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Abstract: Identifying internet spam has been a challenging problem for decades. Several solutions
have succeeded to detect spam comments in social media or fraudulent emails. However, an adequate
strategy for filtering messages is difficult to achieve, as these messages resemble real communications.
From the Natural Language Processing (NLP) perspective, Deep Learning models are a good
alternative for classifying text after being preprocessed. In particular, Long Short-Term Memory
(LSTM) networks are one of the models that perform well for the binary and multi-label text
classification problems. In this paper, an approach merging two different data sources, one intended
for Spam in social media posts and the other for Fraud classification in emails, is presented.
We designed a multi-label LSTM model and trained it on the joint datasets including text with
common bigrams, extracted from each independent dataset. The experiment results show that our
proposed model is capable of identifying malicious text regardless of the source. The LSTM model
trained with the merged dataset outperforms the models trained independently on each dataset.

Keywords: spam text filter; text mining; content-based classification; natural language processing;
multi-label classification; LSTM

1. Introduction

Spam is a trending internet dysfunction that has been affecting social networks and websites [1,2].
Replying with out-of-context comments on social media is, in general, a sign of an attempt to induce
users to open malicious links or disturb the reader with marketing. Information phishing was initially
used for marketing, but it degenerated into harmful internet interactions that lead users into serious
security threats using means such as emails, comments, blogs, and messages [3]. Detecting spam
has several purposes including security and creating better user experiences on the communication
platforms [4]. Several effective tools have been used for spam filtering that relies on techniques such as
heuristic rules and logistic regression combination [5], and baseline classifiers with hybrid ensemble of
features selection [6].

Phishing is common in spam and fraud communications. These communications include emails,
social media, and video streaming services, among others. Filtering these malicious messages could be
as simple as a binary text classification aiming to determine whether a text is harmful or legitimate.
In many cases, text classification requires transforming the unstructured text into a standardized
numerical representation for ease of analysis [7–9]. Usually, texts are projected by word embedding
models. The most frequently used are known as Word2vec models that work by preserving semantic
meaning between words [10–12].

Deep Learning models have historically proven to be effective for email spam classification,
provided their adaptable nature and capacity to maximize the potential of modern hardware
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and computational limits. Deep learning techniques show great promise in the advancement of
spam filtering [13]. Various different architectures such as Convolutional Neural Networks (CNN),
Multi-Layer Perceptron (MLP) and Long Short Term Memory (LSTM) have been successfully employed
for this purpose [14].

The problem that is the focus of this work is to develop a robust and reliable spam detection
model which can determine a given comment or email as spam or ham. In this paper, we have focused
on identifying YouTube spam comments and Nigerian fraudulent emails, by designing a binary text
classification model based on LSTM architecture with pre-trained word embeddings Word2vec model.
The spam text was extracted from comments on YouTube videos [15]. Aside from structural and
compositional differences between the text from the two datasets, for the purposes of this paper,
we considered phishing as a type of fraud with the intent to illegally exploit a users financial or
personal data. We labeled a text as “spam” if it contained any commercial links and words that
deviated from the context of the videos. Fraudulent text, for training and testing, was derived from
a dataset of phishing emails [16]. For the rest of this paper, we considered a text “fraud” if it shared
structural and compositional similarities with the Nigerian fraudulent emails along with phishing
intent. We considered a text “spam” if it shared structural and compositional similarities with the
spam labeled YouTube comments. “Spam” text did not necessarily possess phishing intent.

The framework is extended to present a joint LSTM architecture to conduct a multi-label
classification. The joint dataset used is the data collection including associations of two words (bigrams)
that were present in both datasets. This framework constitutes a phishing detection tool, based on
multi-source text classification. In addition, our contribution has the aim a more comprehensive
classification model that predicts the nature of similar domain texts (i.e., Harmful or Normal) and its
malicious style (i.e., Spam Comments or Fraud Emails).

This paper is organized as follows. Section 2 presents a summary of state-of-the-art techniques
on phishing detection and text classification methods. Section 3 introduces the background details of
the implemented research methods. Section 4 details the methodology of our proposed framework,
and explains the setup and the preprocessing for the conducted experiments. The results and analysis
of our approach are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Background

This section introduces recent research on text analysis techniques for NLP tasks and phishing
detection. We specifically highlight advances in information security, text classification, and neural
networks and their applications in malicious text filtering and multi-domain learning.

2.1. Security Information

In recent years, the user’s information has become an invaluable tool in explaining behavior [17],
opinion and emotional influence [18,19] towards micro-blogging websites and e-commerce networks.
The exponential growth of shared information on social networks has given rise to the problem of
user security and privacy. Many studies have researched this issue in order to contribute to technical
solutions against these cyber threats [20]. From the perspective of users, public information on popular
websites and social networks need more credibility and validation because it can be spam, misleading
or inaccurate. Therefore, several mechanisms have been introduced to analyze the relevance of the
information before being considered for important decisions in varying domains [21].

