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Abstract: The development and integration of information technology and industrial control
networks have expanded the magnitude of new data; detecting anomalies or discovering other valid
information from them is of vital importance to the stable operation of industrial control systems.
This paper proposes an incremental unsupervised anomaly detection method that can quickly analyze
and process large-scale real-time data. Our evaluation on the Secure Water Treatment dataset shows
that the method is converging to its offline counterpart for infinitely growing data streams.
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1. Introduction

Industrial control system (ICS) is a general term for various control systems used in industrial
production, mainly including Supervisory Control And Data Acquisition (SCADA), Distributed
Control Systems (DCS), Programmable Logic Controllers (PLC), and Remote Terminal Units (RTU).
With the deep integration of communication technology, computer technology, and industrial control
technology, the amount of data generated by industrial control systems is showing exponential
growth [1]. In addition to the huge amount of data, these data also show the characteristics of
continuous and rapid arrival, as well as frequent changes in data composition [2], which is a very
large-scale data stream. Many aspects of current industrial control systems are facing the challenge of
rapid analysis of mass data [3,4], such as online monitoring of large transmission and transformation
equipment or power generation facilities with distribution automation systems.

The expansion of the monitoring scope and the in-depth enhancement caused a significant amount
of multi-source heterogeneous data collected by many measuring and sensing devices to be sent to the
monitoring center in real time, and the enormous data stream put great pressure on the monitoring
center in terms of the efficiency of the processing performance. Many components in modern industrial
control systems are no longer running in a production environment that is completely isolated from the
outside world [5,6]. Some application scenarios require that certain devices can be connected to other
internal networks, the Internet, and even cloud services. These new network topology methods have
brought more uncertain security risks to the industrial control systems while improving operating
efficiency and quality. In addition, they also make industrial systems face new and constantly evolving
network threats. According to Kaspersky Industrial Control Systems Cyber Emergency Response
Team (Kaspersky ICS CERT), more than 40% of ICS computers protected by the Kaspersky Lab
were attacked in the first half of 2019. It is very important and meaningful work to quickly analyze
the network data streams of industrial control systems and discover the abnormal information in
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them. Because this abnormal information may come from attackers, equipment failures, or other
unconventional operations [7], no matter which of the above-mentioned types of abnormal data is
generated, managers must be able to detect it immediately and make reasonable processing to reduce
the losses.

The anomaly analysis of data streams primarily faces the following problems. First of
all, the stream is infinite; there is not enough space to store the data generated every moment.
Second, the characteristics of the data stream often change with time. Thus, in order to maintain high
detection accuracy, it is necessary to update the detection model gradually, revising and strengthening
the previous learning of knowledge, so that the updated model can adapt to new data without having
to relearn all of the data. Many widely used online anomaly detection algorithms, such as Hoeffding
Trees (HT) [8], Online Random Forests (ORF) [9], and Streaming Half-Space-Trees (HS-Trees) [10],
can solve these problems. They have good accuracy and robustness when detecting data streams,
but these outstanding performances are concentrated in supervised or semi-supervised scenarios.
However, in real production environments of ICS, acquiring labeled data often requires a very high
price. In particular, it is almost impossible to collect complete labels for large-scale network data
streams. The biggest weakness of many existing algorithms is that they could not adapt to data
changes without supervision. In addition, there are no other well-performing streaming models in
unsupervised modes. Therefore, our research goal is to propose a new solution for this common
scenario in practical applications.

In a network environment, the proportion of abnormal traffic in the total operating data is very
small, that is, anomalies are much smaller than normal instances. In this case, ensemble learning has
been proven to be particularly effective in solving these problems [11]. In addition, it can improve
the accuracy of anomaly detection due to the combination of multiple evaluators to complete the
task. Among various ensemble learning algorithms, the ensemble algorithm of trees has a low time
complexity and high efficiency; thus, it has great advantages in anomaly detection for large-scale
network data streams.

