMCs; Quantitative Temporal Expressions (QuaTEx) [35], a query
language that is used to investigate quantitative aspects of probabilistic rewrite systems; PCTL* [44],
used to specify quantitative properties of DTMCs or MDPs. PCTL* formulas can be interpreted over
the states of a fully or concurrent probabilistic system. CSLTA [45] is a superset of CSL for CTMC that
allows for specifying path formulas through a one-clock Deterministic Timed Automaton (DTA).

Hybrid Automata Stochastic Language (HASL) is a temporal logic formalism that is used to define
properties over DESPs (Section 3.1). A HASL formula consists of an automaton and an expression.
The automaton is a Linear Hybrid Automaton (LHA), i.e., a hybrid automaton with data variables whose

Information 2020, 11, 588 9 of 24

dynamic depends on the modelled system states. The expression refers to the moments of path random
variables associated with path executions of the system.

Finally, Mobile Stochastic Logic (MoSL) is a temporal stochastic logic that was introduced in [36].
MoSL is based on CSL and allows us to refer to the spatial structure of a mobile network. MoSL can be
used to specify both qualitative and quantitative properties.

4. Statistical Inference Approaches

When using SMC algorithms, the system is simulated many times by executing Monte Carlo
experiments. The property ϕ to be verified is checked at each simulation (sample). Let us associate a
Bernoulli random variable Z to one simulation. We assume that Z is 1 if ϕ is satisfied, 0 otherwise,
and that Pr[Z = 1] = p and Pr[Z = 0] = 1− p.

HT, as described in Section 4.1, Estimation, Section 4.2, and Bayesian analysis, Section 4.3, can be
used as engines for the SMC algorithms, as outlined below.

4.1. Hypothesis Testing

The hypothesis testing approach consists of the evaluation of two mutually exclusive hypotheses,
namely the null hypothesis H0 : p ≥ θ, and the alternative hypothesis H1 : p < θ, where θ is a given
threshold value. If we assert that H0 is false while it is true, we make a Type I error (or false positive);
if we decide to reject H1, while it is true, we make a Type II error (or false negative). Let us denote,
with α, the probability of Type I errors and with β the probability of Type II errors.

HT can be used to analyze both qualitative and quantitative properties. It can be performed on a set
of samples that can be generated in advance or on demand. In the former case, the sample size is fixed.
In the latter case, called sequential testing, the samples are collected incrementally and their number
is not predetermined. In a sequential testing approach, the decision of whether or not to continue
sampling is made based on the samples that were generated up to that point. Mixtures of the two types
of sampling generation are possible. This is discussed in [5], where several approaches to HT are
described, differing from each other in the guarantees they give about the correctness of the result.
The algorithms implementing these approaches are the following: the Chernoff C.I. method, using a
fixed sample size test, resting on a confidence interval based on the Chernoff–Hoeffding bound [46];
the Gauss C.I., that is a similar procedure based on the Gaussian approximation to determine the
confidence interval; the Chow–Robbins test, a sequential test method that continues sampling until the
width of the confidence interval has reached a given value; the Sequential Probability Ratio Test (SPRT)
technique of Wald [47] and its fixed sample size variant, the Gauss–SSP test, where SSP stands for
Single Sampling Plan (see [48] for details).

When compared to simple sequential testing, SPRT is optimal in the sense that it minimizes
the average sample size before a decision is made. The last method is the Chernoff–SSP test,
which is a variant of the Gauss-SSP test using the Chernoff–Hoeffding bound instead of the
Gaussian approximation.

When properties to be verified are rare, that is the probability that they hold is low, the number
N of simulations required can explode. Fortunately, two techniques, such as Importance Sampling
(ISA) and Importance Splitting (ISS), can be applied to reduce N. ISA works by sampling through a
weighted distribution, such that a rare property is more likely to be observed. Subsequently, the results
are compensated by the weights, in order to estimate the probability under the original distribution.
ISS works by decomposing the sampling from the rare probability distribution into the sampling from
the product of less rare conditioned probabilities. See [49–51] for an in-depth discussion about the two
mentioned rare properties techniques.

4.2. Estimation

Estimation is the kind of inference approach that is typically used to verify quantitative properties.
Existing SMC algorithms rely on classical Monte Carlo based techniques in order to estimate a property

Information 2020, 11, 588 10 of 24

with a corresponding confidence interval. The system model is repeatedly simulated and, if ϕ is the
property to be evaluated and p is the probability to satisfy ϕ, an (ε, δ) approximation p̂ of p is computed,
with the assurance that the probability of error is Pr(| p̂− p| ≥ ε) ≤ δ, where ε and δ are, respectively,
the precision and confidence.

The confidence interval can be computed using different approaches, each one affecting the
number of simulations N to perform. For instance, according to the Chernoff–Hoeffding bound [46]
N is fixed a priori by setting N = (ln 2− ln δ)/(2ε2). The Confidence Interval (CI) method, taken as
input two parameters α and δ, samples until the size of the (1 − α) × 100% confidence interval,
computed while using the Student’s t-test, is bounded by δ.

In [52,53], Grosu and Smolka show how to compute an (ε, δ) approximation p̂ of p satisfying
the property:

Pr[p(1− ε) ≤ p̂ ≤ p(1 + ε)] ≥ (1− δ) (1)

This can be done with an optimal number of simulation traces N, through the Optimal
Approximation AlgorithmOAA that was introduced by Dagum et al. in [54]. OAA uses the minimum
number N of traces to compute an (ε, δ) approximation, within a constant factor, of a random variable
distributed in [0, 1]. OAA algorithm improves the classic Monte Carlo algorithm, which is based on
the hypothesis testing approach, since N is computed at runtime. This result is obtained by applying
the sequential testing approach of Wald [47] to decide when to stop simulating. As well as for HT,
as discussed in Section 4.1, when quantitative properties to be verified are rare, ISA or ISS can be
applied (see [49–51]), together with the algorithm that was selected to solve the estimation problem,
in order to reduce the number of simulations to perform.

4.3. Bayesian analysis

The Bayesian approach to SMC is based on the usage of Bayes’s theorem and sequential sampling,
and can be associated with both HT and Estimation. Additionally, in this case, as for Hypothesis
Testing (Section 4.1) and Estimation (Section 4.2) algorithms, the system model is repeatedly simulated.
The difference is that Bayes’s theorem requires prior knowledge of the model to be verified, which is the
prior density of a given random variable. Sequential sampling, as discussed in Section 4.1, means that
the number of simulations to perform is decided at run-time. The properties to be verified are
expressed as BLTL formulas and input systems are modelled as Discrete-Time Hybrid System (DTHS)
(see Section 2).

The algorithm to perform SMC by Bayesian HT, introduced in [55], at each trace of the system
model, generated by simulation, checks if a certain property is satisfied or not. Subsequently, it uses the
Bayes factor B to decide whether the null hypothesis H0 or the alternative hypothesis H1 has to be accepted.

Zuliani et al. in [7] propose a Bayesian statistical Estimation algorithm. The main goal of this
approach is estimating the (unknown) probability p that a random execution trace of the system
model satisfies a fixed property φ. The estimate corresponds to a confidence interval, i.e., an interval
that contains p with a high probability. Since p is unknown, it must be assumed that p is given by
a random variable whose density is known a priori. The Bayesian Estimation algorithm iteratively
generates traces of the system model and for each trace executes the following steps: checks whether φ

is satisfied; computes the posterior mean, whhich is the Bayes estimator, of p; computes an interval
estimate; produces a posteriori probability of p.

