

Information 2020, 11, 369; doi:10.3390/info11070369 www.mdpi.com/journal/information

Article

SVD++ Recommendation Algorithm Based on
Backtracking
Shijie Wang, Guiling Sun * and Yangyang Li

College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
sjwang@mail.nankai.edu.cn (S.W.); liyangyang@mail.nankai.edu.cn (Y.L.)
* Correspondence: sungl@nankai.edu.cn

Received: 8 June 2020; Accepted: 20 July 2020; Published: 21 July 2020

Abstract: Collaborative filtering (CF) has successfully achieved application in personalized
recommendation systems. The singular value decomposition (SVD)++ algorithm is employed as an
optimized SVD algorithm to enhance the accuracy of prediction by generating implicit feedback.
However, the SVD++ algorithm is limited primarily by its low efficiency of calculation in the
recommendation. To address this limitation of the algorithm, this study proposes a novel method
to accelerate the computation of the SVD++ algorithm, which can help achieve more accurate
recommendation results. The core of the proposed method is to conduct a backtracking line search
in the SVD++ algorithm, optimize the recommendation algorithm, and find the optimal solution via
the backtracking line search on the local gradient of the objective function. The algorithm is
compared with the conventional CF algorithm in the FilmTrust, MovieLens 1 M and 10 M public
datasets. The effectiveness of the proposed method is demonstrated by comparing the root mean
square error, absolute mean error and recall rate simulation results.

Keywords: collaborative filtering; SVD++; backtracking line search; recommendation system

1. Introduction

As fueled by the advancement of electronic information and the booming of the smart business
industry, personalized recommendations are critical to e-commerce and e-books. Over the past few
years, personalized recommendations have been the hotspots of business and academic research [1].
In personalized recommendation, recommender systems commonly comply with CF [2], depending
on user past behavior. CF analyzes the relationships between users and interdependencies of
products to identify emerging user–item associations. Two main areas of CF are neighborhood
methods and latent factor models. The core of the neighborhood method is to calculate the
relationship between items or users. The item-oriented method evaluates the user’s preference for
the item based on the same user’s rating of neighbors. The latent factor model is another method to
try to explain the rating by describing the 20 to 100 factors inferred by the scoring model. Recently,
SVD models have been extensively applied for their high accuracy and scalability [3–5]. The Funk
SVD [6] and Bias SVD [7] algorithms introduce biasing factors, and subsequently the recommended
algorithm to optimize SVD++ [8] based on both has achieved broad application for its implicit
feedback, reduced dimensionality, and high prediction accuracy.

However, in the emerging big data era, the SVD++ algorithm exhibits significant defects (i.e.,
low computational efficiency). In the recommendation, the algorithm should be iterated too many
times to achieve the optimal solution.

In this study, a novel method is developed to accelerate the computational of the SVD++
algorithm. By conducting the backtracking line search [9,10], the optimal solution is found [11] on the
local gradient of the objective function till the objective function is identified to decrease as expected.

Information 2020, 11, 369 2 of 12

In Section 2, the recommendation system is reviewed. In Section 3, the algorithm is presented. Next,
Section 4 analyzes the simulation results. Finally, the conclusion is drawn based on the received packets.

2. Recommendation System

2.1. SVD Recommendation Algorithm

The recommendation system aims to provide product information and suggestions to customers
via the e-commerce website. On that basis, the system attempts to help users determine what
products should be purchased, and to simulate sales personnel to help customers complete the
purchase [12,13]. The personalized recommendation system refers to a massive data mining-based
advanced information retrieval platform. It will recommend information and products to interested
users based on their scenarios and the characteristics of users.

SVD++ refers to an optimized algorithm based on SVD [14]. SVD is a common matrix
decomposition technique; it can effectively extract algebraic features. SVD in CF is mainly to analyze
the preference of the scorer for each factor and the extent to which the film contains each factor in the
existing scoring scenario. Lastly, the data are analyzed in turn to achieve the predicted result.

