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Abstract: Collaborative filtering (CF) has successfully achieved application in personalized 
recommendation systems. The singular value decomposition (SVD)++ algorithm is employed as an 
optimized SVD algorithm to enhance the accuracy of prediction by generating implicit feedback. 
However, the SVD++ algorithm is limited primarily by its low efficiency of calculation in the 
recommendation. To address this limitation of the algorithm, this study proposes a novel method 
to accelerate the computation of the SVD++ algorithm, which can help achieve more accurate 
recommendation results. The core of the proposed method is to conduct a backtracking line search 
in the SVD++ algorithm, optimize the recommendation algorithm, and find the optimal solution via 
the backtracking line search on the local gradient of the objective function. The algorithm is 
compared with the conventional CF algorithm in the FilmTrust, MovieLens 1 M and 10 M public 
datasets. The effectiveness of the proposed method is demonstrated by comparing the root mean 
square error, absolute mean error and recall rate simulation results. 

Keywords: collaborative filtering; SVD++; backtracking line search; recommendation system 
 

1. Introduction 

As fueled by the advancement of electronic information and the booming of the smart business 
industry, personalized recommendations are critical to e-commerce and e-books. Over the past few 
years, personalized recommendations have been the hotspots of business and academic research [1]. 
In personalized recommendation, recommender systems commonly comply with CF [2], depending 
on user past behavior. CF analyzes the relationships between users and interdependencies of 
products to identify emerging user–item associations. Two main areas of CF are neighborhood 
methods and latent factor models. The core of the neighborhood method is to calculate the 
relationship between items or users. The item-oriented method evaluates the user’s preference for 
the item based on the same user’s rating of neighbors. The latent factor model is another method to 
try to explain the rating by describing the 20 to 100 factors inferred by the scoring model. Recently, 
SVD models have been extensively applied for their high accuracy and scalability [3–5]. The Funk 
SVD [6] and Bias SVD [7] algorithms introduce biasing factors, and subsequently the recommended 
algorithm to optimize SVD++ [8] based on both has achieved broad application for its implicit 
feedback, reduced dimensionality, and high prediction accuracy. 

However, in the emerging big data era, the SVD++ algorithm exhibits significant defects (i.e., 
low computational efficiency). In the recommendation, the algorithm should be iterated too many 
times to achieve the optimal solution. 

In this study, a novel method is developed to accelerate the computational of the SVD++ 
algorithm. By conducting the backtracking line search [9,10], the optimal solution is found [11] on the 
local gradient of the objective function till the objective function is identified to decrease as expected. 
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In Section 2, the recommendation system is reviewed. In Section 3, the algorithm is presented. Next, 
Section 4 analyzes the simulation results. Finally, the conclusion is drawn based on the received packets. 

2. Recommendation System 

2.1. SVD Recommendation Algorithm 

The recommendation system aims to provide product information and suggestions to customers 
via the e-commerce website. On that basis, the system attempts to help users determine what 
products should be purchased, and to simulate sales personnel to help customers complete the 
purchase [12,13]. The personalized recommendation system refers to a massive data mining-based 
advanced information retrieval platform. It will recommend information and products to interested 
users based on their scenarios and the characteristics of users. 

SVD++ refers to an optimized algorithm based on SVD [14]. SVD is a common matrix 
decomposition technique; it can effectively extract algebraic features. SVD in CF is mainly to analyze 
the preference of the scorer for each factor and the extent to which the film contains each factor in the 
existing scoring scenario. Lastly, the data are analyzed in turn to achieve the predicted result. 

It is assumed that there are m  users, n  items, and the user’s rating matrix *m nR R∈  for the item, 
where the R  matrix is sparse, and ,i jR  denotes the user i ’s score for item j , as shown in Figure 1. 
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Figure 1. 
*m nR  Scoring Matrix. 