Phishing detection has been a challenging problem that treats several sub-problems such as
fraudulent inbox emails or spam and irrelevant comments in social media blogs. For several years,
many tools and algorithms were implemented for specific domains and for different purposes,
such as financial gain, identity theft, identity trafficking, industrial espionage, malware distribution,
and password harvesting. A study proposed PhishCatch algorithm for phishing emails detecting [22].
It is a heuristic-based rule algorithm that alerts the user about identified suspicious links, achieving
an 80% detection rate of phishing emails. The work of [23] also implemented a recognition model for
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URL phishing sites in mobile messages, which is based on neural networks. It achieved an accuracy
rate of 98.2% and a recall rate of 96.9%.

2.2. Text Classification and Malicious Text Filtering

Text filtering can be achieved by classification. Labeling texts allows for the identification of text
groups and provides differential handling. For example, in phishing identification, the texts could be
classified into harmful (i.e., spam, fraud, etc.) or harmless (i.e., non-spam, normal, non-fraud, etc.).
As a data mining problem, several machine learning algorithms were suggested to effectively solve
this problem. In [24], a semantic-based Decision Tree classifier was proposed to help to classify a public
Chinese spam detection. The work of [25,26] introduced a spam detection tool using an ensemble
model of traditional classifiers (i.e., KNN, Naïve Bayes, SVM, etc.) trained independently on five
subsets of datasets and achieved accuracy scores that range from 90.64% to 94.9%.

Moreover, the spam detection problem was approached with string matching algorithms such as
the longest common string, bigram, and Jaro-Winkler [27]. These aimed to find similarities among
spam phrases and effectively assign the text labels compared to the well-known classifiers. Moreover,
features extraction and dimensionality reduction methods were proven in [28,29] to highlight the
performance of text classification for phishing detection in emails.

2.3. Neural Networks for Text Filtering

Neural network models have been employed for a variety of NLP tasks [30–32]. As text
representation has become a challenging problem, the neural network presented an efficient way
of modeling written language by a human into a continuous representation of words, phrases,
and paragraphs [33,34]. The application helped in preserving the semantic meaning of a document and
projecting the words into a continuous vector space. In this context, a convolutional neural network
model (CNN) for document-level representation was suggested to extract features from a collection of
opinion spam and then a gated recurrent neural network model (GRU) was used for deceptive spam
detection [35].

The CNN architecture was also implemented for multi-label classification of short texts and
showed promising results using domain-specific word embeddings [36]. Nevertheless, email classification
algorithms based on deep neural networks (DNN) outperformed the results of the limited statistical-
based classification algorithm [22]. The work of [37] presented a new implementation of LSTM for
document-level sentiment classification and proved the effectiveness of the maximum number of
texts in each document for the running time optimization. Other neural network models were also
implemented such as a multi-layer perceptron neural network for spam detecting [38] and Bi-Gated
Recurrent Unit for hot news classification [39].

Dhingra and Mittal [40] approached the challenge of spam classification on live tweets from
Twitter via an API through the implementation of a Multi-Layer Perceptron (MLP). Raw text extracted
from tweets was preprocessed by removing special characters, tokenization, and stop word removal,
stemming and word separation. Additionally, content-based features such as unique hashtags
and URLs were extracted for training. Naïve Bayes was implemented for comparison of accuracy,
precision and recall values with the deep learning model. Naïve Bayes produced an accuracy of 79%,
a precision of 71% and a recall of 75%, compared with MLP results of 82%, 75%, and 81%, respectively.
The MLP model outperformed the Naïve Bayes classifier for all three metrics.

2.4. Multi-Domain Learning

Text mining problems usually deal with a specific domain and focus on enhancing the
generalization of the model toward the domain of the dataset. However, with the growing availability
of information online, new domains have been introduced seeking the adaptability of machine learning
solutions. For example, the work presented in [41] proposed a domain adaptation algorithm for
classifying text reviews using maximum entropy and point-wise mutual information, aiming to transfer
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knowledge without training on a labeled dataset. In [42], multi-domain learning was enhanced by
using an adversarial training methodology to prove the effectiveness of feature sharing between
different domains. The use of stacked auto-encoders was also suggested as a deep learning-based
approach for solving the domain adaptation problem by providing a new representation for the
domains [43]. We have selected some literature from which to tabulate results of experiments and
methods that were used for either Natural Language Processing or similar tasks in Table 1.

Table 1. Literature Review.