It is assumed that there are m users, n items, and the user’s rating matrix *m nR R∈ for the item,
where the R matrix is sparse, and ,i jR denotes the user i ’s score for item j , as shown in Figure 1.

.. ..

.

.

.

.

1i 2i ji ni

1u

2u

iu

mu

Figure 1.
*m nR Scoring Matrix.

Each of the above lines represents a user, and each column denotes an item. This is the user–
item matrix, which is highly sparse (i.e., the number of ratings is known as a small part of the total,
which is also the practical corresponding). The scoring matrix U can be decomposed into two matrix
multiplications.

[]

11 1 11 1

1 1

1

1

k n

m mk k kn
T

n
T
m

u u i i
U

u u i i
p

q q
p

   
   = ×   
      
 
 = × 
  

 
     

 

 

 (1)

This matrix decomposition method is reflected in CF:
T

U I U K K IR P Q× × ×= (2)

where U is the number of users, I is the number of commodities, K is the number of potential
factors. Since the scoring matrix R is sparse, SVD trains the matrix P and Q by decomposing the

Information 2020, 11, 369 3 of 12

known data in the matrix, then the unknown score can be obtained by the product of P and Q ,
which is the prediction matrix:

ˆ T T
ui ki uk uk kir q p p q= = (3)

where ûir denotes the score of user u for item i ; f
up R∈ represents the implicit factor matrix

mapped by the user to the f-dimension, the degree of preference of user u for factor k , f
iq R∈

represents the implicit factor matrix of item mapping to the f-dimension, for item i , the degree on
the factor k . In other words, the two decomposed matrices refer to the user matrix and the item
matrix, and the user’s score on the item is the dot product of the vector.

Given this solution to SVD, it is possible to solve the square sum of the minimum error between
the actual value and the predicted value. The values of the matrix U KP × and K IQ × can best fit R . For

the actual score value uir , to learn the latent vectors ukp and kiq , the maximum likelihood method
is to minimize the square error of known ratings.

2 2
,,, 1

min ()
i u

K
T

ui ui uk kiu iq pu i k
e r p q

=

= −   (4)

2.2. RSVD and SVD++ Recommendation Algorithm

SVD has achieved broad application in terms of data decomposition, but in case of sparse data,
the observed set R of ratings is small, which will be overfitting. When the actual data are predicted,
the effect is far worse than the training data. Over-reliance on the characteristics of the existing
training data set can cause overfitting. In the process of model parameter fitting, since the training data
contain sampling errors, the complicated model will also fit the sampling errors during training [15].

Common methods are cross-validation, pruning, regularization, etc. to solve overfitting.
Regularization is the most common solution for overfitting in machine learning. Regularization terms
are added to the loss function to punish the parameters of the model, thereby reducing the complexity
of the model.

Therefore, on the basis of the SVD algorithm, add 2 2()
2
P Qλ + regularization term in Equation (4)

with 0λ > is regularization parameter. Adding the regularized SVD algorithm is the RSVD algorithm.

2 22 2
,,, 1

min ()
2 2i u

K
T

ui ui uk ki u iu iq pu i k u i
e r p q p qλ λ

=

= − + +     (5)

By introducing the mentioned implicit feedback to optimize the RSVD algorithm, the SVD++
algorithm is developed, and user history browsing data and historical score data are added as novel
parameters. The predicted score Equation (3) is as follows:

1
2

()

ˆ (())T
ui i u i u j

j N u
r b b q p N u yμ −

∈

= + + + +  (6)

where: μ denotes the global mean; ib is the offset vector of the item; ub is the user offset vector;

iq is the item i feature vector; up is the feature vector of the user u score; ()N u is the user u ’s

behavior item set; jy is the item implicit feedback expressed by j ;
1
2

()
() j

j N u
N u y−

∈
 is the eigenvector

of the user u implicit feedback;
1
2

()
()u j

j N u
p N u y−

∈

+  here denotes the feature vector of the user u

that introduces implicit feedback.