Each of the above lines represents a user, and each column denotes an item. This is the user–
item matrix, which is highly sparse (i.e., the number of ratings is known as a small part of the total, 
which is also the practical corresponding). The scoring matrix U  can be decomposed into two matrix 
multiplications. 
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This matrix decomposition method is reflected in CF: 
T

U I U K K IR P Q× × ×=  (2) 

where U  is the number of users, I  is the number of commodities, K  is the number of potential 
factors. Since the scoring matrix R  is sparse, SVD trains the matrix P  and Q  by decomposing the 
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known data in the matrix, then the unknown score can be obtained by the product of P  and Q , 
which is the prediction matrix: 

ˆ T T
ui ki uk uk kir q p p q= =  (3) 

where ûir  denotes the score of user u  for item i ; f
up R∈  represents the implicit factor matrix 

mapped by the user to the f-dimension, the degree of preference of user u  for factor k , f
iq R∈  

represents the implicit factor matrix of item mapping to the f-dimension, for item i , the degree on 
the factor k . In other words, the two decomposed matrices refer to the user matrix and the item 
matrix, and the user’s score on the item is the dot product of the vector. 

Given this solution to SVD, it is possible to solve the square sum of the minimum error between 
the actual value and the predicted value. The values of the matrix U KP ×  and K IQ ×  can best fit R . For 

the actual score value uir , to learn the latent vectors ukp  and kiq , the maximum likelihood method 
is to minimize the square error of known ratings. 

2 2
,,, 1

min ( )
i u

K
T

ui ui uk kiu iq pu i k
e r p q

=

= −    (4) 

2.2. RSVD and SVD++ Recommendation Algorithm 

SVD has achieved broad application in terms of data decomposition, but in case of sparse data, 
the observed set R  of ratings is small, which will be overfitting. When the actual data are predicted, 
the effect is far worse than the training data. Over-reliance on the characteristics of the existing 
training data set can cause overfitting. In the process of model parameter fitting, since the training data 
contain sampling errors, the complicated model will also fit the sampling errors during training [15]. 

Common methods are cross-validation, pruning, regularization, etc. to solve overfitting. 
Regularization is the most common solution for overfitting in machine learning. Regularization terms 
are added to the loss function to punish the parameters of the model, thereby reducing the complexity 
of the model. 

Therefore, on the basis of the SVD algorithm, add 2 2( )
2
P Qλ +  regularization term in Equation (4) 

with 0λ >  is regularization parameter. Adding the regularized SVD algorithm is the RSVD algorithm. 

2 22 2
,,, 1

min ( )
2 2i u

K
T

ui ui uk ki u iu iq pu i k u i
e r p q p qλ λ

=

= − + +      (5) 

By introducing the mentioned implicit feedback to optimize the RSVD algorithm, the SVD++ 
algorithm is developed, and user history browsing data and historical score data are added as novel 
parameters. The predicted score Equation (3) is as follows: 

1
2

( )

ˆ ( ( ) )T
ui i u i u j

j N u
r b b q p N u yμ −

∈

= + + + +   (6) 

where: μ  denotes the global mean; ib  is the offset vector of the item; ub  is the user offset vector; 

iq  is the item i feature vector; up  is the feature vector of the user u score; ( )N u  is the user u ’s 

behavior item set; jy  is the item implicit feedback expressed by j ; 
1
2

( )
( ) j

j N u
N u y−

∈
  is the eigenvector 

of the user u  implicit feedback; 
1
2

( )
( )u j

j N u
p N u y−

∈

+   here denotes the feature vector of the user u  

that introduces implicit feedback. 

2.3. Latent Factor Model and Loss Function 

To be specific, the publication of ib  and ub  is expressed as follows: 
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( )( )
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∈ −
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μ
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∈ − −
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+

  (8) 

With the mean square error as the loss function, 2ˆ( )ui uir r−  is expected to be as small as possible 

[16]. ûir  refers to the predicted score. If the combination of all items and samples is considered, this 
yields: 

2

,

ˆmin ( )ui ui
i u
r r−  (9) 

Since uir  is known, it is only required to ask for the values in the ûir  corresponding to the 

minimum value of the above formula and to finally find the up  and iq . Subsequently, the blank score 
can be assessed in any *m nR . To prevent overfitting, an L2 regularization term is added, and it yields: 