Finally, Bortolussi et al. in [56] present a novel approach, to the statistical model checking,
based on the Bayes analysis and it is called Smoothed Model Checking. Their goal is computing a
statistical estimation (and a confidence interval) of the satisfaction of a MITL property against an
Uncertain CTMC, which is a CTMC indexed by a parameter vector.

Information 2020, 11, 588 11 of 24

4.4. Summary of the Algorithms Used for HT and Estimation

In Table 1, we summarize the main algorithms, as explained in the previous sections, which can
be used to carry out Hypothesis testing or Estimation. For each algorithm, we specify whether the
number N of simulation runs to execute is predetermined or not.

Table 1. For each considered algorithm we show with a • if it supports Hypothesis Testing (HT) and/or
Estimation (E). In the last column yes means that the algorithm pre-computes the number of samples
(#Samples Fixed a Priori), whereas no means that the number of samples is computed at runtime.

Algorithm HT E #Samples Fixed a Priori

Gauss-SSP • yes
C.I. • yes

Chernoff C.I. • • yes
Chernoff SSP. • • yes

Chow-Robbins • • no
SPRT • no

Bayesian HT • no
Bayesian E • no
OAA • no

5. Statistical Model Checking Tools

In this section, we describe some of the existing Monte Carlo based SMC tools, focusing on
those that are directly available to the academic community. There exist tools using simulation-based
techniques, but whose output is not a statistical confidence interval, which are not included in
our review, like: SyLVaaS [57], a Web-based software-as-a-service tool for System Level Formal
Verification of CPSs; S-TaLiRo [58], which is a tool performing temporal logic falsification of properties
over non-linear hybrid systems; Ariadne [59], which is a tool for the formal verification of CPSs,
using reachability analysis for nonlinear hybrid automata; SpaceEx, a tool platform for reachability
and safety verification of continuous and hybrid systems [60]; Symbolic PathFinder [61], a SMC tool
implementing approximate algorithms for MDP.

For each surveyed tool, we give a brief description and some details about: the kind of models
supported; the languages used to specify the properties to be verified; and, the statistical inference
approach used (HT and/or Estimation and/or Bayesian analysis). The information about the
environment model, that stem from the kind of model, are summarized in Table 2.

Tools performing statistical inference by algorithms not discussed in Section 4 (e.g., SAM,
GreatSPN) will not be included in the taxonomy that is given in Table 2.

5.1. (P)VeStA

VeStA is a Java-based tool for statistical analysis of probabilistic systems. It implements the
statistical methods from [27,43], based on Monte-Carlo simulation and simple statistical hypothesis
testing [62].

Model and Property. This tool can verify properties expressed as CSL/PCTL formula (Section 3.2),
against probabilistic systems that are specified as CTMCs or DTMCs (Section 3.1). VeStA is able also
to statistically evaluate, in a Monte Carlo based way, the expected value of properties expressed in
QuaTEx (Section 3.2), over the observations performed on probabilistic rewrite theories models. In this
last case, models are described through PMAUDE, which is an executable algebraic specification
language [35].

Statistical Inference approach. VeStA performs SMC by using classic statistical hypothesis
testing (Section 4.1), rather than sequential hypothesis testing, according to the algorithm described
in [63]. In particular, VeStA implements the Gauss-SSP hypothesis testing (Section 4.1), which is a fixed

Information 2020, 11, 588 12 of 24

sample size version of the SPRT algorithm of Wald (Section 4.1). Consequently, it is easily parallelizable.
PVeStA [64] is the tool extending and parallelizing the SMC algorithms implemented in VeStA.

5.2. MultiVeStA

MultiVeStA [65] extends VeStA (and PVeStA) with an important feature that is the integration
with several existing discrete event simulators, in addition to the already supported ones.

Model and property. Properties to be verified are expressed in Multi Quantitative Temporal
Expressions (MultiQuaTEx) query language, which extends QuaTEx (Section 3.2) and allows for querying
more variables at a time through multiple observations on the same simulation. This represents an
improvement of the performance obtained when evaluating several expressions. The supported SUV
models are Discrete Event Systems (DESs).

Statistical Inference approach. MultiVeStA performs an estimation of the expected value of
MultiQuaTEx properties by HT the Chow–Robbins method (Section 4.1).

5.3. Simulation-Based SMC for Hybrid Systems

There are many tools supporting SMC for hybrid systems, for example: ProbReach [66],
Probably Approximately Correct (PAC) for hybrid systems verification [67,68], and Plasma [69].
Here, we focus on tool that can interface in a black-box fashion with any available simulator for
hybrid systems. One of those is Plasma [70,71] which is a SMC platform that may be invoked from
the command line or embedded in other software as a library. This tool uses external simulators (e.g.,
Simulink, SystemC) in order to define the SUV as well as the property to be verified.

Model and Properties. Plasma Lab accepts properties described as BLTL extended with
customized temporal operators, against stochastic models such as CTMCs and MDPs (Section 3.1).

Statistical Inference approach. Plasma Lab can verify both qualitative and quantitative
properties. In fact, the tool implements, among others, the following algorithms: the Monte Carlo
probability estimation based on the Chernoff–Hoeffding bound [46], to decide a priori the number of
simulations to execute; the SPRT algorithm for hypothesis testing; ISA when the properties are “rare”
(Section 4.1).

5.4. APMC

The Approximate Probabilistic Model Checker (APMC) is a model checker implementing an efficient
Monte Carlo-based method in order to approximate the probability that a monotone property is
satisfied, with high confidence, by a fully probabilistic system. This algorithm is described in [72].
In [73] the optimal approximation algorithm OAA (Section 4.2) is used to obtain a randomized
approximation scheme with multiplicative error parameter.

Model and property. APMC is used to verify quantitative properties over fully probabilistic
transitions systems or DTMCs (Section 3.1). In 2006, APMC has been extended to manage also CTMCs
(see [74]). Properties to be checked are expressed as LTL (Section 3.2) formulas.

Inference approach. This tool performs estimation through a Monte-Carlo sampling technique,
based on the Chernoff–Hoeffding bound (Section 4.1), which is naturally parallelizable.

5.5. PRISM

PRISM [15] is a Probabilistic Symbolic Model Checker that from the version 4.0 offers support for
SMC of several types of probabilistic models. Furthermore, in [75], a parallelized version of PRISM
has been extended to handle MDPs.

Model and property. DTMCs, CTMCs, MDPs models (Section 3.1) are described through the
PRISM modelling language, while the properties to be verified are defined by several probabilistic
temporal logics, incorporating PCTL, PCTL*, CSL. and LTL (Section 3.2).

Statistical Inference approach. The tool uses the SPRT (Section 4.1) in order to verify qualitative
properties and the following algorithms to verify the quantitative properties (Section 4.2): CI method,

Information 2020, 11, 588 13 of 24

Asymptotic Confidence Interval (ACI) method, and Approximate Probabilistic Model Checking (APMC)
method. All of these algorithms precompute the number of samples to be generated. See [76] for an
updated detailed description.

5.6. Ymer

Ymer, as illustrated in [77], is a command-line tool written in C and C++, which implements the
SMC techniques that are based on discrete event simulation and acceptance sampling. Furthermore,
in the Ymer tool, two sampling-based algorithms for the statistical verification of time-unbounded
properties of DTMCs are implemented (see in [78]).