2.3. Latent Factor Model and Loss Function

To be specific, the publication of ib and ub is expressed as follows:

Information 2020, 11, 369 4 of 12

()()
()
ui

i

u R i r
b

R i
μ

α
∈ −

=
+

 (7)

()()
()
ui i

u

i R u r b
b

R u
μ

β
∈ − −

=
+

 (8)

With the mean square error as the loss function, 2ˆ()ui uir r− is expected to be as small as possible

[16]. ûir refers to the predicted score. If the combination of all items and samples is considered, this
yields:

2

,

ˆmin ()ui ui
i u
r r− (9)

Since uir is known, it is only required to ask for the values in the ûir corresponding to the

minimum value of the above formula and to finally find the up and iq . Subsequently, the blank score
can be assessed in any *m nR . To prevent overfitting, an L2 regularization term is added, and it yields:

2
1 22 2 2 2
2

, () ()
min (()) ()T

ui i u i u j u u u i j
i u j N u j N u
r b b q p N u y b b p q yμ λ−

∈ ∈

 
− − − − + + + + + + 

 
   (10)

where λ denotes the regularization coefficient. Overall, two methods can be adopted to solve this
objective function (i.e., namely the iterative least squares algorithm and the gradient descent method).
In the iterative least squares method, the up optimization is fixed first; subsequently, the iq

optimization up is fixed, and the update is alternated. The algorithm is overly redundant and
difficult to implement under large data; thus, the gradient descent method is used. It is assumed that
the minimum value of function ()f x is solved. First, an initial point is taken, the gradient of the
point is calculated, and next the independent variable is updated with the direction of the gradient.

Under the k iteration value of ()kx , the 1k + iteration value is expressed as:
(1) () ()()k k kx x f xα+ = − ∇ (11)

where α is termed as the step size or learning efficiency, representing the size of the change in the
iteration of the argument [17]. The independent variable is constantly updated with the above
formula until the function value is altered slightly or stops when the maximum number of iterations
is reached. Then, the independent variable is updated to the minimum value of the function. To avoid
the local optimal solution, the random gradient descent method is adopted on the whole. By
computing each parameter’s partial derivatives of the loss function, the iterative formula can be

effectively solved. For a given training case uir , the parameters are modified by moving in the
opposite direction of the gradient, and it yields:

1
2

()

1
2

ˆ
()
()
()

((()))

(())

ui ui ui

i i ui i

u u ui u

u u ui i u

i i ui u j i
j N u

j j ui i i

e r r
b b e b
b b e b
p p e q p

q q e p N u y q

y y e N u q q

γ λ
γ λ
γ λ

γ λ

γ λ

−

∈

−

← −
← + −
← + −
← + −

← + + −

← + −







 

 (12)

Information 2020, 11, 369 5 of 12

3. Backtracking Based SVD++ Model

In the SVD++ algorithm training, the fixed step size is commonly employed when solving the
minimum value. For the selection, under the extremely large value, though it can reach the minimum
value efficiently, it cannot reach the optimal solution based on a few iterations, or even Convergence,
so the optimal solution cannot be obtained. If the value is overly small, though the optimal solution
can be reached, there are considerable iterations, and the rate of decline is too slow, thereby taking
much time and low efficiency.

Therefore, this study proposes to conduct a backtracking line search. Backtracking line search is
a search scheme to determine the maximum amount of movement along a given direction of descent.
Starting with an estimate from when the step value along the descending direction is relatively large,
the step size is iteratively reduced till the objective function is identified to be sufficiently reduced
based on the gradient [18]. The following judgments should be satisfied:

2

2(()) () ()f x f x f x f xγ αγ− ∇ > − ∇ (13)

*γ β γ= (14)

0 1β< ≤ , 0 1/ 2α< ≤ after the backtracking condition is satisfied, the step size is updated,
so the objective function is constantly updated in the falling direction [19]. In the SVD++ algorithm,
the gradient descent introduces the backtracking, so this study proposes an optimized backtracking
algorithm (i.e., BLS-SVD++ algorithm). If the backtracking condition is not met, it yields:

*γ η γ= (15)

where 0 1η< ≤ . With the increase in the number of iterations, the step size gradually shrinks, and
the results are more accurate. If only the backtracking is satisfied, the loop will jump out promptly
without satisfying the backtracking condition, which will significantly reduce the accuracy of the
result. Since the initial value of the backtracking line search is large, the descent speed is fast at the
beginning and the backtracking line search can easily jump out of the loop shortly. Then, the
minimum value of the objective function is not the optimal solution, whereas it is because the
backtracking condition is not satisfied. Adding this formula reduces the step size when the
backtracking condition is not met till the backtracking condition is met, or the number of iterations is
reached. Accordingly, the iterative result exhibits higher accuracy since the initial step size is larger,
so the initial time is more efficient than the random gradient drop. In the later part of the iteration,
by adding the Equation (11), the backtracking line search is solved since the gradient descent is not
satisfied. The backtracking line search jumps out of the loop, and a smaller step size can be exploited
to yield a more accurate optimal solution.

Decreasing the value of the objective function is the most expected result. If the search step is
too large, the objective function may jump out of the loop directly. If the search step size is too small, the
objective function may continuously iterate on a value, making it difficult to find the optimal solution.

In the added function ()k kf x dγ− , on a certain x , after the search direction kd is determined,
then, it only needs to find a suitable step size. Therefore, this is a nonlinear function, with γ as its
independent variable. If Equation (13) is satisfied, then the following formula will be satisfied:

1()) () ()Tk k k k k k kf x d f x f x dγ α γ− ≤ − ∇ (16)

2()) () ()Tk k k k k k kf x d f x f x dγ α γ− ≤ − ∇ (17)

where the inequality is Taylor expansion on the left, it yields:

() () ()T
k k k k k k k kf x d f x g d oγ γ γ− = − + (18)

Since 0T
k kg d < , () ()T

k k k k kf x g d f xλ ρ− < . Then this objective function will inevitably decrease,
and the learning rate will be changed adaptively. First, the gradient descent is performed with a

Information 2020, 11, 369 6 of 12

larger value step size, so that the objective function can be reduced faster during the initial iteration,
and it is quickly dipped to the vicinity of the optimal solution. As the number of iterations increases,
the learning rate gradually decreases, and the optimal solution can be searched with a small learning
rate, so that the optimal solution can be reached in fewer iterations.

In SVD, decomposing an m n∗ matrix mnR needs to be decomposed into an m m∗ matrix
mmP and an m n∗ matrix mnQ . The two decomposition matrices do not reduce the dimensions of the

original matrix much. The multiplication and iteration of the two matrices result in a time complexity
of SVD of 2 2()O mn nm+ . According to the definition of time complexity, the time of SVD can be
obtained and the complexity is 3()O n .

It is known that RSVD and SVD++ algorithms are obtained by adding regularization and implicit
vectors through the SVD algorithm. Even if the implicit feedback of users and items is added, the
prediction score matrix acquisition does not need to rely too much on matrix decomposition matrix
mmP and matrix mnQ , but the acquisition of implicit vectors still requires m times of user implicit vector

acquisition and acquisition in matrix mnR n times item implicit vector acquisition. Therefore, RSVD
and SVD++ have the same time complexity as SVD, which is 3()O n . The BLS-SVD++ algorithm
proposed in this paper adds backtracking judgment in the loop process, and does not add the loop
and the time complexity is 3()O n b+ , that is, in the worst case, the time complexity is 3()O n . That is
the same time complexity as the SVD++ algorithm.

After ensuring that the loss function decreases, Equation (14) is added to make the objective
function search for more optimal advantages in the gradient descent process. Because the initial value
of the step size is large, the decline rate is fast at the beginning and it is easy to jump out of the loop
in a short time, so that the final non-optimal solution is solved. Therefore, Equation (15) is added to
reduce the step size and ensure the final result is more accurate.

Therefore, the BLS-SVD++ algorithm obtains the optimal value through rapid gradient descent
under the same time complexity, reducing the total number of algorithm iterations to improve the
overall efficiency.