In this paper, we propose a novel tree-integrated unsupervised anomaly detection method
for a large-scale data stream, called Growing Random Trees or GR-Trees, which addresses the
above-mentioned problems. It builds an ensemble of random binary trees for data in the first sliding
window, and the process of building can be finished without training data. Furthermore, each tree is
constructed by sampled data captured in data streams. As an unsupervised method, all parts of the
algorithm do not require any labeled data, and the trees evolve as data streams evolve. Furthermore,
since the depth of each tree is limited, the memory occupied by the algorithm is limited.

The contributions of this paper are as follows:

• It proposes an incremental anomaly detection method based on tree ensembles for data streams.
This unsupervised approach introduces a tree growth procedure which can constantly incorporate
new data information into the existing model.

• It introduces a tree mass weighting mechanism to ensure that the ensemble detection results could
keep relatively stable before and after discarding some trees, avoiding that the positive feedback
caused by deleting the tree affects the effectiveness of the method.

• The proposed method has a low time complexity and can efficiently detect anomalies of the data
stream.

• Our method does not need to store all data, and it is particularly suitable for detecting outliers in
an industrial control network, which has massive amounts of data.

2. Related Work

Most traditional anomaly detection methods are designed for static data or in offline mode, and
we first need to obtain the training data used to build the model. The paper [12] proposed an approach
that exploits traffic periodicity to detect traffic anomalies in SCADA networks. The paper [13] used the
REPTree algorithm to analyze the telemetry data in the industrial control network and distinguish
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machines of attackers or engineers. The paper [14] combined data clustering with large dataset
processing techniques to detect cyber attacks that caused anomalies in modern networked critical
infrastructures.

However, the detection algorithms need to run in dynamic environments in practical applications.
In dynamic environments, data are generated all the time and collected in the form of instantaneous
data streams, but conventional processing is not fitting for them. To tackle the streaming data with
the features of large amounts, rapid arrival, and changing over time, a series of anomaly detection
methods have been proposed. Wang et al. [15] proposed a sliding window processing method based
on Storm for the condition monitoring data stream of Smart Grids, which is performed through
threshold judgment. Nevertheless, the method is relatively simple and the data utilization rate is
low while the size of the data is limited. Lin et al. [16] adopted the principle of maximum entropy of
dimensions and combined the method of dimension groups to generate dimensional space clusters,
and integrated the data of the same dimensional cluster into micro-clusters. The anomaly detection of
the data stream in the sensor network was realized by comparing the information entropy sizes of the
micro-cluster and their distribution characteristics. This algorithm can improve detection accuracy and
effectiveness, but the data used in the experiment is relatively single, and it lacks the evaluation of the
applicability to other datasets with different structures. Yang et al. [17] designed a network intrusion
detection method based on the incremental GHSOM(Growing Hierarchical Self-Organizing Maps)
neural network model, which can incrementally learn new types of attacks in the online detection
process without destroying the learned knowledge, achieving a dynamic update of the intrusion
detection model. This method has good results for experimental data; however, the data in the real
world has a great uncertainty, so the classification effect will be affected to some extent in the noise
environment.

Differently from the above methods, our method utilizes two quantitative properties of anomalies:
(i) They are a minority consisting of fewer instances and (ii) they are attribute-values that are quite
different from those of normal instances. In other words, anomalies are ’few and different’, which can
be used to distinguish abnormal points from normal points. In addition, this method takes advantage
of the low time complexity of tree ensembles and is suitable for unsupervised learning. It does not
need to know the true distribution of normal and abnormal instances in the training set in advance,
which can better satisfy the requirements of anomaly detection in ICS. The experimental results show
that our method has consistent detection results on real-world datasets and artificial datasets.

3. Unsupervised Anomaly Detection for a Network Data Stream

The unsupervised incremental anomaly detection method based on the tree ensemble proposed
in this paper consists of three stages: Initial training, real-time detection, and streaming update.
The overall workflow is shown in Figure 1. In the first part of the section, we introduce the initial
training process. The second part delivers the implementation of detection. Finally, the streaming
update is explained in detail in the third part.
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Figure 1. The workflow of unsupervised incremental anomaly detection.