2
1 22 2 2 2
2

, ( ) ( )
min ( ( ) ) ( )T

ui i u i u j u u u i j
i u j N u j N u
r b b q p N u y b b p q yμ λ−

∈ ∈

 
− − − − + + + + + + 

 
    (10) 

where λ  denotes the regularization coefficient. Overall, two methods can be adopted to solve this 
objective function (i.e., namely the iterative least squares algorithm and the gradient descent method). 
In the iterative least squares method, the up  optimization is fixed first; subsequently, the iq  

optimization up  is fixed, and the update is alternated. The algorithm is overly redundant and 
difficult to implement under large data; thus, the gradient descent method is used. It is assumed that 
the minimum value of function ( )f x  is solved. First, an initial point is taken, the gradient of the 
point is calculated, and next the independent variable is updated with the direction of the gradient. 

Under the k  iteration value of ( )kx , the 1k +  iteration value is expressed as: 
( 1) ( ) ( )( )k k kx x f xα+ = − ∇  (11) 

where α  is termed as the step size or learning efficiency, representing the size of the change in the 
iteration of the argument [17]. The independent variable is constantly updated with the above 
formula until the function value is altered slightly or stops when the maximum number of iterations 
is reached. Then, the independent variable is updated to the minimum value of the function. To avoid 
the local optimal solution, the random gradient descent method is adopted on the whole. By 
computing each parameter’s partial derivatives of the loss function, the iterative formula can be 

effectively solved. For a given training case uir , the parameters are modified by moving in the 
opposite direction of the gradient, and it yields: 

1
2

( )

1
2

ˆ
( )
( )
( )

( ( ( ) ) )

( ( ) )
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i i ui i

u u ui u
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−
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−
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 (12) 
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3. Backtracking Based SVD++ Model 

In the SVD++ algorithm training, the fixed step size is commonly employed when solving the 
minimum value. For the selection, under the extremely large value, though it can reach the minimum 
value efficiently, it cannot reach the optimal solution based on a few iterations, or even Convergence, 
so the optimal solution cannot be obtained. If the value is overly small, though the optimal solution 
can be reached, there are considerable iterations, and the rate of decline is too slow, thereby taking 
much time and low efficiency. 

Therefore, this study proposes to conduct a backtracking line search. Backtracking line search is 
a search scheme to determine the maximum amount of movement along a given direction of descent. 
Starting with an estimate from when the step value along the descending direction is relatively large, 
the step size is iteratively reduced till the objective function is identified to be sufficiently reduced 
based on the gradient [18]. The following judgments should be satisfied: 

2

2( ( )) ( ) ( )f x f x f x f xγ αγ− ∇ > − ∇  (13) 

*γ β γ=  (14) 

0 1β< ≤ , 0 1/ 2α< ≤  after the backtracking condition is satisfied, the step size is updated, 
so the objective function is constantly updated in the falling direction [19]. In the SVD++ algorithm, 
the gradient descent introduces the backtracking, so this study proposes an optimized backtracking 
algorithm (i.e., BLS-SVD++ algorithm). If the backtracking condition is not met, it yields: 

*γ η γ=  (15) 

where 0 1η< ≤ . With the increase in the number of iterations, the step size gradually shrinks, and 
the results are more accurate. If only the backtracking is satisfied, the loop will jump out promptly 
without satisfying the backtracking condition, which will significantly reduce the accuracy of the 
result. Since the initial value of the backtracking line search is large, the descent speed is fast at the 
beginning and the backtracking line search can easily jump out of the loop shortly. Then, the 
minimum value of the objective function is not the optimal solution, whereas it is because the 
backtracking condition is not satisfied. Adding this formula reduces the step size when the 
backtracking condition is not met till the backtracking condition is met, or the number of iterations is 
reached. Accordingly, the iterative result exhibits higher accuracy since the initial step size is larger, 
so the initial time is more efficient than the random gradient drop. In the later part of the iteration, 
by adding the Equation (11), the backtracking line search is solved since the gradient descent is not 
satisfied. The backtracking line search jumps out of the loop, and a smaller step size can be exploited 
to yield a more accurate optimal solution. 