The specific algorithm flow is written in Algorithm 1.

Algorithm 1 BLS-SVD++
1. Input: Training set u-train.
2. Initialization: Iterations step, 0.05γ = , 0.1λ = , 0.25α = , 0.8β = , 0.9η = , average

value μ , scoring matrix *m nR , [] 0bu uid = , [] 0bi iid = , [] (0,0.1)pu uid random= ,

[] (0,0.1)qi iid random= , _ []y u y i+ =
3. Iteration: For step in rang(steps):

[] *(* [])bu uid eui bu uidγ λ+ = −
[] *(* [])bi iid eui bi iidγ λ+ = −
[] *(* [] * [])pu uid eui qi iid pu uidγ λ+ = −

[] * (* ([]
_ / _ ()) * [])

qi iid eui pu uid
y u sqrt N u qi iid

γ
λ

+ =
+ −

4. For j in self.u_dict[uid]:
[] *(* []) / _ () * [])y j eui qi j sqrt N u qi jγ λ+ = −

5. If
(, [], [], [] *
_ (, []), [], [])
(, [], [], [], [], [])
* * _ (, [])**2

*

f eui bu uid bi iid pu uid
f grad eui pu uid qi iid y j
f eui bu uid bi iid pu uid qi iid y j

f grad eui pu uid

γ

α γ
γ β γ

−
>

−

=

Information 2020, 11, 369 7 of 12

6. *γ η γ=
7. end
8. Output: MAE\RMSE and Recall

4. Experimental Results and Analysis

4.1. Lab Environment

This study uses the FilmTrust, MovieLens site 1 M and 10 M datasets as experimental datasets,
covering 35,497 ratings from 1508 users on 2071 movies, 6000 users’ ratings of 4000 movies and 72,000
users, and 10 million ratings and 100,000 tags for 10,000 movies. The FilmTrust dataset has a rating
range of 0.5 to 4, where 0.5 is the lowest grade, and 4 is at the highest level. The MovieLens dataset’s
rating is split into 1–5 grades, where 1 is the lowest grade, and 5 is at the highest level. Each user in
the dataset scores at least 20 items, and the selected data set is divided into training sets and test sets
by 80% and 20%.

4.2. Evaluation Metrics

To ensure the accuracy of the recommendation results, the absolute mean error (MAE), root
mean square error (RMSE) and recall rate act as the recommended system evaluation indicators. The
recommended quality can be measured intuitively. The smaller the values of MAE and RMSE, the
greater the value of the recall rate will be [20–22], and the higher the accuracy will be. The expression is
as follows:

ˆ

ui test

ui ui

r T

r r
MAE

N∈

−
=  (19)

2ˆ()

ui test

ui ui

r T

r rRMSE
N∈

−=  (20)

() ()
()

u U

u U

R u T u
recall

T u
∈

∈

∩
= 


 (21)

where: N denotes the number of samples in the test set; ()R u is the recommended list generated by
the recommendation system for the user on the test set; ()T u is the user’s favorite item on the test set.

4.3. Evaluating of Result

The BLS-SVD++ algorithm is compared with the conventional SVD++ and CF algorithms for
MAE, RMSE and Recall experiments. The pairs under the RMSE and MAE evaluation criteria are
shown in Tables 1 and 2. The RMSE changes with the number of iterations on the FilmTrust,
MovieLens 1 M and 10 M data sets are presented in Figures 2–4.

Table 1. Comparison of RMSE results.

Dataset
RMSE

SVD RSVD SVD++ BLS-SVD++
MovieLens 1 M 0.891 0.874 0.831 0.763
MovieLens 10 M 0.864 0.845 0.822 0.734

FilmTrust 0.903 0.887 0.853 0.826

Table 2. Comparison of MAE results.

Dataset
MAE

SVD RSVD SVD++ BLS-SVD++

Information 2020, 11, 369 8 of 12

MovieLens 1 M 0.736 0.724 0.706 0.675
MovieLens 10 M 0.694 0.673 0.651 0.585

FilmTrust 0.790 0.758 0.725 0.707

Figure 2. FilmTrust dataset RMSE varies with iterations.