3.1. Initial Training

Online processing and mining for real-time data is generally not an evaluation of all historical
data, but only the latest data in the stream. Setting a sliding window on the data stream has some
attractive features that confine the data to a recent specific range with a special emphasis on the latest
information [18], which is more important than the old data in most applications. There are two
common types of sliding windows: Time-based and count-based. With the passage of time and the
arrival of new instances, both types of sliding windows slide forward, making the data in the window
change constantly. Considering the ensemble and the subsample of a fixed size in the analysis of data
streams, we chose the count-based sliding window.

In the initial training phase of the model, a sliding window is created to wait for incoming data to
flow in. When the sliding window is full, we perform random sampling with replacement of the data in
the sliding window for T times and obtain a data block D = {x1, x2, . . . , xm} composed of m instances
each time, where xi ∈ Rd. Finally, a set Dsample = {D1, D2, ..., DT} with T data blocks is generated.
Each block Di in Dsample is first put into the root of a binary tree. Then, the branching process of the tree
begins by randomly selecting a dimension qi among the d-dimensional features of the data and then
randomly selects a value v within the maximum and minimum values of the dimension. The instances
whose values in dimension qi are less than v are placed in the left branch of the current node, and
those greater than v are placed in the right branch. In this way, the data points of the current node
are divided into two subspaces. The same random selection and division processes are performed
recursively in these two subspaces, and the division stops when any of the following conditions is
reached: i) The subspace has a single instance, ii) the binary tree reaches the predetermined depth
limit, and iii) all instances in the subspace have the same values. Note that the depth limit is set to
the average height of a tree containing up to m leaf nodes, which is dlog2me [19]. The branch nodes
and the leaf nodes that reach the depth limit need to store the number of instances that fall into them.
Considering online tree growth, the leaves that have not reached the maximum depth need to store
the specific values of instances in addition to their numbers, as depicted in Algorithm 1. At this point,
a random binary tree is constructed based on a data block containing m instances, and other trees
are created in the same way. After building T random trees, the training is complete. The ensemble
consisting of these trees will be used to evaluate the anomalies of the subsequent data streams.



Information 2020, 11, 105 5 of 14

Algorithm 1 BuildTree(X, e, l)

Inputs: X—input data, l—depth limit, e—current tree depth
Output: A random binary tree

1: if | X |≤ 1 or unique(X) = 1 and e < l then

2: return exNode{Xlea f ← X}
3: else if e = l then

4: return exNode{Size←| X |}
5: else

6: Let Feats be a list of features in X
7: randomly select a feature q ∈ Feats
8: randomly select a split value v from max and min values of feature Feats in X
9: Xl ← f ilter(X, q < v)

10: Xr ← f ilter(X, q ≥ v)
11: return inNode{Le f t← BuildTree(Xl , e + 1, l),
12: Right← BuildTree(Xr, e + 1, l),
13: SplitFeat← q,
14: SplitValue← v}
15: end if

3.2. Real-Time Detection

In our method, the entire sliding window is emptied after all random trees have been constructed
using the data in the first sliding window. Subsequent data keeps coming, and the sliding window
keeps moving forward. At this time, the oldest data in the window will be cleared. In the real-time
detection stage, the ensemble evaluator is applied to each new observed point and immediately
determines whether it is abnormal. In view of the ’few and different’ characteristic of anomalies,
especially in the practical scenarios of ICS, the concept of ’isolation’ was first introduced and applied
to anomaly detection in [20]. Because the density of anomalies in the subspace is much lower than
that of normal instance clusters, the anomalies can be ’isolated’ with only a small number of splits.
This situation is manifested in that the segmentation of anomalies stays close to the root of a binary
tree, while the normal instances stay close to the maximum depth.

The common method for detecting anomalies is to sort by the path lengths or anomaly scores of
the data points. The path lengths or the depths of an instance x are measured by the number of edges
that x traverses for each random binary tree in the ensemble from the root node to the terminated node
according to the Depth First Search (DFS) recursive algorithm. Finally, the anomaly score is assigned
based on the average depth of the instance in all trees. The average depth will be converted to an
anomaly score using Equation (1), given in [20]:

s(x, n) = 2−
E(h(x))

c(n) (1)

where E(h(x)) is the average of the depths of an instance x in all trees, c(n) is the normalization factor
defined by the average path length of an unsuccessful search in the Binary Search Tree (BST), given the
number of data n:

c(n) = 2H(n− 1)− 2(n− 1)
n

(2)

where H(i) is the harmonic number, which can be estimated by ln(i) + 0.5772156649 (Euler’s constant).
In general, the anomaly score tends to be 1 when E(h(x)) approaches 0, and the data point x is most
likely to be abnormal; conversely, the anomaly score tends to be 0 when E(h(x)) approaches 1, and x is
considered to be normal.