Reference Applied
Method Task Results Application

Dhingra & Mittal [40] Multi-Layer
Perceptron

Spam classification in
tweets from Twitter.
MLP had not been
applied to tweets for
this purpose before

82% accuracy,
75% precision,
81% recall

MLP outperformed Naïve
Bayes in classification of
tweets as spam

Jain et al. [14]
CNN-LSTM
based
architecture

Detecting spam in
noisy and short-text
messages such as
those found in social
media

95% accuracy,
95% precision,
98% recall,
97% F1-score
in tweet spam
detection

High performing method for
spam detection in short texts
using machine learning

Ding et al. [5]
Heuristic Rule
and Logistic
Regression

Detecting phishing
websites based on
URLs

98% accuracy,
98% recall,
98% F1-score,
97% precision

A method to detect phishing
websites through obfuscation
techniques processing

Chiew et al. [6] Random
Forest

Preprocessing data
to perform spam
classification in
emails

96.17%
accuracy

Hybrid Ensemble Feature
Selection for preprocessing
data that works best with
Random Forest classifier

Hua [44] BERT
ensemble

Classifying
propaganda texts
at the sentence level

63% precision,
69% recall,
66% F1-score

A set of illustrative
experiments to understand
the performance of BERT on
propaganda classification

Aggarwal et al. [45] BERT Classifying text
articles as fake news 97% accuracy

A method for classifying fake
news for long-text articles
(avg. 731 words)

3. Research Methods

In our efforts to contribute to the state of the art in classification models for detection of spam
comments and fraudulent emails, neural network models were tested as described in this section.
Neural network models (including Deep Learning) were first inspired by the human brain and are
applied in many fields. In particular, several methods were designed for NLP applications, to learn
complex motifs from large datasets [46]. The following paragraphs describe the word embeddings for
text representation and two basic text classification deep learning models: RNN and LSTM.

3.1. Word Embeddings

In NLP applications, the use of conventional features like term frequency-inverse document
frequency (TF-IDF) was proven to be less efficient than word embeddings [47]. Therefore,
word embeddings were suggested for text representation by converting words into real-valued vectors.
The vectorization is made after training neural networks on a text corpus. Words, as discrete atomic
symbols, require a continuous space projection, where semantically related words have similar and
homogeneous vector representation. Word embeddings preserve the semantic meaning and the syntax
of the words based on their context in the documents. In many NLP tasks such as machine translation,
speech recognition, and text classification, word embeddings were applied with pre-trained neural
network models.
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Word2vec is a word embedding model that offers two variations: the Continuous Bag-of-Words
model (CBOW) [48] and the Skip-Gram model [49]. The CBOW model works to predict the current
target word from a window of surrounding source-context words. The skip-gram model, however,
weights the surrounding context words more heavily by predicting the source-context words from the
target words. Word vectors pre-trained on datasets from several domains are available and they are
created with unsupervised learning on a large text corpus.

3.2. Basic Text Classification Architectures

Text data is naturally sequential, thus it requires an architecture’s design that makes use
of sequential data, because sequential information is clearly important while conducting a text
classification task. The dependencies between words and symbols in the input sequence is important
as the meaning can be misinterpreted or the order of words can be incorrect if sequential information
is not used. In this context, Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM)
networks are suggested as the most widely used techniques for text classification. These models are
designed with a feed-forward and backward propagation structure, which makes use of sequential
information and contains directed loops that represent the propagation of activation to future input.
The traditional neural network is composed of independent input and output; however, this structure
had limitations for sequentially dependent data. A deep learning model is composed of multiple
hidden layers with different linear and non-linear activation functions. Every model is a unique
manifestation of the general neural network framework. Most of them incorporate an output layer
that is generated with a dense layer, commonly known as a fully-connected layer, which predicts the
final class labels. Through every batch of the training dataset, the model updates parameters and
optimizes the error using some advanced adaptive techniques. Since the text dataset has a sequential
dependency, RNN models are highly robust and suitable for learning from these datasets, efficiently
performing classification tasks. The correlation between the front and back of the data is connected
through a sequence of nodes that can learn from word vectors.
The RNN model follows this set of steps:

• The input of the hidden layer at time t: Wt

• The output of the step t: where f is the activation function such as sigmoid or ReLu
• Final output: where g is the output activation function such as softmax

The traditional RNN model cannot capture long-distance dependent information between words
and output and thus, the gradient descendent can dramatically decrease until reaching zero. The LSTM
model suggests solving the problem of gradient vanishing by introducing an input gate, i, an output
gate, o, a forget gate, f, and a memory cell. The forget gate decides what information to discard in the
memory cell. As Equation (1) explains, the LSTM cell at time, t, takes three inputs: xt and two previous
outputs ht−1 and Ct−1. The forget gate is a calculated value between 0 and 1.

ft = g(W f xt + U f ht−1 + Vf Ct−1 + b f ) (1)

The LSTM cell connects the input, xt, and the forget gate, f, through the weight of the previously
hidden layer, ht−1. Vf connects the weight of the previous state of the memory cell, Ct−1. U f connects
ht−1 and forget gate, f. The equation uses a bias term, b f , and a non-linear transformation, g, which
must be either ReLu or sigmoid. The input gate, i, updates the memory cell at time, t, as explained in
the following Equations (2)–(4).

it = g(Wixt + Uiht−1 + ViCt−1 + bi) (2)

nt = tanh(Wcxt + Ucht−1 + VcCt−1 + bc) (3)

Ct = ftCt−1 + itnt (4)
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The input, xt, and the input gate, it, are connected through the weight, Wi. Ui also connects the
input gate, it, and ht−1. Ct−1 is connected with it through Vi. Wc connects xt with nt, which is connected
with ht through Uc. The previous equations use bias terms, bi, bc. The following Equations (5) and (6)
explain the computation of the LSTM output gate.

ot = g(Woxt + Uoht−1 + VoCt−1 + bo) (5)

ht = ottanh(Ct) (6)

The input, xt, and ot are connected through Wo. ht−1 and ot are connected through a weight, Uo.
Ct−1 and ot are also connected by Uo. The previous equations also use a bias term, bo.