Figure 3. MovieLens 1 M dataset RMSE varies with iterations.

0.8

0.85

0.9

0.95

1

1.05

1.1

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

RM
SE

ITERATION

SVD

RSVD

SVD++

BLS-SVD++

0.74

0.78

0.82

0.86

0.9

0.94

0.98

1.02

1 0 3 0 5 0 7 0 9 0 1 1 0

RM
SE

ITERATION

SVD

RSVD

SVD++

BLS-SVD++

0.7

0.74

0.78

0.82

0.86

0.9

0.94

0.98

1.02

10 30 50 70 90 110

RM
SE

ITERATION

SVD

RSVD

SVD++

BLS-SVD++

Information 2020, 11, 369 9 of 12

Figure 4. MovieLens 10 M dataset RMSE varies with iterations.

It can be seen from Tables 1 and 2 that, compared with SVD, RSVD and SVD++, BLS-SVD++ has
smaller RMSE and MAE values, indicating that the accuracy is higher than other recommended
algorithms, and the prediction effect is better. Figures 2–6 suggest that the BLS-SVD++ algorithm has
a faster gradient degradation, and the number of iterations and time required to reach the optimal
solution in the training is less than that of SVD++ and other recommended algorithms. In the
experiment, by debugging different parameters, the resulting BLS-SVD++ algorithm achieves a four-
fold reduction in the number of iterations than the SVD++ algorithm, and the recommended results
are more accurate.

Moreover, on the platform built with the identical equipment. The single iteration time of the
BLS-SVD++ algorithm reaches only 4–7% longer than that of the SVD++ algorithm. Since the device
is not the latest computer, it is expected that, after the latest workstation is running, the time of each
iteration of the BLS-SVD++ algorithm is only 1–3% longer than the original algorithm.

Via the analysis in Section 3 and experimental results, although the BLS-SVD++ algorithm
slightly increases the time of a single iteration, the total number of iterations when the loss function
reaches the optimal solution is greatly reduced. The total operation time of the algorithm when it
reaches the optimal solution is reduced, which improves the overall efficiency of the algorithm.

Figure 5. MovieLens 1 M dataset MAE varies with iterations.

Figure 6. MovieLens 1 M dataset MAE varies with iterations.

0.65

0.7

0.75

0.8

0.85

1 0 2 0 3 0 5 0

M
A

E

ITERATION

SVD

RSVD

SVD++

BLS-SVD++

0.57

0.62

0.67

0.72

0.77

0.82

0.87

0.92

0.97

1.02

2 0 4 0 6 0 8 0 1 0 0

M
A

E

ITERATION

SVD

RSVD

SVD++

BLS-SVD++

Information 2020, 11, 369 10 of 12

In the TOP-K recommendation, the recommended list length K is tested at different values, and
the experimental results of K, 50, 100, 150, 200 and 300 are taken as samples and the recall rate is
analyzed at MovieLens 1 M. The experimental results with the 10 M data set are listed in Tables 3
and 4 below.

Table 3. Comparison of Recall results in MovieLens 1 M database.

Module
Recommended List Length K
50 100 150 200 300

SVD 0.09 0.18 0.21 0.28 0.42
RSVD 0.11 0.23 0.29 0.36 0.47
SVD++ 0.17 0.27 0.32 0.43 0.54

BLS-SVD++ 0.23 0.35 0.41 0.49 0.63

Table 4. Comparison of Recall results in MovieLens 10 M database.

Module
Recommended List Length K
50 100 150 200 300

SVD 0.07 0.16 0.19 0.24 0.37
RSVD 0.09 0.20 0.23 0.32 0.41
SVD++ 0.13 0.27 0.31 0.36 0.46

BLS-SVD++ 0.16 0.32 0.38 0.45 0.55

Figures 7 and 8 suggest that the BLS-SVD++ algorithm is significantly optimized in the recall
rate compared with the recommended algorithms (e.g., SVD++). In this study, the growth rate of the
recall rate is larger than that of the comparison algorithm, demonstrating that the BLS-SVD++
algorithm achieves a high recall rate. The recommended item is capable of covering the entire user
group with a higher ratio, and the recommended effect is more significant.