In the production environments of ICS, most of the data are normal, while only a very small
part includes anomalies. The sudden surges of anomalies at a moment is a small-probability event,
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and, thus, it can be considered that the anomaly proportion of the data in the first sliding window
during the initial training process is approximately equal to that of the historical operating data in
ICS. Similarly, the threshold µ of the anomaly score of the two can also be obtained by referring to the
quantile of the anomaly proportion of the historical set, that is:

µ = quantile(F(X), 100(1− τ)) (3)

where quantile(a, b) is the quantile function, F(.) is the evaluation function of the ensemble evaluator,
X is the historical operating data of the system, and τ is the proportion of anomalies in X. We consider
the instances corresponding to the anomaly score s ∈ (0, µ) benign, and those corresponding to
s ∈ [µ, 1) anomalous.

3.3. Streaming Update

The GR-Trees algorithm combines an update trigger, tree online growth, and mass weighting to
continuously incorporate new data information into the existing model and to realize incremental
learning for data streams. The update trigger decides when to update the ensemble evaluator based
on the abnormality of the data in the sliding window. In GR-Trees, the structure of the tree is not static,
but new branches will grow according to the characteristics of the data stream, and the new branches
will affect the detection result and make it more accurate. The tree online growth and mass weighting
mechanisms ensure that the detection model can be adjusted in time as the data distribution changes
to avoid misjudgments caused by concept drift. Since only some leaf nodes in each random tree store
a small amount of information, this method requires less memory consumption and has better storage
performance.

3.3.1. Update Trigger

The ensemble evaluator consisting of random binary trees has been constructed in the initial
training phase. For the subsequent data streams, the evaluator determines whether their status is
normal or abnormal. Then, a buffer is created to collect all normal instances in the sliding window.
When the number of data in the buffer is greater than the threshold Nbu f f er, the ensemble evaluator
begins to update. The update process first randomly samples Nbu f f er data from the buffer and uses
them to optimize the ensemble estimator, including the online growth of trees and the replacement of
old trees with new trees in the ensemble. Meanwhile, the sliding window and buffer are emptied in
preparation for the new data.

3.3.2. Online Growth of Trees

A tree-update window and a tree-building window are required in this process. Given Nbu f f er
data sampled from the buffer, m instances (same as the subsample size in constructing a random
binary tree) are randomly selected from them to enter the update window; these constitute the dataset
Dupdate = {x1, x2, . . . , xm} for online growth of trees. The remaining Nbu f f er −m instances are put into
the building window to construct new trees. The number of trees that can grow online is determined as:

t = dT × θe (4)

where T is the ensemble size, θ is the proportion of the trees with growth in the ensemble, and d.e is
the round-up operation. θ = 0 means that the ensemble remains in the original state and that any tree
in it will not grow; θ > 0, that is, t > 0, means that t trees from the ensemble are randomly selected
and made to grow using Dupdate. After this process is done, the update window is cleared.
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Figure 2. An example of a single tree growing online. Data points a, b, d, f are sampled from normal
instances in the sliding window. They are input into a random binary tree, and then traverse the branch
from the root node to find the corresponding leaf nodes. The rectangle represents the leaf node and the
ellipse represents the branch node, in which the split attribute and split value constitute the division
condition. i) a and b should have fallen into the sibling of L8, but because the leaf node does not reach
the maximum depth, this node needs to split (assuming that the split probability of the node satisfies
the condition and the node changes from a leaf to a branch) and create two new leaf nodes L9 and L10
(dotted rectangle), which record a and b, respectively; ii) f falls into L8 and it overlaps with the data
recorded in L8, then drops it; iii) d falls into L4, which reaches the maximum depth, and the number of
data recorded in L4 will be updated.