Model and property. This tool can verify CSL properties against CTMCs and PCTL properties
against DTMCs (Sections 3.1 and 3.2).

Statistical Inference approach. Ymer implements both sampling with a fixed number of
observations and sequential acceptance sampling, performed through the SPRT method (Section 4.1).
Ymer includes support for distributed acceptance sampling, i.e., the use of multiple machines to
generate observations, which can result in significant speedup as each observation can be generated
independently. The work in [78] also implements, in Ymer, estimation through two different approaches,
the first based on Chernoff C.I and the second based on the Chow–Robbins sequential method.

5.7. UPPAAL-SMC

UPPAAL-SMC [79] is a stochastic and statistical model checking extension of UPPAAL [80],
which is a toolbox for the verification of real-time systems, jointly developed by Uppsala University
and Aalborg University.

Model and Properties. UPPAAL-SMC implements techniques in order to verify both quantitative
and qualitative properties of timed and hybrid systems with a stochastic behavior, whose dynamic can
be specified by SHA, effectively defining ODEs, and by STA [32]. Properties are expressed through a
weighted extension of the temporal logic MITL (Section 3.2).

Statistical Inference approach. This tool carries out quantitative properties verification through a
Monte Carlo based estimation algorithm using the Chernoff–Hoeffding bound (Section 4.1), where the
number of samples to be generated is predetermined. Qualitative properties are verified through the
SPRT algorithm (Section 4.1).

5.8. COSMOS

COSMOS [30] is a statistical verification tool that is implemented in C++.
Model and property. This tool analyzes DESPs, a class of stochastic models, including CTMCs,

represented in the form of a GSPN (Section 3.1). Properties to be verified are expressed as HASL
formulae (Section 3.2).

Statistical Inference approach. COSMOS relies on Confidence Interval based methods to estimate
the probability that the property under verification holds, by implementing two possible approaches:
the static sample size estimation, based on the Chernoff–Hoeffding bound (Section 4.1), where the sample
size is fixed a priori; the dynamic sample size estimation, where the sample size depends on a stopping
condition, such as that provided by Chow and Robbins (Section 4.1). COSMOS also provides the
SPRT method.

5.9. GreatSPN

GreatSPN [81] is a tool that supports the design and the qualitative and quantitative analysis
of GSPN. GreatSPN contains, in particular, two modules: a CTL model checker and a CSLTA

model checker.
Model and Properties. GreatSPN can verify: CTL properties against models represented as GSPN

or its colored extension, defined as Stochastic Symmetric Nets (SSN); CSLTA properties (Section 3.2)
against CTMCs.

Information 2020, 11, 588 14 of 24

Statistical Inference approach. The CTL model checker of GreatSPN verifies CTL properties by
numeric symbolic algorithms (see Section 3). The CSLTA module is a probabilistic model checker for
estimation of properties that can a.so interact with external tools, like PRISM (Section 5.5) and MRMC
(Section 5.10).

5.10. MRMC

MRMC (Markov Reward Model Checker) [82] is a command-line tool, written in C language,
which implements SMC techniques. This tool is a Probabilistic Model Checker, rather than a SMC.
However, as MRMC performs statistical inference through Monte Carlo-based techniques, it is included
in our review, for sake of completeness.

Model and property. The tool can verify CSL and PCTL properties (Section 3.2) against CTMCs
and DTMCs (Section 3.1).

Statistical Inference approach. MRMC performs probability estimation by the Confidence interval
method that is based on the Chow–Robbins test (Section 4.1), with a dynamic sample size. The only
problem is that since MRMC always loads Markov chain representation completely in memory, it can
lose the benefits deriving from simulating instead of using numerical techniques.

5.11. SBIP

SBIP [83] is a statistical model checker for the BIP (Behavior, Interaction, Priority) general
framework for the design of component-based systems that were developed at Verimag (see [84]).

Model and property. It supports DTMC, CTMC, and GSMP (Section 3.1) as the input models.
The properties to be verified can be expressed as PBLTL and MTL formula (Section 3.2).

Statistical Inference approach. The tool implements several statistical testing algorithms for
stochastic systems verification of both qualitative and quantitative properties. The qualitative
properties are checked through one of the following algorithms: Single Sampling Plan (SSP) [3],
where the number of samples is predetermined, and SPRT, where the number of samples is generated
at runtime (Section 4.1). The quantitative properties are verified through a Probability Estimation
procedure, based on the Chernoff–Hoeffding bound (Section 4.1).

5.12. MARCIE

MARCIE [85] is a tool that is written in C++ and made up of several analysis engines, in particular
a Stochastic Simulation Engine that is based on statistical estimation.

Model and property. This tool can verify both quantitative and qualitative properties over
systems that are modelled as GSPN, including CTMC (Section 3.1). Properties can be defined by CSL,
Continuous Stochastic Reward Logic (CSRL) or PLTLc. CSRL includes CSL and adds reward intervals
to the temporal operators (Section 3.2).

Statistical Inference approach. The component of MARCIE that is dedicated to estimation
implements an algorithm performing several simulation runs depending on the variance of the
system stochastic behavior and determined through a Confidence interval method that is based on the
Chernoff–Hoeffding bound (Section 4.1).

5.13. Modest Toolset Discrete Event Simulator: Modes

Modest [86] is a high-level compositional modelling language for STA. It is completely supported
by the Modest Toolset, available at [87], which includes tools for analyzing different subsets of the STA,
e.g., PTA, MDP, DTMC, CTMC (Section 3.1). In particular, the modes tool, a discrete event simulator,
which is based on the Modest language, is available. From version 1.4 it offers SMC functionalities.

Model and property. modes supports the analysis of SHA, STA, PTA, and MDP. THe properties
to be verified are expressed in Modest language.

Information 2020, 11, 588 15 of 24

Statistical Inference approach. modes verifies quantitative properties through a confidence interval
based algorithm, which allows for deciding at runtime how many simulations to do; qualitative
properties through the SPRT method (Section 4.1).

5.14. APD Analyser

Aggregated Power Demand (APD) Analyser ([88,89]) is a SMC based domain-specific tool to compute
the APD probability distribution in a smart grid scenario in the presence of highly dynamic
individualised electricity price policies [90,91].

Model and property. The input model consists of a probabilistic model of end-user deviations
with respect to their expected behaviors. The tool computes a single domain-specific property: the APD
probability distribution in Electric Distribution Networks. Further post-processing of this distribution
allows for the Distribution System Operators (DSO) to compute the safety properties of interest.

Statistical Inference approach. As an exact computation of the required APD probability
distribution is computationally prohibitive, because of its exponential dependence on the number
of users, APD-Analyser computes Monte Carlo based (ε, δ)-approximation, through an efficient
High-Performance Computing (HPC)-based implementation of the OAA algorithm, discussed in
Section 4.2.

5.15. ViP Generator

The works in [92–94] present a tool, called ViP (Virtual Patient generator). This tool uses a SMC
based approach for computing complete populations of virtual patients for in silico clinical trials and
the model-based synthesis of optimal personalised pharmaceutical treatments [95,96].

Model and property. The input model is a system of ODEs and the boolean property to be
satisfied is the completeness of the virtual patient set generated.

Statistical Inference approach. HT (Section 4.1) is used to check, with high statistical confidence,
the completeness of the virtual patient set S generated so far. After defining a probability threshold ε

and a confidence threshold δ, the SMC algorithm in [92] randomly extracts, from a parameter space
Λ, a sample {λ} that, if admissible, is added to S. On the basis of [52,53], the algorithm ends when S
remains unchanged after N = ln δ/ ln(1− ε) attempts.