In brief, the BLS-SVD++ algorithm, based on backtracking line search in this study exhibits
higher efficiency than the recommended algorithms (e.g., SVD and SVD++), and the number of
iterations is lower in the training. The RMSE and MAE values are determined. Both are significantly
reduced, and the accuracy of the achieved results is enhanced. For recall rate, the BLS-SVD++
algorithm is also significantly enhanced compared with other recommended algorithms. In the
recommendation system, more accurate recommendation items are presented to users.

Figure 7. MovieLens 1 M dataset recall rate varies with recommended list length K.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 300

RE
CA

LL

K

SVD

RSVD

SVD++

BLS-SVD++

Information 2020, 11, 369 11 of 12

Figure 8. MovieLens 10 M dataset recall rate varies with recommended list length K.

5. Conclusions

To increase the efficiency of SVD++ algorithm in the recommendation this study proposes to
conduct a backtracking linear search in SVD++ algorithm, optimize the recommendation algorithm,
and find the optimal solution based on the backtracking line search on the local gradient of the
objective function.

By adding the judgment condition in the SVD++ algorithm, the learning rate of the algorithm is
adaptive during the gradient descent process. In the primary stage, gradient descent is carried out at
a relatively large learning rate and, in the middle and later stages, a smaller learning rate is used to
search for the optimal solution. As revealed from the experiments on FilmTrust, MovieLens 1 M and
10 M datasets, the proposed BLS-SVD++ algorithm outperforms SVD and other recommended
algorithms on RMSE and MAE. Moreover, Recall is compared on MovieLens 1 M and 10 M datasets.
The experimental results prove that the BLS-SVD++ algorithm can reduce the overall calculation time
by reducing the total number of iterations. Under the calculation efficiency, through the adaptive
learning rate to search for the optimal solution, the final prediction result is more accurate.

Despite the good rating prediction effect, there are still some areas we ignored in this method.
In future work, we will consider the introduction of new metrics to measure the proposed approach
more comprehensively. We will continue to achieve more accurate and comprehensive predictions
based on web page views, browsing stay time, social networks, and evaluation information.

Author Contributions: For this research, S.W. and G.S. designed the concept of the research; Y.L. implemented
experimental design; S.W. and Y.L. conducted data analysis; S.W. wrote the draft paper; Y.L. reviewed and
edited the whole paper; G.S. acquired the funding. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 61771262), Tianjin
Science and Technology Major Project and Engineering (No. 18ZXRHNC00140) and Tianjin Key Laboratory of
Optoelectronic Sensors and Sensor Network Technology.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this
paper.

References

1. Wei, J.; Meng, F.; Arunkumar, N. A personalized authoritative user-based recommendation for social
tagging. Future Gener. Comput. Syst. 2018, 86, 355–361.

2. Kluver, D.; Ekstrand, M.D.; Konstan, J.A. Rating-based collaborative filtering: Algorithms and evaluation.
In Social Information Access; Springer: Cham, Switzerland, 2018; pp. 344–390.

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 300

RE
CA

LL

K

SVD

RSVD

SVD++

BLS-SVD++

Information 2020, 11, 369 12 of 12

3. Yuan, X.; Han, L.; Qian, S.; Xu, G.; Yan, H. Singular value decomposition based recommendation using
imputed data. Knowl. Based Syst. 2019, 163, 485–494.

4. Hu, J.; Liang, J.; Kuang, Y. A user similarity-based Top-N recommendation approach for mobile in-
application advertising. Expert Syst. Appl. 2018, 111, 51–60.

5. Sahoo, A.K.; Pradhan, C.; Mishra, B.S.P. SVD based Privacy Preserving Recommendation Model using
Optimized Hybrid Item-based Collaborative Filtering. In Proceedings of the 2019 International Conference
on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019; IEEE: Piscataway, NJ,
USA, 2019.