The online growth process of a tree is as follows: For each instance in Dupdate, traverse down
random binary tree following the training rules and find the leaf nodes where they fall in. If the
depth of the current leaf node is less than the maximum depth and the values of new instances are
different from those of the original data contained in the node, the leaf node divides with a certain
probability; otherwise, it does not divide. If the current leaf node reaches the depth limit, the number
of data recorded in the node will be updated. Figure 2 depicts an example of a single tree growing
online. In [9], anomalies are more likely to be isolated than normal instances. Therefore, nodes with
smaller depths in the tree tend to be in the subspace where anomalies are located, while nodes with
closer depths to the maximum depth are more likely to be in the subspace where the normal instances
are located. In order to increase the difference between the adjusted depths of normal instances and
anomalies in the tree so as to better distinguish the two, the node division strategy adopted in this
paper is that the division probability increases with the increase of the depth of the leaf nodes, that is,
nodes with larger depths have a higher probability of splitting than those with smaller depths. Whether
a leaf node can be split depends on the following formula:

pi = 2di−dmax (5)

where pi is the division probability of node i, di is the depth of node i in the tree, and dmax is the
maximum depth.

Node division is the same as the initial training phase. In the new set composed of new data and
old data of the node, a dimension is randomly specified, and a value is randomly generated between
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the maximum value and minimum value of the selected dimension in this set as the dividing point. If
the instances in the new set are smaller than the dividing point in the specified dimension, then those
instances are sent to the left branch; otherwise, they are sent to the right branch. This division process
is performed recursively on the two branches until a single instance is isolated, the depth limit is
reached, or all of the values in a node are the same. It can be seen that a tree creates new branches and
adjusts the weights of leaves following this node division strategy. Details of the online growth of trees
can be found in Algorithm 2.

Algorithm 2 Online Growth of Trees

Inputs: X—input data, F—tree ensemble, T—tree ensemble size, l—depth limit, θ—update rate
Output: Updated tree ensemble

1: set the number of trees t = ceiling(T × θ)
2: randomly select t trees from { ft | ft ∈ F}
3: for i = 1 to t do

4: exnode, Xsub ← findLeaf( fi, X)
5: if exnode.depth < l then

6: if Xsub /∈ exnode.Xlea f then

7: calculate the probability of node to be divided p = 2exnode.depth−l

8: divide exnode with the probability of p:
9: X

′ ← Xsub ∪ exnode.Xlea f
10: exnode.Le f t, exnode.Right← BuildTree(X

′
, exnode.depth, l)

11: end if
12: else

13: updateNode(exnode.Size, | X
′ |)

14: end if
15: end for

3.3.3. Mass Weighting

Although the online growth of random binary trees makes the normal instances and anomalies
more distinguishable in adjusted depth in the tree, as new data are continuously added to the tree,
the number of points recorded in the leaf nodes of some trees will far exceed that of other trees at
the same depth, thereby disrupting the balance of the ensemble to some extent. In this case, the
solution is to discard the tree once it has a leaf node that contains more instances than the threshold;
this is because the structure of this tree is too far from the ensemble structure, which is no longer
applicable for evaluating the path lengths of instances. We set this threshold to be the subsample size
because the leaf node contains a maximum of m data points in a tree constructed with m samples.
Considering the most extreme case where a binary tree is fully grown online, the number of leaf nodes
is m, and each leaf node contains m data instances, so the binary tree needs to record m2 instances.
Furthermore, for an ensemble of T trees, the maximum number of data points that need to be stored is
m2T. Storing these data points is easy to implement, and such a memory space requirement is trivial
in modern equipment.