4. Methodology and Experimental Setup

This section describes our training datasets and presents the preprocessing and parameterization
for conducting the experiments.

4.1. Datasets

A major part of our contribution of a robust spam comment and fraudulent email classifier is the
preprocessing and combination of the data and selected datasets. The proposed models are trained
over two datasets: one containing samples of spam comments and the other containing fraudulent
emails. The spam samples are derived from a collection of user comments on YouTube videos for
five popular music artists, extracted from [15,50]. The comments were labeled either “spam” or
“non-spam”. The files are combined into 2394 comments, evenly distributed between the two labels.
The average length of the comments is 11 words, with short text format containing words, symbols,
hyperlinks, and punctuation.

The fraud dataset is formed from a publicly available collection of emails, known as the
“419 Fraud” or “Nigerian Letter” dataset, defined at [51]. It is formed by 11,000 body of emails
that are nearly balanced between “fraud” or “non-fraud” labels.

4.2. Data Preparation

Raw data is cleaned and prepared prior to input for the classification training models. We applied
the following steps to remove unrelated characters and symbols for every comment and email.
The following list outlines the implemented methodologies to obtain a preprocessed dataset [52]:

• Lower-casing all the words because our models are not case-sensitive
• Tokenizing the texts using NLTK Python Library
• Removing the stop words using an enhanced version of NLTK English corpus
• Removing URLs and links to websites that start with www.* or http://*
• Removing repeating characters from words
• Removing numbers and punctuation marks
• Removing strange characters that were utilized from the keyboard
• Word lemmatization, semantic reconstruction of misspelled words, mapping the Emojis to their

expression, and replacing the slang by their original meaning

Each class was balanced in both datasets through random under-sampling. The training dataset
for the joint model was derived from records containing text that is common in both Spam and Fraud
datasets. In order to construct this, we used n-gram (i.e., association of n linked words) mapping
across the two different datasets. We extracted two lists of bigrams (i.e., association of two words)
from both the Spam and Fraud datasets and any duplicates were thrown out.

Next, the intersection of bigrams from both datasets was marked and each bigram was tracked
using the text ID. We then retrieved the records containing only common bigrams and compared it to
all the existing bigrams in the texts.
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Each record from either Spam or Fraud dataset that contains a common bigram is assigned a new
“artificial” label, which defines a class from both datasets (i.e., if the bigram originally belonged to
the Spam dataset, an “artificial” Fraud label is assigned to it). The artificial label is assigned based on
the class frequency of the common bigram in the dataset opposite to which the original text belongs.
For example, if a record with a true spam label has a common bigram occurring in both the fraud and
non-fraud subsets, we will assign it a “fraud” label if it occurs more frequently in the fraud subset
than in the non-fraud subset. The resulting dataset will have records containing only common text
between the two datasets with a true label from the parent dataset and an artificial label from the
opposite dataset.

The following equations detail the joint dataset generation, where bigrams were extracted from
the original datasets and compared with a list of the common bigrams in each dataset. Records were
retrieved through their original Id if the record’s bigrams are present in both the list of common
bigrams and the bigrams list for each class. Equations (7)–(10) describe the retrieval of the records for
each independent class: fraud, non-fraud, spam and non-spam.

recordfraud = {x ⊆ cB, y ⊆ f raud; substring(x, y)} (7)

recordspam = {x ⊆ cB, y ⊆ spam; substring(x, y)} (8)

recordnon_fraud = {x ⊆ cB, y ⊆ non_ f raud; substring(x, y)} (9)

recordnon_spam = {x ⊆ cB, y ⊆ non_spam; substring(x, y)} (10)

where
cB = collection of common bigrams (11)

x and y = set of bigrams extracted from original texts of each dataset (12)

substring(x,y) = subset of biagrams x and y (13)

The Equation (14) shows the collection of intersection between the list A that includes the bigrams of
the Spam dataset and the list B that includes the bigrams of the Fraud dataset. Therefore, each list of
records regroups the substrings which are texts including bigrams that belong to the collection cB and
the bigrams of texts in each corresponding dataset.

cB = {x : x ⊆ A ∩ B|A = bigramsSpam Dataset; B = bigramsFraud Dataset} (14)

4.3. Models

We present a two-part system that is based on LSTM neural network models for text classification.
The framework of our proposed approach is described in Figure 1 where two individual models are
designed and a third joint model was suggested and trained on a new joint dataset.