6. Tsaku, N.Z.; Kosaraju, S. Boosting Recommendation Systems through an Offline Machine Learning
Evaluation Approach. In Proceedings of the 2019 ACM Southeast Conference, Kennesaw, GA, USA, 18–20
April 2019; pp. 182–185.

7. Yin, Y.; Zhang, W.; Xu, Y.; Zhang, H.; Mai, Z.; Yu, L. QoS Prediction for Mobile Edge Service
Recommendation with Auto-Encoder. IEEE Access 2019, 7, 62312–62324.

8. Liu, Y.; Zhong, X.; Li, L.; Yan, J. A Novel Algorithm for Group Recommendation Based on Combination of
Recessive Characteristics. In Proceedings of the 2018 5th International Conference on Behavioral,
Economic, and Socio-Cultural Computing (BESC), Taiwan, 12–14 November 2018; IEEE, Piscataway, NJ,
USA, 2018.

9. Royer, C.W.; Wright, S.J. Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. SIAM J. Optim. 2018, 28, 1448–1477.

10. Paquette, C.; Scheinberg, K. A stochastic line search method with convergence rate analysis. arXiv 2018,
arXiv:1807.07994.

11. Huang, W.; Absil, P.-A.; Gallivan, K.A. A Riemannian BFGS method without differentiated retraction for
nonconvex optimization problems. SIAM J. Optim. 2018, 28, 470–495.

12. Wang, S.; Lo, D.; Vasilescu, B.; Serebrenik, A. EnTagRec++: An enhanced tag recommendation system for
software information sites. Empir. Softw. Eng. 2018, 23, 800–832.

13. Manogaran, G.; Varatharajan, R.; Priyan, M.K. Hybrid recommendation system for heart disease diagnosis
based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimed. Tools Appl. 2018,
77, 4379–4399.

14. Rebentrost, P.; Steffens, A.; Marvian, I.; Lloyd, S. Quantum singular-value decomposition of nonsparse
low-rank matrices. Phys. Rev. A 2018, 97, 012327.

15. Raghuwanshi, S.K.; Pateriya, R.K. Accelerated Singular Value Decomposition (ASVD) using momentum
based Gradient Descent Optimization. J. King Saud Univ. Comput. Inf. Sci. 2018,
doi:10.1016/j.jksuci.2018.03.012.

16. Diniz, P.S.R. The least-mean-square (LMS) algorithm. In Adaptive Filtering; Springer: Cham, Switzerland,
2020; pp. 61–102.

17. Jilg, A.; Bechstein, P.; Saade, A.; Dick, M.; Li, T.X.; Tosini, G.; Rami, A.; Zemmar, A.; Stehle, J.H. Melatonin
modulates daytime-dependent synaptic plasticity and learning efficiency. J. Pineal Res. 2019, 66, e12553.

18. Medvedeva, M.A.; Simos, T.E.; Tsitouras, C. Variable step-size implementation of sixth-order Numerov-
type methods. Math. Methods Appl. Sci. 2020, 43, 1204–1215.

19. Harrag, A.; Messalti, S. Ic-based variable step size neuro-fuzzy mppt improving pv system performances.
Energy Procedia 2019, 157, 362–374.

20. Wang, W.; Lu, Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in
Assessing Rounding Model. In Proceedings of the IOP Conference Series: Materials Science and
Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; IOP Publishing: Bristol, UK, 2018; Volume
324, p. 012049.

21. Vann, J.C.J.; Jacobson, R.M.; Coyne-Beasley, T.; Asafu-Adjei, J.K.; Szilagyi, P.G. Patient reminder and recall
interventions to improve immunization rates. Cochrane Database Syst. Rev. 2018, 1, CD003941.

22. Portugal, I.; Alencar, P.; Cowan, D. The use of machine learning algorithms in recommender systems: A
systematic review. Expert Syst. Appl. 2018, 97, 205–227.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