For some application scenarios, the distribution of data samples might drift to varying degrees
over time, and some old information should be allowed to be unlearned or previously learned
knowledge to be revised. Therefore, it is necessary to discard trees from the ensemble and create new
trees. However, if we discard trees whose detection results deviate from the ensemble average [21],
the distribution of results in the original ensemble will be destroyed and their degree of aggregation
will be higher and higher. Finally, the detection results of all trees in the ensemble will tend to be
the same. We call this situation positive feedback. In order to avoid the positive feedback caused by
rejecting trees and to ensure that the detection result of the ensemble remains relatively stable, we
quantitatively discard trees from the ensemble based on the mass weight of the results evaluated by
each tree for the sliding window.
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In order to calculate the anomaly ratio(R) of data in the sliding window with each tree evaluator
in the ensemble, R is defined as:

R =
rabnormal

rall
(6)

where rabnormal and rall are the number of anomalies and the total number of all instances in the current
sliding window, respectively. The anomaly ratios of the sliding window obtained by T tree evaluators
constitute a set Rensemble = {R1, R2, ..., RT}. Then, the maximum value Rmax and minimum value
Rmin are taken from Rensemble and the interval consisting of Rmax and Rmin is divided into N segments.
We can write the boundary values of each interval as

Interval(i, step) = [(i− 1)× step, i× step), i = 1, 2, ..., N (7)

where step is the length of each segment; it is equal to Rmax−Rmin
N . Then, we can easily count the number

of anomaly ratios that fall within each interval, which form the set C = {ci} with i ∈ {1, 2, . . . , N}, and,
finally, the proportion of the tree that should be discarded in the interval i is αi =

ci
T . Therefore, dTδαie

old trees are randomly selected at each interval, and then these trees are replaced with new ones.
The Nbu f f er − m instances in the buffer enter the tree-building window and form the dataset

Dbuild, which is used to create new trees (see Section 3.3.2). In the same way as in the initial training
process, we sequentially perform sampling with replacement, random selection, and partitioning to
build a new random binary tree using Dbuild. Finally, the building window will be emptied.

After all of the above steps have been completed, we have implemented the update of the entire
ensemble evaluator. The new tree ensemble is used to detect the subsequent data streams, and the
feedback results will in turn update the ensemble evaluator.

Algorithm 3 Mass Weighting

Inputs: F—tree ensemble, T—tree ensemble size, δ—discard rate, N—the number of intervals
Output: New tree ensemble

1: for each tree f in F do

2: Ri ← calcAnomalyRatio(sliding_window, f )
3: end for
4: Rmax ← max(R), Rmin ← min(R)
5: step← (Rmax − Rmin)/N
6: for j = 1 to N do

7: treeSets← Interval(j, step) {Interval(.) is defined in Equation 7}
8: c← (T ∗ δ) ∗ (sizeo f (treeSets)/N)
9: randomly discard c trees ∈ treeSets

10: end for
11: build T ∗ δ new trees

4. Experimental Evaluation

The purpose of our experiment is to compare the performance of the incremental anomaly
detection method in this paper, GR-Trees, and its offline counterpart. We also verify how much of
a positive effect the online growing procedure has had on our method. In addition, we examine the
impacts of different parameter settings on the detection results of GR-Trees.

4.1. Evaluation Criteria

The confusion matrix is the most basic, intuitive, and easiest way to measure the accuracy of the
classification model. The general parameters for model evaluation can be calculated from the confusion
matrix: Accuracy, Precision, Recall, F1 score, and Specificity. Accuracy represents the overall prediction
accuracy, including positive and negative samples; precision represents the prediction accuracy of
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positive sample results; specificity is used to measure the ability of the classifier to recognize negative
samples; recall is for the original sample, and it indicates the probability of being predicted to be
a positive sample in the actual positive samples; the F1 score is the weighted harmonic average of
precision and recall, which can make both reach higher values at the same time. Therefore, the F1 score
is a comprehensive evaluation index of model accuracy.

However, the number of anomalies is usually much smaller than normal samples in anomaly
detection. If the above indicators are used to evaluate the model, the problem of sample imbalance
will cause the final results to be inconsistent with the basic facts of the actual situation. Thus, we use
AUC (Area Under the receiver operating characteristic Curve) as the scale to measure our method,
which is obtained by expanding on the basis of recall and specificity. Because AUC is based on the
results of actual performance and observes the related probability problems in the actual positive and
negative samples, it avoids the bias of the evaluation results caused by the imbalance of the samples.