We implemented three classification models based on LSTM architecture. The models share
the same architecture design but differ in the last output layer. Spam Model and Fraud Model (i.e.,
independent models) are designed for binary text classification. Spam Model is used for classifying
the YouTube comments into Spam and Non-Spam, and equivalently, Fraud Model is designed for
classifying fraudulent emails into Fraud and Non-Fraud. However, Joint Model is designed for
multi-label text classification of four different class labels that are not mutually exclusive. In Figure 1
the detailed labels from Joint Model output are presented, where they are formed using the mutually
exclusive binary labels (Spam, Fraud, Non-Spam, and Non-Fraud).
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Figure 1. The framework of Spam and Fraud text classification.

Figure 2 shows the stacked architecture, which is composed of sequential layers to add levels
of abstraction to the sequential input over time. The first layer is the Embedding layer, it is fed with
a matrix created using vocabulary words extracted from each dataset and transformed through the
embedding model. The output of this layer is a two-dimensional vector with an embedding for each
word in the input sequence. After that, the model stacks a block of LSTM layer followed by a dropout
L2-regularization, in order to avoid the over-fitting problem. For label classification, a dense layer
with a softmax activation function was added to the architecture. Finally, binary labels are obtained
by using a fully connected layer. This layer applies an optimization of the weights and evaluates the
quality of the predictions using the performance evaluation metrics. The binary classification Spam
Model and Fraud Model are designed with a last fully connected dense layer that applies a softmax
activation function. However, the multi-label classification Joint Model presents its last layer along
with the sigmoid activation. The training objective is to reduce a binary cross-entropy loss between the
predicted and the actual true class labels.
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Figure 2. Our proposed LSTM architecture design.

4.3.1. Spam Model and Fraud Model Parameters

Since Spam Model and Fraud Model are designed for binary classification and share the same
architecture, we adopted the same parameters that were partially inspired by the works [53–55] on text
classification using LSTM model and word2vec model. Experiments were conducted on the hidden
state dimension of the LSTM layer and the number of epochs, and we concluded the appropriate
setting for the best performance.

We also evaluated the choice of word2vec parameters using the literature settings. Therefore, we
used word vector size, which is the word embedding dimension d = 300 from the pre-trained Wor2vec
model on the Google news dataset. This defines the size of the embedding matrix that was loaded



Information 2020, 11, 312 10 of 19

into the embedding layer of our model. The LSTM layer was applied with a number of units = 128
which are the hidden units that represent the depth of the LSTM and its learning capacity to memorize
during the training. The LSTM was preceded by a spatial dropout 1D layer.

Before stacking the last fully connected dense layer with two units, the additional dense layer
was applied with 10 units. The two models are trained using Adam optimizer and a number of epochs
between 10 and 30, which determines the number of times of selecting the training set once to update
the weights. We used a batch size of 64 and a dropout parameter at the embedding layer with a
probability p = 0.7 and at the LSTM layer with a probability p = 0.5 and L2-regularization parameter
value with 0.5. We used early stopping criteria with a minimum delta = 0.0001, which stopped the
training in case of no improvement after a patience = 3. This helped to monitor the performance
measure and to stop the process if it did not achieve an improvement on minimizing the loss function
with more than 0.0001 during 3 iterations. To normalize the input text matrix, we added padding of
value zero with a max length of all the vector texts. This technique helps to avoid reducing the size of
the text matrix due to the inequality of the vector texts’ size. As the two main datasets have different
text sizes and structures, the input matrix of the Spam dataset was padded with pad_length = 150,
however, the input matrix of the Fraud dataset was padded with pad_length = 207.

4.3.2. Joint Model Parameters

The joint Model is designed for multi-label classification and thus it requires different parameters.
It is trained over the joint dataset ‘Spam_Fraud Dataset’, where the texts are labeled with an original
class and an inherited class. The training objective of this model is to reduce a binary cross-entropy
loss between the predicted and the actual true class labels. A threshold T was set in order to convert
the sigmoid output probability vector into two classes label. We tried to run the algorithm iteratively
and we found that T = 0.6 gave the best results. We adopted the same parameters of the independent
models except for a spatial dropout 1D layer at the embeddings layer with p = 0.5. The padding length
was set to pad_length = 400. All models’ parameters in our experiments are summarized in Table 2.

Table 2. Parameter values in our proposed models.

Parameter Value

Word embedding dimension 300
Number of LSTM units 128

Dropout probability at embedding layer 0.5 and 0.7
Dropout probability at the output layer 0.5

L2 regularization rate 0.5
Early stopping min delta 0.0001

Number of epochs 10, 20 and 30
Padding length 150, 207 and 400

4.4. Word Representation: Word2vec

Our experiments used the same word embeddings for all three models. We implemented a
word-embedding matrix using the Google pre-trained vectors with a dimension of 300 [56]. The model
is trained on a part of Google News dataset, which contains approximately 100 billion words.
The model contains 300-dimensional vectors for 3 million words and sentences that can be used
to create word embeddings for a specific dataset. The suggested algorithm summarizes the creation
of the embedding matrix, which takes two main inputs extracted from each dataset. A binary file of
Google pre-trained vectors is converted into 300-dimensional real-valued vectors using a model from
Python’s Gensim library and a vocabulay_inverse of words that contains a set of words sorted by their
frequency in the collections of texts.
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4.5. The Performance Evaluation Metrics

The experiments were conducted for binary and multi-label classification, so we reported the
evaluation of all the models using four evaluation metrics: accuracy rate (ACC), precision rate (P),
recall rate (R), and F1 score (F1) as detailed below, where the metrics are computed using the elements
of the confusion matrix as explained in Table 3.