5.16. SAM

SAM (Stochastic Analyzer for Mobility) [36] is a tool supporting the analysis of mobile and
distributed systems. SAM uses a statistical model checking algorithm in order to verify whether a
mobile system satisfies a certain property.

Model and Properties. Systems are specified in StoKLAIM (Section 3.1). The properties to be
verified are expressed through MoSL (Section 3.2).

Statistical Inference approach. SAM performs the estimation of quantitative properties.

5.17. Bayesian Tool

The Bayesian analysis consists of the introduction of Bayesian statistics to the SMC approach,
as discussed in Section 4.3.

Model and property. The models to be analyzed are DTHS (see Section 2) defined as
Stateflow/Simulink models, while properties are expressed as BLTL formula.

Statistical Inference approach. The Bayesian analysis includes: (i) an algorithm to perform
SMC using Bayesian hypothesis testing in order to verify BLTL properties against Stateflow/Simulink
models with hybrid features; (ii) a Bayesian estimation algorithm, to compute an interval estimate of the
probability that a BLTL formula is satisfied in a stochastic hybrid system model.

Information 2020, 11, 588 16 of 24

5.18. Tool Comparison

In Table 2, we show a taxonomy of the surveyed tools, which is based on their main properties,
namely: the environment model, characterized by the time (discrete or continue), the set of events
values (that can be finite/infinite); the SUV model, consisting of the kind of models or language used
to represent the system and the set of states of the model (that can be finite/infinite); the property
specification, which is the stochastic logic used to specify the properties to be verified and the search
horizon (that can be bounded/unbounded); the verification technique, consisting of the statistical
inference procedure used (HT and/or Estimation and/or Bayesian analysis), together with the
algorithm implemented to perform the inference. The algorithm is useful to know whether the
number of simulation runs is fixed beforehand or not (as shown in Table 1).

In addition to the tools extensively that were reviewed in [4,5], we have included the Bayesian
analysis and two other SMC domain-specific software tools, the APD Analyser and the ViP (Virtual
Patient) generator.

Information 2020, 11, 588 17 of 24

Table 2. Monte Carlo simulation-based SMC tools comparison table. In the Time column D stands for discrete, C for continue. In the column Model, the model is
specified as its representation structure or as the language describing the model. In the columns Event values and Set of states, f in means finite and in f means infinite.
In the Search horizon column, bnd stands for bounded, ubnd for unbounded. In the Inference column, HT stands for Hypothesis Testing; E stands for Estimation and NS
stands for Numeric-symbolic methods (see Section 3). In the same column, for each inference approach, the name of the algorithm used is specified. For further details
about the algorithms, see Table 1. Depending on the algorithm, the number of samples can be computed a priori or at runtime.

ENVIRONMENT MODEL SUV MODEL SPECIFICATION VERIFICATION TECHNIQUE

TOOL Time Event Values Model Set of States Property Language Search Horizon Inference #samples Computing

(P)VeStA [63] C fin CTMC, DTMC/ PMaude fin/inf CSL, PCTL, QuaTEx ubnd HT: Gauss-SSP; E: C.I. HT and E: a priori

MultiVeStA [65] D/C fin DES inf MultiQuaTEx ubnd E: Chow-Robbins E: at runtime

Plasma [69] C fin/inf CTMC, MDP inf BLTL bnd HT: SPRT; E: Chernoff C.I. HT: at runtime; E: a priori

APMC [73,97] D inf DTMC, CTMC fin LTL ubnd on monotone LTL E: Chernoff-SSP/OAA E: a priori/at runtime

PRISM [15,75] D/C fin DTMC, CTMC, MDP fin BLTL ubnd HT: SPRT; E: Chernoff C.I.; NS HT: at runtime; E: a priori

Ymer [77,78] D/C inf DTMC, CTMC fin PCTL, CSL ubnd HT: SPRT/Gauss-SSP; E: Chow-Robbins/ Chernoff C.I. HT: at runtime/a priori; E: at runtime/a priori; NS

UPPAAL-SMC [79] C inf SHA inf MITL bnd HT: SPRT; E: Chernoff C.I. HT: at runtime; E: a priori

COSMOS [30] C fin GSPN fin HASL ubnd HT: SPRT; E: Chernoff C.I. / Chow-Robbins HT: at runtime; E: a priori/at runtime

MRMC [82] D/C fin DTMC, CTMC fin PCTL, CSL ubnd E: Chow-Robbins; NS E: at runtime

SBIP [83] D/C inf DTMC, CTMC, GSMP inf PBLTL bnd HT: SPRT; E: Chernoff C.I. HT: at runtime; E: a priori

MARCIE [85] C fin GSPN fin CSL, CSRL, PCTL ubnd E: Chernoff C.I.; NS E: at runtime

modes [86] C fin SHA, STA, PTA, MDP fin MODEST ubnd HT: SPRT; E: Chernoff C.I. HT: at runtime; E: a priori

APD Analyser [89] D fin Custom model inf Safety properties bnd E: OAA E: at runtime

ViP generator [92,93] D fin ODEs inf Boolean properties bnd HT: SPRT HT: at runtime

Bayesian tools [7,56] D fin DTHS, Uncertain CTMC inf BLTL, MTL,MITL bnd HT: Bayesian HT; E: Bayesian E HT and E: at runtime

Information 2020, 11, 588 18 of 24

6. Discussion

The taxonomy shown in Table 2 highlights the following trade-offs.
The Environment model is: complete if it contains all possible operational scenarios; sound if it

contains only the operational scenarios that can occur in a real situation. Ideally, we would like a
complete and sound environment model. However, in practice, this is not easy to define. Depending
on priorities, correctness, or efficiency, we may select a complete (possibly unsound) model or a sound
(possibly incomplete) model.

A SUV model has to capture the dynamics of the system. If the properties to be verified are
of the safety kind, tools taking as input an over-approximated model (i.e., containing more behaviors
than the real system) have to be preferred. If liveness properties have to be verified, tools accepting
under-approximated models can be used.

The property language has to be selected with respect to its capability to define the property to
be verified. The search horizon should be large enough, but not too large, in order to avoid making
simulations overly time consuming. In this case, the trade-off is between the expressiveness and the
computational complexity of the verification activity.

The verification technique selection depends on the goal (namely, estimation or HT) and on the
need to know beforehand, or not, the number of samples to be generated. Accordingly, all of the
tools implement the SPRT to perform HT on qualitative statements, except: (P)VeStA that uses the
Gauss–SSP test, through which the sample size is predetermined; the Bayesian analysis, which bounds
the sample size while using a test based on the Bayes factor. SBIP, besides SPRT, also implements
also SSP.

The estimation of quantitative properties is performed through different techniques. (P)VeSta uses
the Confidence Interval method to evaluate QuaTEx formulae; MultiVeStA, COSMOS (from version 1.0)
and MRMC (from version 1.5) implement the Chow-Robbins test; Plasma Lab, UPPAAL-SMC, PRISM
(from version 4.0), SBIP, and MARCIE use the Chernoff–C.I. method; Ymer uses the Gauss-SSP test;
APMC (from v3.0) implements the so-called Chernoff–SSP test; the APD Analyser implements the
OAA algorithm (see Table 1). The Bayesian Estimation procedure is different from all of the others,
because it is based on the Bayes factor test, but, like with the Chow Robbins test, the sample size is not
fixed a priori.