Decreasing the value of the objective function is the most expected result. If the search step is 
too large, the objective function may jump out of the loop directly. If the search step size is too small, the 
objective function may continuously iterate on a value, making it difficult to find the optimal solution. 

In the added function ( )k kf x dγ− , on a certain x , after the search direction kd  is determined, 
then, it only needs to find a suitable step size. Therefore, this is a nonlinear function, with γ  as its 
independent variable. If Equation (13) is satisfied, then the following formula will be satisfied: 

1( )) ( ) ( )Tk k k k k k kf x d f x f x dγ α γ− ≤ − ∇  (16) 

2( )) ( ) ( )Tk k k k k k kf x d f x f x dγ α γ− ≤ − ∇  (17) 

where the inequality is Taylor expansion on the left, it yields: 

( ) ( ) ( )T
k k k k k k k kf x d f x g d oγ γ γ− = − +  (18) 

Since 0T
k kg d < , ( ) ( )T

k k k k kf x g d f xλ ρ− < . Then this objective function will inevitably decrease, 
and the learning rate will be changed adaptively. First, the gradient descent is performed with a 
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larger value step size, so that the objective function can be reduced faster during the initial iteration, 
and it is quickly dipped to the vicinity of the optimal solution. As the number of iterations increases, 
the learning rate gradually decreases, and the optimal solution can be searched with a small learning 
rate, so that the optimal solution can be reached in fewer iterations. 

In SVD, decomposing an m n∗  matrix mnR  needs to be decomposed into an m m∗  matrix 
mmP  and an m n∗  matrix mnQ . The two decomposition matrices do not reduce the dimensions of the 

original matrix much. The multiplication and iteration of the two matrices result in a time complexity 
of SVD of 2 2( )O mn nm+ . According to the definition of time complexity, the time of SVD can be 
obtained and the complexity is 3( )O n . 

It is known that RSVD and SVD++ algorithms are obtained by adding regularization and implicit 
vectors through the SVD algorithm. Even if the implicit feedback of users and items is added, the 
prediction score matrix acquisition does not need to rely too much on matrix decomposition matrix 
mmP  and matrix mnQ , but the acquisition of implicit vectors still requires m times of user implicit vector 

acquisition and acquisition in matrix mnR  n times item implicit vector acquisition. Therefore, RSVD 
and SVD++ have the same time complexity as SVD, which is 3( )O n . The BLS-SVD++ algorithm 
proposed in this paper adds backtracking judgment in the loop process, and does not add the loop 
and the time complexity is 3( )O n b+ , that is, in the worst case, the time complexity is 3( )O n . That is 
the same time complexity as the SVD++ algorithm. 

After ensuring that the loss function decreases, Equation (14) is added to make the objective 
function search for more optimal advantages in the gradient descent process. Because the initial value 
of the step size is large, the decline rate is fast at the beginning and it is easy to jump out of the loop 
in a short time, so that the final non-optimal solution is solved. Therefore, Equation (15) is added to 
reduce the step size and ensure the final result is more accurate. 

Therefore, the BLS-SVD++ algorithm obtains the optimal value through rapid gradient descent 
under the same time complexity, reducing the total number of algorithm iterations to improve the 
overall efficiency. 

The specific algorithm flow is written in Algorithm 1. 

Algorithm 1 BLS-SVD++ 
1. Input: Training set u-train. 
2. Initialization: Iterations step, 0.05γ = , 0.1λ = , 0.25α = , 0.8β = , 0.9η = , average 

value μ , scoring matrix *m nR , [ ] 0bu uid = , [ ] 0bi iid = , [ ] (0,0.1)pu uid random= ,

[ ] (0,0.1)qi iid random= , _ [ ]y u y i+ =  
3. Iteration: For step in rang(steps): 

[ ] *( * [ ])bu uid eui bu uidγ λ+ = −   
[ ] *( * [ ])bi iid eui bi iidγ λ+ = −   
[ ] *( * [ ] * [ ])pu uid eui qi iid pu uidγ λ+ = −   