Table 3. Confusion matrix parameters.

True Class 1 True Class 2

Predicted Class 1 TP
(True Positive)

FP
(False Positive)

Predicted Class 2 FN
(False Negative)

TN
(True Negative)

Class 1 indicates the Spam (resp. Fraud) class and class 2 indicates the Non-Spam (resp. Non-Fraud).

4.5.1. Accuracy

Accuracy is the ratio between the number of correctly classified-instances and the total number
of instances. It is also defined as the ratio of true positive (TP) and true negative (TN) over the total
number of instances as shown in the following Equation (15):

ACC =
TP + TN

TP + TM + FP + FN
(15)

where TP is the number of positive instances that are predicted correctly as positive, TN is the number
of negative instances that are predicted correctly as negative, FP is the number of positive instances
that are predicted incorrectly as negative, and FN is the number of negative instances that are predicted
incorrectly as positive.

4.5.2. Precision

Precision represents the proportion of the correctly predicted positive instances TP to the total
predicted positive instances. The Equation (16) for calculating the precision rate P of the positive class
is as follows:

P =
TP

TP + FP
(16)

4.5.3. Recall

Recall refers to the proportion of correctly predicted positive instances to all instances in the actual
class. The Equation (17) for the recall rate R of the positive class is as follows:

R =
TP

TP + FN
(17)

4.5.4. F1 Score

To balance the accuracy rate, F1 value is used to measure the effect of a certain class in the
classification process. This score is the weighted average of the precision rate and the recall rate;
therefore it takes into account both the false positives and false negatives. Intuitively, F1 is usually
more useful than accuracy, especially in case of slightly unbalanced-classes distribution. Hence, the
accuracy gives the same value of F1 score if the false positives and false negatives have similar values.
The Equation (18) for the F1 score is as follows:

F1 score =
2× (P× R)

R + P
(18)
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5. Results and Analysis

This section presents the results of the experiments conducted using our proposed spam and
fraud detection models: LSTM Spam Model for spam comments classification, LSTM Fraud Model for
fraud emails classification and LSTM Joint Model for Spam_Fraud classification.

5.1. Spam Model Results

Before applying the Spam Model, we balanced the dataset so that the train and test datasets have
equally-distributed class labels. We split the data into 80% for the training dataset and 20% for the
test dataset. A validation dataset was randomly selected as 10% of the training dataset while training
the model.

The proposed methodology was compared with three baseline classification models: Support
Vector Machines (SVM), Naïve Bayes and Stochastic Gradient Descent (SGD). We first tested the
performance of independent models to classify the individual datasets and we also tuned the
parameters to report their best performance. SVM model was reported with a regularization parameter
1 and a linear kernel. Naïve Bayes model was reported with a smoothing parameter 0.01 and SGD
model was reported with a regularization coefficient 0.001. Table 4 shows the evaluation of training
simple classification models on the Spam dataset, along side with the Fraud dataset and the Joint
dataset that will be discussed later. We reported the best performance using Naïve Bayes classifier on
the Spam dataset, with an accuracy score of 69%, a precision rate of 0.67, a recall rate of 0.75 and a F1
score of 71% for the Spam model.

After that, we conducted experiments using our model and results showed an 83% accuracy
value, with a 0.91 precision rate, a 0.75 recall rate, and an 0.82 F1 score. Figure 3 is a confusion matrix
that summarizes the accuracy of our deep learning classifier over the prediction vs. the expectation of
each class.

With the results presented in Figure 3a, it is apparent that our LSTM model is capable of
correctly predicting the spam class better than the non-spam class with a proportion difference
of 20%. This difference may be attributed to the quality of the cleaning and preprocessing of the
original dataset. In fact, the model converges rapidly after the 4th epoch, and there is no further drop
in loss values.

(a) (b)
Figure 3. Performance of the Independent Models. (a) Confusion matrix of the Spam Model;
(b) Confusion matrix of the Fraud Model.
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Table 4. Performance Evaluation of the Baseline Models.

Model Classifier Dataset Accuracy Precision Recall F1 Score

Spam Model
SVM

Spam Dataset
0.67 0.69 0.61 0.64

Naïve Bayes 0.69 0.67 0.75 0.71
SGD 0.66 0.81 0.42 0.56

Fraud Model
SVM

Fraud Dataset
0.55 0.55 0.72 0.62

Naïve Bayes 0.67 0.63 0.85 0.72
SGD 0.52 0.53 0.43 0.48

Joint Model
SVM

Joint Dataset
0.71 0.86 0.71 0.72

Naïve Bayes 0.77 0.85 0.75 0.78
SGD 0.73 0.80 0.72 0.74

5.2. Fraud Model Results

As in Spam Model, the original dataset is not balanced, so we equally extracted the same number
of instances for both train and test datasets with a split of 80–20%. A 10% of the training dataset was
randomly-selected and dedicated to the validation dataset while training the model.