4.2. The SWaT Dataset

SWaT (The Secure Water Treatment) is a water treatment testbed for network security research [22].
It is a unique and complex facility that simulates the functions of water treatment systems in the real
world. The SWaT dataset contains the network traffic and physical properties derived from 11 days of
continuous operation. For the first seven days, the system was under normal operation, while for the
next four days, it suffered certain cyber and physical attacks. The physical properties were obtained
from different sensors and actuators available in SWaT, and the network traffic was captured from the
communication between the SCADA system and the PLCs. The attacks were launched by hijacking
the packets used in communication and tampering with their values. During this process, the network
packets were modified to reflect the spoofed value from the sensors. We chose network traffic in the
SWaT dataset to evaluate the performance of the proposed anomaly detection method. Each network
connection is labeled as normal or attack.

The original network traffic in the SWaT dataset contains 11 days of operating data. The daily
data consists of 70 CSV(Comma-Separated Values) files, each of which comprises 500,000 pieces of
network connection information. However, as the data were captured at a per second interval, there are
overlapping instances where multiple pieces of data information with the same timestamps reflect
a different activity. We chose the data collected on December 31, 2015. During this day, the system
encountered four different types of attacks in four different periods, and the types of attacks in each
period were the same. We first removed redundant records and records with missing information in the
original data [23], and then extracted 600 thousand normal traffic instances and 60 thousand abnormal
traffic instances according to collection time to form the experimental dataset, where anomalies were
divided into four different types.

4.3. Results and Analysis

We used the SWaT network traffic dataset to evaluate the detection performance of GR-Trees,
its offline counterpart [20], and an online model without growing that only constructs new trees to
replace old ones based on mass weight. For this experiment, we set the number of trees to be 100 and
the subsample size to be 256. We set θ = 0.3 and δ = 0.1 for the streaming update. Figure 3 compares
the fluctuation of AUC scores for these three methods as the number of training samples from the SWaT
dataset changes. We can see that the overall AUC scores of GR-Trees and the online model without
growing are higher than the offline model, which illustrates the importance of gradually updating the
model. In the initial stage, GR-Trees does not perform as well as the online model without growing.
This difference is caused by the randomness of selection of features and feature values during tree
construction. As the number of training samples increases, that is, the data stream is successively
obtained, the positive effect of online tree growth gradually becomes apparent, leading to the AUC
score of GR-Trees gradually exceeding the latter and continuing to maintain this advantage.
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Figure 3. AUC (Area Under the receiver operating characteristic Curve) scores with respect to the ratio
of training samples for online Growing Random Trees (GR-Trees; red solid), the online model without
growing (cyan dashed), and the offline model (blue solid) with an increasing number of training
samples from the SWaT dataset.

The parameters that have an important influence on the accuracy of our method are the ensemble
size, subsample size, update rate, and discard rate. Other parameters, such as buffer threshold,
mainly affect how often the ensemble evaluator is updated; nevertheless, they are not the focus of our
attention. Figure 4 shows the effects of different ensemble sizes, subsample sizes, update rates, and
discard rates.

In Figure 4a, we show the change in the AUC score when the ensemble size (T) is 40, 80, 100, and
120, respectively. The increase in ensemble size within a certain range is conducive to improving the
AUC score. However, when it exceeds 100, the AUC score does not change obviously. In terms of
experimental results, we shall use T = 100 as the default value in our experiment.

Figure 4b depicts the impacts of different subsample sizes (m)—64, 128, 256, and 512—on the
detection performance. As the size increases in the range of 64 to 128, the overall AUC average
increases significantly. Setting the subsample size to 256 or 512 achieves similar results. Therefore, if it
is observed that the subsample reaches a certain scale and its size has little effect on the performance in
actual applications, then it is not necessary to increase the subsample size because it will only increase
the processing time and storage requirements of the system without major performance improvements.
A subsample of 256 instances is more appropriate for creating a random binary tree and detecting
anomaling in our method.