[ ] * ( * ( [ ]
_ / _ ( )) * [ ])

qi iid eui pu uid
y u sqrt N u qi iid

γ
λ

+ =
+ −   

4. For j in self.u_dict[uid]: 
[ ] *( * [ ]) / _ ( ) * [ ])y j eui qi j sqrt N u qi jγ λ+ = −   

5. If 
( , [ ], [ ], [ ] *
_ ( , [ ]), [ ], [ ])
( , [ ], [ ], [ ], [ ], [ ])
* * _ ( , [ ])**2

*

f eui bu uid bi iid pu uid
f grad eui pu uid qi iid y j
f eui bu uid bi iid pu uid qi iid y j

f grad eui pu uid

γ

α γ
γ β γ

−
>

−

=  
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6. *γ η γ=  
7. end 
8. Output: MAE\RMSE and Recall 

4. Experimental Results and Analysis 

4.1. Lab Environment 

This study uses the FilmTrust, MovieLens site 1 M and 10 M datasets as experimental datasets, 
covering 35,497 ratings from 1508 users on 2071 movies, 6000 users’ ratings of 4000 movies and 72,000 
users, and 10 million ratings and 100,000 tags for 10,000 movies. The FilmTrust dataset has a rating 
range of 0.5 to 4, where 0.5 is the lowest grade, and 4 is at the highest level. The MovieLens dataset’s 
rating is split into 1–5 grades, where 1 is the lowest grade, and 5 is at the highest level. Each user in 
the dataset scores at least 20 items, and the selected data set is divided into training sets and test sets 
by 80% and 20%. 

4.2. Evaluation Metrics 

To ensure the accuracy of the recommendation results, the absolute mean error (MAE), root 
mean square error (RMSE) and recall rate act as the recommended system evaluation indicators. The 
recommended quality can be measured intuitively. The smaller the values of MAE and RMSE, the 
greater the value of the recall rate will be [20–22], and the higher the accuracy will be. The expression is 
as follows: 

ˆ

ui test

ui ui

r T

r r
MAE

N∈

−
=   (19) 

2ˆ( )

ui test

ui ui

r T

r rRMSE
N∈

−=   (20) 

( ) ( )
( )

u U

u U

R u T u
recall

T u
∈

∈

∩
= 


 (21) 

where: N denotes the number of samples in the test set; ( )R u  is the recommended list generated by 
the recommendation system for the user on the test set; ( )T u  is the user’s favorite item on the test set. 

4.3. Evaluating of Result 

The BLS-SVD++ algorithm is compared with the conventional SVD++ and CF algorithms for 
MAE, RMSE and Recall experiments. The pairs under the RMSE and MAE evaluation criteria are 
shown in Tables 1 and 2. The RMSE changes with the number of iterations on the FilmTrust, 
MovieLens 1 M and 10 M data sets are presented in Figures 2–4. 

Table 1. Comparison of RMSE results. 

Dataset 
RMSE 

SVD RSVD SVD++ BLS-SVD++ 
MovieLens 1 M 0.891 0.874 0.831 0.763 
MovieLens 10 M 0.864 0.845 0.822 0.734 

FilmTrust 0.903 0.887 0.853 0.826 

Table 2. Comparison of MAE results. 

Dataset 
MAE 

SVD RSVD SVD++ BLS-SVD++ 
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MovieLens 1 M 0.736 0.724 0.706 0.675 
MovieLens 10 M 0.694 0.673 0.651 0.585 

FilmTrust 0.790 0.758 0.725 0.707 

 
Figure 2. FilmTrust dataset RMSE varies with iterations. 

 
Figure 3. MovieLens 1 M dataset RMSE varies with iterations. 
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Figure 4. MovieLens 10 M dataset RMSE varies with iterations. 