If we have to choose a Monte Carlo based SMC tool minimizing the number of simulations to do,
in the case of qualitative statements, all of the tools implementing the SPRT to solve HT are suitable.
On the other hand, an a priori fixed sample size technique is easily parallelizable, then sometimes this
kind of approach could be preferable. In the case of quantitative statements, the tools implementing
the Chow–Robbins test or OAA are the fastest. The Bayesian analysis also allows for us to decide at
runtime how many simulations to do, but it needs to know the probability distribution of the variables
to be estimated in advance.

As a last result, Table 2 highlights an open research challenge, which is the lack of tools to perform
an unbounded verification of hybrid systems whose environment has continuous- or discrete-time.

7. Conclusions

We have reviewed most of the SMC tools currently available for research purposes, focusing on
the complexity, in terms of sample size, of the Monte Carlo-based techniques that are used to evaluate
quantitative and qualitative properties through HT, Estimation, and Bayesian analysis.

For each tool, we have highlighted: the environment model; the SUV model; the stochastic logic
that is used to define the properties to be verified, together with the search horizon type; the statistical
inference procedure; and, the corresponding algorithm used, by explicitly indicating whether the
number of samples is generated at runtime or not. After an in-depth comparison, we produced the
taxonomy presented in Table 2.

First, we observe that most of the tools assume that the environment is sound, thus events are
taken from a finite set. In this scenario, the SUV model set of states is typically finite and the search

Information 2020, 11, 588 19 of 24

horizon for the properties to be checked is unbounded. Otherwise, if the SUV model set of states is
infinite, then the search horizon is always bounded.

Second, 90% of the tools performing HT use algorithms that decide, at runtime, the number of
samples to be generated; approximately 70% of the tools implementing Estimation employ algorithms
computing the number of samples beforehand. Thus, according to the problem at hand, we suggest
using SMC tools computing a priori the number of samples if there is a need to parallelize and, instead,
using tools generating one sample at each iteration if it is more important to reduce the number
of simulations.

Finally, our taxonomy points out the challenging task of deploying tools to perform unbounded
verification of discrete- or continuous-time hybrid systems.

Author Contributions: Conceptualization, A.P., A.M. and E.T.; formal analysis, A.P. and E.T.; writing—original
draft preparation, A.P.; writing—review and editing, A.P., A.M. and E.T.; supervision, E.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the following research projects/grants: Italian Ministry of University
& Research (MIUR) grant Dipartimenti di eccellenza 2018–2022 (Dept. Computer Science, Sapienza Univ. of Rome);
EC FP7 project PAEON (Model Driven Computation of Treatments for Infertility Related Endocrinological
Diseases, 600773); INdAM “GNCS Project 2019”; POR FESR 2014–2020 project SCAPR (Sistema per il Contrasto di
Aeromobili a Pilotaggio Remoto).

Acknowledgments: We thank Alberto Lluch Lafuente for his very useful remarks on a preliminary version of this
paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alur, R. Principles of Cyber-Physical Systems; MIT Press: Cambridge, MA, USA, 2015.
2. Clarke, E.; Wing, J.M. Formal Methods: State of the Art and Future Directions. Comput. Surv. (CSUR) 1996,

28, 626–643. [CrossRef]
3. Legay, A.; Delahaye, B.; Bensalem, S. Statistical Model Checking: An Overview. In Runtime Verification, First

International Conference, RV 2010, St. Julians, Malta, November 2010. Proceedings; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6418, pp. 122–135. [CrossRef]

4. Agha, G.; Palmskog, K. A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul. 2018,
28, 6:1–6:39. [CrossRef]

5. Reijsbergen, D.; de Boer, P.T.; Scheinhardt, W.; Haverkort, B. On hypothesis testing for statistical model
checking. Int. J. Softw. Tools Technol. Transf. 2015, 17, 377–395. [CrossRef]

6. Bakir, M.; Gheorghe, M.; Konur, S.; Stannett, M. Comparative Analysis of Statistical Model Checking
Tools. In Proceedings of the Membrane Computing: 17th International Conference (CMC 2016), Milan, Italy,
25–29 July 2016. [CrossRef]

7. Zuliani, P.; Platzer, A.; Clarke, E. Bayesian Statistical Model Checking with Application to Stateflow/Simulink
Verification. Form. Methods Syst. Des. 2013, 43, 338–367. [CrossRef]

8. Devroye, L. Non-Uniform Random Variate Generation; Springer: Berlin/Heidelberg, Germany, 1986.
9. Simulink. Available online: http://www.mathworks.com (accessed on 18 December 2020).
10. Dymola. Available online: http://www.claytex.com/products/dymola/ (accessed on 18 December 2020).
11. SimulationX. Available online: http://www.simulationx.com (accessed on 18 December 2020).
12. Wolfram Research, Inc. SystemModeler. Available online: http://www.wolfram.com/system-modeler

(accessed on 18 December 2020).
13. Zhou, F.; Chen, L.; Wu, Y.; Ding, J.; Zhao, J.; Zhang, Y. MWorks : A Modern IDE for Modeling and Simulation

of Multi-domain Physical Systems Based on Modelica. In Proceedings of the 5th International Modelica
Conference (Modelica 2006), Vienna, Austria, 4–5 September 2006.

14. OpenModelica. Available online: http://www.openmodelica.org (accessed on 18 December 2020).

http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1145/3158668
http://dx.doi.org/10.1007/s10009-014-0350-1
http://dx.doi.org/10.1007/978-3-319-54072-6_8
http://dx.doi.org/10.1007/s10703-013-0195-3
http://www.mathworks.com
http://www.claytex.com/products/dymola/
http://www.simulationx.com
http://www.wolfram.com/system-modeler
http://www.openmodelica.org

Information 2020, 11, 588 20 of 24

15. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems.
In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV 2011), Snowbird,
UT, USA, 14–20 July 2011; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 6806, pp. 585–591.

16. McMillan, K.; The SMV System. In Symbolic Model Checking; Springer: Berlin/Heidelberg, Germany, 1993;
pp. 61–85.

17. Baier, C.; Katoen, J.P. Principles of Model Checking (Representation and Mind Series); MIT Press: Cambridge,
MA, USA, 2008.

18. Sontag, E. Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 1998.

19. Cellier, F.; Kofman, E. Continuous System Simulation; Springer: Berlin/Heidelberg, Germany, 2010.
20. Pinisetty, S.; Jéron, T.; Tripakis, S.; Falcone, Y.; Marchand, H.; Preoteasa, V. Predictive runtime verification of

timed properties. J. Syst. Softw. 2017, 132, 353–365. [CrossRef]
21. Thati, P.; Roşu, G. Monitoring Algorithms for Metric Temporal Logic Specifications. In Runtime

Verification, Fourth Workshop on Runtime Verification 2004, RV 2004, Barcelona, Spain, April 2004. Proceedings;
Electronic Notes in Theoretical Computer Science; Elsevier: Amsterdam, The Netherlands, 2004; Volume 113,
pp. 145–162. [CrossRef]

22. Bauer, A.; Leucker, M.; Schallhart, C. Runtime Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.
2011, 20. [CrossRef]

23. Abbas, H.; Fainekos, G.; Sankaranarayanan, S.; Ivančić, F.; Gupta, A. Probabilistic Temporal Logic
Falsification of Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst. 2013, 12, 95:1–95:30. [CrossRef]