Considering the speed and performance of the method, we set the values of the update rate (θ)
and discard rate (δ) to be less than 0.5, and select some discrete points for experiments. The sets of
both are 0.1, 0.2, 0.3, and 0.4 in Figure 4c,d. The AUC of θ = 0.1 and 0.2 are relatively close, but the
latter is slightly higher than the former. When the update rate reaches 0.3, the AUC improves greatly
compared with the previous, whereas when θ increases to 0.4, it decreases to the minimum. Therefore,
setting the update rate to 0.3 is nearly optimal in this experiment. As for the discard rate, the worst
detection performance is achieved at δ = 0.1, while the results at δ = 0.2, 0.3, and 0.4 are better and
similar. Empirically, the discard rate can be adjusted between 0.2 and 0.4 according to the actual needs
so as to obtain better results.
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(a) Effect of ensemble size (T) (b) Effect of subsample size (m)

(c) Effect of update rate (θ) (d) Effect of discard rate (δ)

Figure 4. Effects of different ensemble sizes, subsample sizes, update rates, and discard rates on the
detection performance.

To further verify the effectiveness of GR-Trees, we evaluated GR-Trees and the corresponding
offline algorithm (Isolation Forest, IF) on the Http and Smtp (from KDD Cup 99), ForestCover, and
Shuttle (from UCI Machine Learning Repository) datasets. The data distribution features of Http and
ForestCover are that a large number of anomalies will burst out during certain periods of the data
stream, while the distributions of anomalies in Smtp and Shuttle are relatively uniform. Additionally,
since there have not been suitable unsupervised anomaly detection models of the same type with
good effects in core journals and conferences in recent years, we chose an online semi-supervised
algorithm, Streaming Half-Space-Trees (HS-Trees), for the comparison test. In order to uniformly
compare the performances of various algorithms, the overall abnormal proportion of each dataset was
constrained to 0.1. According to the above analysis of parameter effects, we used 100 trees, a subsample
of 256, θ = 0.3, and δ = 0.1 in GR-Trees. As for IF and HS-Trees, we used their default settings. In all
experiments, we independently ran each algorithm 10 times on each dataset and calculated the average
AUC as the experimental result. Table 1 summarizes the information of the above four datasets
and records the results of the experiments for all methods. From the table, we can observe that the
performance of GR-Trees on the three datasets (Http, Smtp, and ForestCover) was better than that
of IF; in particular, the AUC scores on the Http and ForestCover were greatly improved, indicating
that our method is more adaptable to sudden changes in data than its offline version. Although the
AUC of GR-Trees on the Shuttle was slightly lower than that of IF, in general, GR-Trees can achieve
comparable results to its offline counterpart. The experimental results also show that GR-Trees has
a similar detection performance compared with that of HS-Trees, and GR-Trees even outperforms the
latter on the Http, Smtp, and Shuttle datasets.
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Table 1. AUC scores for GR-Trees, Isolation Forest (IF), and Streaming Half-Space-Trees (HS-Trees).

Dataset Points Dimension Anomaly AUC

GR-Trees IF HS-Trees

Http 567497 3 0.4% 0.9502 0.5318 0.9203
Smtp 95156 3 0.03% 0.8313 0.8255 0.8259

ForestCover 286048 10 0.9% 0.5814 0.5293 0.6046
Shuttle 49097 9 7% 0.8923 0.9395 0.8726

5. Conclusions

In view of the challenge of rapid analysis of large-scale data streams in the current industrial
control system, as well as its realistic demand for unsupervised learning and unbalanced processing of
data categories, this paper introduces an unsupervised incremental anomaly detection method based
on the ensemble of trees for data streams. We combined an update trigger, tree growth, and mass
weighting scheme that allows for online updating and building of random binary trees, achieving
the purpose of learning from new data. This method takes full advantage of the low time complexity
of the ensemble algorithm of trees and extends it to efficient streaming calculations for mass data
while solving the problem that the overall performance of the anomaly detector degrades due to the
random updating of the model. Since only a few leaf nodes of each tree store a small amount of data
information, it has good storage performance and adaptability to environments with limited memory.
The empirical evaluations on the SWaT and several common UCI datasets show that the proposed
method can meet the performance of the corresponding algorithm in the offline mode.
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