Similarly, we compared our proposed model with three baseline models on the Fraud dataset,
as shown in Table 4 where We reported the best results with Naïve Bayes model, having an accuracy
score of 67%, a precision rate of 0.63, a recall rate of 0.85 and a F1 score of 71% for the Fraud model.
However, the conducted experiment of our model for Fraud Model achieved a 96% accuracy rate
value, with a 0.99 precision rate and a 0.92 recall rate, ending with an 0.92 F1 score. Figure 3b shows
an outstanding confusion matrix that summarizes the accuracy of our deep learning classifier over
the predicted class vs. the expected class. It can be observed from Figure 3b that our LSTM model
is capable of correctly predicting the fraud class as well as the non-fraud class. In fact, the model
performs well overall for the two classes, does not suffer from over-fitting, and clearly converges
rapidly after the 7th epoch.

5.3. Joint Model Results

After extracting the common dataset as described in Section 4, we conducted experiments using
the Joint Model that is designed for the multi-label classification as described above. The experiment
was conducted after splitting randomly the dataset into 90% for training and 10% for testing, which
resulted in an unbalanced distribution of the four categories. As before, 10% of the training dataset
was dedicated to the validation of the model.

We first trained the baseline models on the Joint dataset and we also reported the best results
using Naïve Bayes classifier with an accuracy score of 77%, a precision rate of 0.85, a recall rate of 0.75
and a F1 score of 78% as shown in Table 4. After that, we conducted experiment for our Joint Model
and results showed an accuracy value of 92%, with a precision rate of 0.84 and a recall rate of 0.86,
and with an F1 score of 0.85. The confusion matrix for this model is summarized in Figure 4, where it is
noticed that our proposed classification model is doing well for correctly categorizing the four classes.

The experiments validated that our proposed LSTM models could show better results than
standard baseline classification models that performed poorly for all the individual models with a
maximum 77% accuracy score.

As the model was designed to classify two classes simultaneously, we ended up comparing the
prediction of the four joint classes. We used the same threshold T = 0.6 to transform the last output
sigmoid layer with two independent class probabilities into four-cross classes. Furthermore, the
performance of the proposed model shows good learning of the model without over-fitting because of
using the early stopping methods, where the training stopped after the 30th iteration.
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Figure 4. Confusion matrix of the Joint Model.

It can be observed from Figure 4 that our joint LSTM model is capable of performing well
for the four different categories. The model has the highest classification performance for the
Non-Spam/Non-Fraud class. This is explained by the semantic similarity of the Non-Spam comments
and Non-Fraud emails. However, the Spam/Fraud, Spam/Non-Fraud, and Non-Spam/Fraud classes
perform similarly with an approximate difference of 1–3% due to the unbalanced distribution of
the classes. The Spam/Non-Fraud class and the Non-Spam/Fraud classes have the most satisfying
performance amongst the aforementioned categories. This can be interpreted with the short Spam
(resp. Non-Spam) comments toward the long Non-Fraud (resp. Fraud) emails and their detected
common bigrams between the two different sources of each class. The Spam/Fraud category has the
lowest result, as the quality of the two classes is semantically related but with different sizes of texts.
Even though common bigrams of the two classes were detected in many records, every dataset has
particular text format and structure, that the model may be confused between them.

5.4. Cross-Datasets Evaluation of the Joint Model Results

We present a comparative analysis of the Joint Model with the independent models on two
different test samples from the two main datasets: Spam test samples and Fraud test samples.
We conducted the following experiments by predicting the different samples using not only the main
Spam Model (resp. Fraud Model) but also using the Joint Model after discarding the unconcerned
Fraud/Non-Fraud class (resp. Spam/Non-Spam class).

We first conducted a cross-datasets evaluation using the three baseline models, by training
them on Samples 1 and Samples 2 as shown in Table 5, and we noticed that Naïve Bayes classifier
achieved the best results among the three classifiers. However, we reported a low enhancement of
the performance for Samples 1, with only 2% of accuracy score and 0.06 of the recall rate. We also
reported a low enhancement of the results for Samples 2, with only 2% of accuracy score and 0.03 of
the precision rate.
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Table 5. Cross-Datasets Evaluation of the Baseline Models.