24. Katoen, J. The Probabilistic Model Checking Landscape. In 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2016); Association for Computing Machinery: New York, NY, USA, 2016; pp. 31–45.
[CrossRef]

25. Younes, H.; Kwiatkowska, M.; Norman, G.; Parker, D. Numerical vs. Statistical Probabilistic Model Checking.
Int. J. Softw. Tools Technol. Transf. 2006, 8, 216–228. [CrossRef]

26. Baier, C.; Haverkort, B.; Hermanns, H.; Katoen, J.P. Model-checking algorithms for continous-time markov
chains. IEEE Trans. Softw. Eng. 2003, 29, 524–541. [CrossRef]

27. Younes, H.; Simmons, R. Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling.
In Proceedings of the 14th International Conference on Computer Aided Verification (CAV 2002),
Copenhagen, Denmark, 27–31 July 2002; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2404,
Lecture Notes in Computer Science; pp. 223–235. [CrossRef]

28. Sen, K.; Viswanathan, M.; Agha, G. Statistical model checking of black-box probabilistic systems.
In Proceedings of the 16th International Conference on Computer Aided Verification (CAV 2004), Boston,
MA, USA, 13–17 July 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3114, Lecture Notes in
Computer Science; pp. 202–213.

29. Whitt, W. Continuity of Generalized Semi-Markov Processes. Math. Oper. Res. 1980, 5, 494–501. [CrossRef]
30. Ballarini, P.; Barbot, B.; Duflot, M.; Haddad, S.; Pekergin, N. HASL: A New Approach for Performance

Evaluation and Model Checking from Concepts to Experimentation. Perform. Eval. 2015, 90, 53–77.
[CrossRef]

31. Norman, G.; Parker, D.; Sproston, J. Model checking for probabilistic timed automata. Form. Methods
Syst. Des. 2013, 43, 164–190. [CrossRef]

32. David, A.; Du, D.; Larsen, K.; Legay, A.; Mikučionis, M.; Poulsen, D.; Sedwards, S. Statistical Model Checking
for Stochastic Hybrid Systems. Electron. Proc. Theor. Comput. Sci. 2012, 92, 122–136. [CrossRef]

33. Legay, A.; Sedwards, S.; Traonouez, L. Scalable Verification of Markov Decision Processes. In Software
Engineering and Formal Methods; Springer: Berlin/Heidelberg, Germany, 2015; pp. 350–362. [CrossRef]

34. Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons:
Hoboken, NJ, USA, 2005.

35. Agha, G.; Meseguer, J.; Sen, K. PMaude: Rewrite-based Specification Language for Probabilistic Object
Systems. In Proceedings of the 3rd Workshop on Quantitative Aspects of Programming Languages (QAPL 2005);
Elsevier: Amsterdam, The Netherlands, 2005.

36. De Nicola, R.; Katoen, J.; Latella, D.; Loreti, M.; Massink, M. Model checking mobile stochastic logic.
Theor. Comput. Sci. 2007, 382, 42–70. [CrossRef]

http://dx.doi.org/10.1016/j.jss.2017.06.060
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2465787.2465797
http://dx.doi.org/10.1145/2933575.2934574
http://dx.doi.org/10.1007/s10009-005-0187-8
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1007/3-540-45657-0_17
http://dx.doi.org/10.1287/moor.5.4.494
http://dx.doi.org/10.1016/j.peva.2015.04.003
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.4204/EPTCS.92.9
http://dx.doi.org/10.1007/978-3-319-15201-1_23
http://dx.doi.org/10.1016/j.tcs.2007.05.008

Information 2020, 11, 588 21 of 24

37. De Nicola, R.; Ferrari, G.L.; Pugliese, R. KLAIM: A kernel language for agents interaction and mobility.
IEEE Trans. Softw. Eng. 1998, 24, 315–330. [CrossRef]

38. Rozier, K. Linear Temporal Logic Symbolic Model Checking. Comput. Sci. Rev. 2011, 5, 163–203. [CrossRef]
39. Mediouni, B.; Nouri, A.; Bozga, M.; Dellabani, M.; Legay, A.; Bensalem, S. SBIP 2.0: Statistical Model

Checking Stochastic Real-Time Systems. In Proceedings of the 16th International Symposium on Automated
Technology for Verification and Analysis (ATVA 2018), Los Angeles, CA, USA, 7–10 October 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 536–542.

40. Alur, R.; Feder, T.; Henzinger, T. The Benefits of Relaxing Punctuality. J. ACM 1996, 43, 116–146. [CrossRef]
41. Clarke, E.; Henzinger, T.; Veith, H. Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2016.
42. Hansson, H.; Jonsson, B. A logic for reasoning about time and reliability. Form. Asp. Comput. 1994, 6, 512–535.

[CrossRef]
43. Sen, K.; Viswanathan, M.; Agha, G. On Statistical Model Checking of Stochastic Systems. In Proceedings

of the 17th International Conference on Computer Aided Verification (CAV 2005), Edinburgh, UK,
6–10 July 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3576, pp. 266–280.

44. Baier, C. On Algorithmic Verification Methods for Probabilistic Systems. Ph.D. Thesis, University of
Mannheim, Mannheim, Germany, 1998.

45. Donatelli, S.; Haddad, S.; Sproston, J. Model Checking Timed and Stochastic Properties with CSLTA.
IEEE Trans. Softw. Eng. 2009, 35, 224–240. [CrossRef]

46. Hoeffding, W. Probability Inequalities for Sums of Bounded Random Variables. J. Am. Stat. Assoc. 1963,
13–30. [CrossRef]

47. Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [CrossRef]
48. Younes, H. Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D. Thesis,

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA, 2005.
49. Jegourel, C.; Legay, A.; Sedwards, S. Command-based importance sampling for statistical model checking.

Theor. Comput. Sci. 2016, 649, 1–24. [CrossRef]
50. Jegourel, C.; Legay, A.; Sedwards, S. Importance Splitting for Statistical Model Checking Rare Properties.

In Proceedings of the 25th International Conference on Computer Aided Verification (CAV 2013),
Saint Petersburg, Russia, 13–19 July 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 8044, pp. 576–591.

51. Legay, A.; Lukina, A.; Traonouez, L.; Yang, J.; Smolka, S.; Grosu, R. Statistical Model Checking. In Computing
and Software Science: State of the Art and Perspectives; Springer Nature: Berlin/Heidelberg, Germany, 2019;
pp. 478–504. [CrossRef]

52. Grosu, R.; Smolka, S. Quantitative Model checking. In Proceedings of the 1st International Symposium on
Leveraging Applications of Formal Method (ISoLA 2004), Paphos, Cyprus, 30 October–2 November 2004;
pp. 165–174.