Model Classifier Dataset Accuracy Precision Recall F1 Score

Spam Model
SVM

Spam test samples
0.49 0.50 0.94 0.65

Naïve Bayes 0.56 0.52 0.82 0.67
SGD 0.45 0.52 0.76 0.59

Joint Model
SVM

Spam test samples
0.50 0.50 1.00 0.66

Naïve Bayes 0.58 0.52 0.88 0.67
SGD 0.47 0.55 0.79 0.60

Fraud Model
SVM

Fraud test samples
0.50 0.50 1.00 0.67

Naïve Bayes 0.53 0.52 0.89 0.70
SGD 0.50 0.52 0.89 0.69

Joint Model
SVM

Fraud test samples
0.54 0.50 1.00 0.68

Naïve Bayes 0.55 0.55 0.89 0.70
SGD 0.50 0.56 0.81 0.69

After that, we applied our proposed models and as shown below in Table 6, our Joint Model
outperformed the independent Spam Model on Samples 1 with more than 14% accuracy score, 0.19 on
precision rate, 0.04 on recall rate and 0.13 on F1 score. Additionally, our Joint Model outperformed the
independent Fraud Model on the Samples 2 with a 2% accuracy score, 0.03 on precision rate and 0.02
on F1 score.

Table 6. Performance Evaluation of the Joint Model.

Model Dataset Accuracy Precision Recall F1 Score

Spam Model Spam test samples 0.79 0.72 0.93 0.81
Joint Model 0.93 0.91 0.97 0.94

Fraud Model Fraud test samples 0.97 0.95 1.00 0.97
Joint Model 0.99 0.98 1.00 0.99

Therefore, the enhancement of the prediction is more noticeable for Spam Model than Fraud
Model, where it can be observed that the Joint Model performed better on Sample 1 rather than
Sample 2. This can be explained by the resemblance of the Fraud dataset with the joint dataset
more than with the Spam dataset, as shown in Figure 5, where the texts in the joint dataset have
a maximum length of 1500 words, which is close to the maximum text length of the Fraud dataset
having 2500 words. Further, this enhancement specifically addresses the generally harder problem
of classifying short texts as opposed to longer texts. Longer texts have NLP benefits including more
context and denser data which leads to better performance in NLP tasks as seen in [57,58].

Figure 5. Comparison of the text length in the three different datasets.
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The cross-datasets evaluation shows that training a text classification LSTM model on a joint
dataset is capable of outperforming the models trained by the individual datasets. The datasets were
extracted from two different sources “YouTube” and “Mailbox”, and despite having different structures
and formats, our proposed joint model is capable of correctly classifying the texts when tested using
their original labels regardless of the source.

Moreover, this experiment validates our hypothesis about the enhancement of the performance
of the Joint model to predict nature of the texts and their source. However, it is noticeable that our
proposed LSTM models outperformed the baseline models, and this can be explained by the fact that
with the emergence of word embedding models (i.e., word2vec model), it is expensive for standard
classification models, such as Naïve Bayes, to build more complex text representations recursively
because word embedding presents elements of hierarchy and should be useful with sequential models
such as LSTM. Even though standard models showed promising results on NLP tasks, they usually
employ bag-of-words model that are computationally heavy to carry along the learning process,
thus they are not able to earn structure from the sequential dataset because they do not preserve the
order of the words [54,59].

6. Conclusions

Binary text classification is applied with conventional approaches and deep learning algorithms.
The advanced neural network models outperform simple techniques and LSTM models showed
the highest classification performance among those reported in the literature. In this work, we first
propose an implementation of two LSTM models for classifying a collection of text from a Spam
and Fraud dataset into two categories. The models are trained on the representation of the datasets
using pre-trained word embeddings models, which preserve the semantic information between the
words. Second, we present a joint LSTM model for transforming the problem into a multi-label text
classification problem. The joint model is trained on a joint dataset that regroups text, which share
the same bigrams, from the two different datasets. This generated dataset that presents text with four
different non-exclusive labels, where a proposed model classifies text simultaneously into two binary
exclusive labels.

Apart from the challenge that multi-label classification presents, our proposed joint LSTM
model outperformed the classification results of the independent LSTM models for Spam and Fraud
classification. Despite having different sizes and formats, joining text semantically from different
sources of datasets enhanced the performance of the original classification models. We empirically
showed that different sources of datasets but within a similar domain could be grouped into a joint
dataset that is suitable for a multi-label text classification task.

One of the strengths of this work is present in the experimental assessment conducted, where the
validation of our different neural network models showed a consistent high evaluation performance
for the two independent binary models and satisfying results for the joint model.

The significance of this framework as it relates to information security rests on the ability of our
joint model to distinguish between the two sources of text within similar contexts. This work offers
a more accurate interpretability for phishing detection. We showed that text can be appropriately
predicted with more than one domain label. Even though there are no similar works that presented
the idea of multi-label classifying two types of non-malicious texts, we achieved the highest results
of identifying text as non-malicious (i.e., the non-exclusive label “Non-Spam/Non-Fraud”) with an
accuracy rate of 92.7% in our test case, which is higher than the work conducted by Dhingra, A. et al.
in [40] to detect spam on similar short texts dataset using an MLP model that achieved an 81% accuracy
rate. Another similar work applied by Yu, W. et al. in [22] for phishing emails detection using a
matching and heuristic algorithm performed with only an 80% catch rate.

The application of the LSTM joint classification model, which has a slight change in the neural
network design, showed robust results, compared to the independent LSTM classification models.
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The idea behind combining two different datasets using one of the NLP methods was limited to the
checking of the existing common bigrams.
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