53. Grosu, R.; Smolka, S. Monte Carlo Model Checking. In Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2005), Edinburgh, UK,
4–8 April 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3440, Lecture Notes in Computer
Science; pp. 271–286. [CrossRef]

54. Dagum, P.; Karp, R.; Luby, M.; Ross, S.M. An Optimal Algorithm for Monte Carlo Estimation. SIAM J. Comput.
2000, 29, 1484–1496. [CrossRef]

55. Jha, S.; Clarke, E.; Langmead, C.; Legay, A.; Platzer, A.; Zuliani, P. A Bayesian Approach to Model Checking
Biological Systems. In Proceedings of the 7th International Conference on Computational Methods in
Systems Biology (CMSB 2009), Bologna, Italy, 31 August–1 September 2009; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5688, pp. 218–234. [CrossRef]

56. Bortolussi, L.; Milios, D.; Sanguinetti, G. Smoothed model checking for uncertain Continuous-Time Markov
Chains. Inf. Comput. 2016, 247, 235–253. [CrossRef]

57. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. SyLVaaS: System Level Formal Verification as a Service.
In Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP 2015), Turku, Finland, 4–6 March 2015; pp. 476–483.

http://dx.doi.org/10.1109/32.685256
http://dx.doi.org/10.1016/j.cosrev.2010.06.002
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1109/TSE.2008.108
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1214/aoms/1177731118
http://dx.doi.org/10.1016/j.tcs.2016.08.009
http://dx.doi.org/10.1007/978-3-319-91908-9_23
http://dx.doi.org/10.1007/978-3-540-31980-1_18
http://dx.doi.org/10.1137/S0097539797315306
http://dx.doi.org/10.1007/978-3-642-03845-7_15
http://dx.doi.org/10.1016/j.ic.2016.01.004

Information 2020, 11, 588 22 of 24

58. Annpureddy, Y.; Liu, C.; Fainekos, G.E.; Sankaranarayanan, S. S-TaLiRo: A Tool for Temporal Logic
Falsification for Hybrid Systems. In Proceedings of the 17th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2011), Saarbrücken, Germany, 26 March–3
April 2011; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6605,
pp. 254–257. [CrossRef]

59. Bresolin, D.; Collins, P.; Geretti, L.; Segala, R.; Villa, T.; Gonzalez, S. A Computable and Compositional
Semantics for Hybrid Automata. In Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control (HSCC 2020), Sydney, Australia, 21–24 April 2020; ACM: New York, NY, USA,
2020. [CrossRef]

60. Frehse, G.; Le Guernic, C.; Donzé, A.; Cotton, S.; Ray, R.; Lebeltel, O.; Ripado, R.; Girard, A.; Dang, T.;
Maler, O. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV 2011), Snowbird, UT, USA, 14–20 July 2011; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 379–395.

61. Luckow, K.; Păsăreanu, C.; Dwyer, M.; Filieri, A.; Visser, W. Exact and Approximate Probabilistic Symbolic
Execution for Nondeterministic Programs. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering (ASE 2014), Vsters, Sweden, 15–19 September 2014; ACM: New York,
NY, USA, 2014.

62. Hogg, R.; McKean, J.W.; Craig, A.T. Introduction to Mathematical Statistics, 8th ed.; Pearson Education:
Upper Saddle River, NJ, USA, 2018.

63. Sen, K.; Viswanathan, M.; Agha, G. VeStA: A statistical model-checker and analyzer for probabilistic
systems. In Proceedings of the QEST 2005—Proceedings Second International Conference on the Quantitative
Evaluation of SysTems, Torino, Italy, 19–22 September 2005; Volume 2005, pp. 251–252. [CrossRef]

64. AlTurki, M.; Meseguer, J. PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis
Tool. In Proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science
(CALCO 2011), Winchester, UK, 30 August–2 September 2011; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6859, pp. 386–392.

65. Sebastio, S.; Vandin, A. MultiVeStA: Statistical Model Checking for Discrete Event Simulators. In Proceedings
of the 7th International Conference on Performance Evaluation Methodologies and Tools (ValueTools 2013),
Torino, Italy, 10–12 December 2013; ICST/ACM: New York, NY, USA, 2013, pp. 310–315.

66. Shmarov, F.; Zuliani, P. Probabilistic Hybrid Systems Verification via SMT and Monte Carlo Techniques.
In Proceedings of the Hardware and Software: Verification and Testing, 12nd International Haifa Verification
Conference (HVC 2016), Haifa, Israel, 14–17 November 2016; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 10028. [CrossRef]

67. Xue, B.; Fränzle, M.; Zhao, H.; Zhan, N.; Easwaran, A. Probably Approximate Safety Verification of Hybrid
Dynamical Systems. In Proceedings of the Formal Methods and Software Engineering—21st International
Conference on Formal Engineering Methods (ICFEM 2019), Shenzhen, China, 5–9 November 2019; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11852. [CrossRef]

68. Xue, B.; Liu, Y.; Ma, L.; Zhang, X.; Sun, M.; Xie, X. Safe Inputs Approximation for Black-Box Systems.
In Proceedings of the 24th International Conference on Engineering of Complex Computer Systems
(ICECCS 2019), Guangzhou, China, 10–13 November 2019; pp. 180–189. [CrossRef]

69. Plasma Lab. Available online: https://project.inria.fr/plasma-lab/ (accessed on 18 December 2020).
70. Jegourel, C.; Legay, A.; Sedwards, S. A Platform for High Performance Statistical Model Checking–PLASMA.

In Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2012), Tallinn, Estonia, 24 March–1 April 2012; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7214, pp. 498–503.

71. Boyer, B.; Corre, K.; Legay, A.; Sedwards, S. PLASMA-lab: A Flexible, Distributable Statistical Model
Checking Library. In Proceedings of the 10th International Conference on Quantitative Evaluation of
Systems (QEST 2013), Buenos Aires, Argentina, 27–30 August 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 160–164.

72. Hérault, T.; Lassaigne, R.; Magniette, F.; Peyronnet, S. Approximate Probabilistic Model Checking.
In Proceedings of the 5th International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2004), Venice, Italy, 11–13 January 2004; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 73–84. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1145/3365365.3382202
http://dx.doi.org/10.1109/QEST.2005.42
http://dx.doi.org/10.1007/978-3-319-49052-6_10
http://dx.doi.org/10.1007/978-3-030-32409-4_15
http://dx.doi.org/10.1109/ICECCS.2019.00027
https://project.inria.fr/plasma-lab/
http://dx.doi.org/10.1007/978-3-540-24622-0_8

Information 2020, 11, 588 23 of 24

73. Lassaigne, R.; Peyronnet, S. Probabilistic verification and approximation. Ann. Pure Appl. Log. 2008,
152, 122–131. [CrossRef]

74. Peyronnet, S.; Lassaigne, R.; Herault, T. APMC 3.0: Approximate Verification of Discrete and Continuous
Time Markov Chains. In Proceedings of the QEST 2006—Proceedings Third International Conference on the
Quantitative Evaluation of SysTems, Riverside, CA, USA, 11–14 September 2006; pp. 129–130. [CrossRef]

75. Henriques, D.; Martins, J.; Zuliani, P.; Platzer, A.; Clarke, E. Statistical Model Checking for Markov Decision
Processes. In Proceedings of the 2012 Ninth International Conference on Quantitative Evaluation of Systems,
London, UK, 17–20 September 2012; pp. 84–93. [CrossRef]

76. Parker, D.; Norman, G.; Kwiatkowska, M. PRISM 2017. Statistical Model Checker. Available online:
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking (accessed on
18 December 2020).

77. Younes, H. Ymer: A Statistical Model Checker. In Proceedings of the 17th International Conference on
Computer Aided Verification (CAV 2005), Edinburgh, UK, 6–10 July 2005; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 429–433. [CrossRef]

78. Younes, H.; Clarke, E.; Zuliani, P. Statistical Verification of Probabilistic Properties with Unbounded
Until. In Proceedings of the 13th Brazilian Symposium on Formal Methods (SBMF 2010), Natal, Brazil,
8–11 November 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010;
Volume 6527. [CrossRef]

79. David, A.; Larsen, K.; Legay, A.; Mikučionis, M.; Poulsen, D. Uppaal SMC tutorial. Int. J. Softw. Tools Technol.
Transf. 2015, 17, 397–415. [CrossRef]

80. Bengtsson, J.; Larsen, K.; Larsson, F.; Pettersson, P.; Yi, W. UPPAAL—A Tool Suite for Automatic Verification
of Real-Time Systems. In Hybrid Systems III: Verification and Control; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 1996; Volume 1066, pp. 232–243. [CrossRef]

81. Amparore, E.G.; Beccuti, M.; Donatelli, S. (Stochastic) Model Checking in GreatSPN. In Proceedings of the
Applications and Theory of Petri Nets and Concurrency (PETRI NETS 2014), Tunis, Tunisia, 23–27 June 2014;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8489, pp. 354–363.
[CrossRef]

82. Katoen, J.P.; Zapreev, I.S.; Hahn, E.M.; Hermanns, H.; Jansen, D.N. The ins and outs of the probabilistic
model checker MRMC. Perform. Eval. 2011, 68, 90–104. [CrossRef]

83. Nouri, A.; Mediouni, B.; Bozga, M.; Combaz, J.; Bensalem, S.; Legay, A. Performance Evaluation of Stochastic
Real-Time Systems with the SBIP Framework. Int. J. Crit. Comput. Based Syst. 2018, 1–33. [CrossRef]

84. Verimag. BIP Component Framework. Available online: http://www-verimag.imag.fr/Rigorous-Design-
of-Component-Based.html (accessed on 18 December 2020).

85. Heiner, M.; Rohr, C.; Schwarick, M. MARCIE—Model Checking and Reachability Analysis Done Efficiently.
In Proceedings of the Applications and Theory of Petri Nets and Concurrency (PETRI NETS 2013), Milan,
Italy, 24–28 June 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 7927, pp. 389–399. [CrossRef]

86. Bogdoll, J.; Hartmanns, A.; Hermanns, H. Simulation and Statistical Model Checking for Modestly
Nondeterministic Models. In Proceedings of the Measurement Modelling and Evaluation of Computing
Systems and Dependability and Fault Tolerance (MMB&DFT 2012), Kaiserslautern, Germany, 19–21 March
2012; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 249–252.
[CrossRef]

87. MODEST. Available online: http://www.modestchecker.net (accessed on 18 December 2020).
88. Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L.

Demand-Aware Price Policy Synthesis and Verification Services for Smart Grids. In Proceedings of the
2014 IEEE International Conference on Smart Grid Communications (SmartGridComm 2014), Venice, Italy,
3–6 November 2014; pp. 794–799. [CrossRef]

89. Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Elmegaard, L. Parallel
Statistical Model Checking for Safety Verification in Smart Grids. In Proceedings of the 2018 IEEE
International Conference on Smart Grid Communications (SmartGridComm 2018), Aalborg, Denmark,
29–31 October 2018. [CrossRef]

http://dx.doi.org/10.1016/j.apal.2007.11.006
http://dx.doi.org/10.1109/QEST.2006.5
http://dx.doi.org/10.1109/QEST.2012.19
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
http://dx.doi.org/10.1007/11513988_43
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1007/978-3-319-07734-5_19
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dx.doi.org/10.1504/IJCCBS.2018.096439
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
http://dx.doi.org/10.1007/978-3-642-38697-8_21
http://dx.doi.org/10.1007/978-3-642-28540-0_20
http://www.modestchecker.net
http://dx.doi.org/10.1109/SmartGridComm.2014.7007745
http://dx.doi.org/10.1109/SmartGridComm.2018.8587416

Information 2020, 11, 588 24 of 24

90. Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L. User
Flexibility Aware Price Policy Synthesis for Smart Grids. In Proceedings of the 18th Euromicro Conference
on Digital System Design (DSD 2015), Funchal, Portugal, 26–28 August 2015; pp. 478–485. [CrossRef]

91. Hayes, B.; Melatti, I.; Mancini, T.; Prodanovic, M.; Tronci, E. Residential Demand Management using
Individualised Demand Aware Price Policies. IEEE Trans. Smart Grid 2017, 8. [CrossRef]

92. Tronci, E.; Mancini, T.; Salvo, I.; Sinisi, S.; Mari, F.; Melatti, I.; Massini, A.; Davi’, F.; Dierkes, T.; Ehrig, R.;
Röblitz, S.; Leeners, B.; Krüger, T.; Egli, M.; Ille, F. Patient-Specific Models from Inter-Patient Biological
Models and Clinical Records. In Proceedings of the 14th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2014), Lausanne, Switzerland, 21–24 October 2014; pp. 207–214.
[CrossRef]

93. Mancini, T.; Tronci, E.; Salvo, I.; Mari, F.; Massini, A.; Melatti, I. Computing Biological Model Parameters by
Parallel Statistical Model Checking. In Proceedings of the 3rd International Conference on Bioinformatics
and Biomedical Engineering (IWBBIO 2015), Granada, Spain, 15–17 April 2015; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9044, pp. 542–554. [CrossRef]

94. Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Leeners, B. Complete populations of virtual patients for in
silico clinical trials. Bioinformatics 2020, to appear. [CrossRef]

95. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Salvo, I.; Sinisi, S.; Tronci, E.; Ehrig, R.; Röblitz, S.; Leeners, B.
Computing Personalised Treatments through In Silico Clinical Trials. A Case Study on Downregulation
in Assisted Reproduction. In Proceedings of the 25th RCRA International Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA 2018), Oxford, UK,
13 July 2018.

96. Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Mari, F.; Leeners, B. Optimal Personalised Treatment
Computation through In Silico Clinical Trials on Patient Digital Twins. Fundam. Inform. 2020, 174, 283–310.
[CrossRef]

97. Guirado, G.; Hérault, T.; Lassaigne, R.; Peyronnet, S. Distribution, Approximation and Probabilistic Model
Checking. In Proceedings of the 4th International Workshop on Parallel and Distributed Methods in
Verification (PDMC 2005), Lisboa, Portugal, 10 July 2005; Elsevier: Amsterdam, The Netherlands, 2006;
Volume 135, pp. 19–30. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/DSD.2015.35
http://dx.doi.org/10.1109/TSG.2016.2596790
http://dx.doi.org/10.1109/FMCAD.2014.6987615
http://dx.doi.org/10.1007/978-3-319-16480-9_52
http://dx.doi.org/10.1093/bioinformatics/btaa1026
http://dx.doi.org/10.3233/FI-2020-1943
http://dx.doi.org/10.1016/j.entcs.2005.10.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cyber-Physical Systems
	Modelling the Environment
	Modelling the SUV
	Modelling the Specifications
	Acronym/SMC/l

	Background
	System Models
	System Properties

	Statistical Inference Approaches
	Hypothesis Testing
	Estimation
	Bayesian analysis
	Summary of the Algorithms Used for HT and Estimation

	Statistical Model Checking Tools
	(P)VeStA
	MultiVeStA
	Simulation-Based SMC for Hybrid Systems
	APMC
	PRISM
	Ymer
	UPPAAL-SMC
	COSMOS
	GreatSPN
	MRMC
	SBIP
	MARCIE
	Modest Toolset Discrete Event Simulator: Modes
	APD Analyser
	ViP Generator
	SAM
	Bayesian Tool
	Tool Comparison

	Discussion
	Conclusions
	References