It can be seen from Tables 1 and 2 that, compared with SVD, RSVD and SVD++, BLS-SVD++ has 
smaller RMSE and MAE values, indicating that the accuracy is higher than other recommended 
algorithms, and the prediction effect is better. Figures 2–6 suggest that the BLS-SVD++ algorithm has 
a faster gradient degradation, and the number of iterations and time required to reach the optimal 
solution in the training is less than that of SVD++ and other recommended algorithms. In the 
experiment, by debugging different parameters, the resulting BLS-SVD++ algorithm achieves a four-
fold reduction in the number of iterations than the SVD++ algorithm, and the recommended results 
are more accurate. 

Moreover, on the platform built with the identical equipment. The single iteration time of the 
BLS-SVD++ algorithm reaches only 4–7% longer than that of the SVD++ algorithm. Since the device 
is not the latest computer, it is expected that, after the latest workstation is running, the time of each 
iteration of the BLS-SVD++ algorithm is only 1–3% longer than the original algorithm. 

Via the analysis in Section 3 and experimental results, although the BLS-SVD++ algorithm 
slightly increases the time of a single iteration, the total number of iterations when the loss function 
reaches the optimal solution is greatly reduced. The total operation time of the algorithm when it 
reaches the optimal solution is reduced, which improves the overall efficiency of the algorithm. 

 
Figure 5. MovieLens 1 M dataset MAE varies with iterations. 

 
Figure 6. MovieLens 1 M dataset MAE varies with iterations. 
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In the TOP-K recommendation, the recommended list length K is tested at different values, and 
the experimental results of K, 50, 100, 150, 200 and 300 are taken as samples and the recall rate is 
analyzed at MovieLens 1 M. The experimental results with the 10 M data set are listed in Tables 3 
and 4 below. 

Table 3. Comparison of Recall results in MovieLens 1 M database. 

Module 
Recommended List Length K 
50 100 150 200 300 

SVD 0.09 0.18 0.21 0.28 0.42 
RSVD 0.11 0.23 0.29 0.36 0.47 
SVD++ 0.17 0.27 0.32 0.43 0.54 

BLS-SVD++ 0.23 0.35 0.41 0.49 0.63 

Table 4. Comparison of Recall results in MovieLens 10 M database. 

Module 
Recommended List Length K 
50 100 150 200 300 

SVD 0.07 0.16 0.19 0.24 0.37 
RSVD 0.09 0.20 0.23 0.32 0.41 
SVD++ 0.13 0.27 0.31 0.36 0.46 

BLS-SVD++ 0.16 0.32 0.38 0.45 0.55 

Figures 7 and 8 suggest that the BLS-SVD++ algorithm is significantly optimized in the recall 
rate compared with the recommended algorithms (e.g., SVD++). In this study, the growth rate of the 
recall rate is larger than that of the comparison algorithm, demonstrating that the BLS-SVD++ 
algorithm achieves a high recall rate. The recommended item is capable of covering the entire user 
group with a higher ratio, and the recommended effect is more significant. 

In brief, the BLS-SVD++ algorithm, based on backtracking line search in this study exhibits 
higher efficiency than the recommended algorithms (e.g., SVD and SVD++), and the number of 
iterations is lower in the training. The RMSE and MAE values are determined. Both are significantly 
reduced, and the accuracy of the achieved results is enhanced. For recall rate, the BLS-SVD++ 
algorithm is also significantly enhanced compared with other recommended algorithms. In the 
recommendation system, more accurate recommendation items are presented to users. 

 
Figure 7. MovieLens 1 M dataset recall rate varies with recommended list length K. 
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Figure 8. MovieLens 10 M dataset recall rate varies with recommended list length K. 

5. Conclusions 

To increase the efficiency of SVD++ algorithm in the recommendation this study proposes to 
conduct a backtracking linear search in SVD++ algorithm, optimize the recommendation algorithm, 
and find the optimal solution based on the backtracking line search on the local gradient of the 
objective function. 

By adding the judgment condition in the SVD++ algorithm, the learning rate of the algorithm is 
adaptive during the gradient descent process. In the primary stage, gradient descent is carried out at 
a relatively large learning rate and, in the middle and later stages, a smaller learning rate is used to 
search for the optimal solution. As revealed from the experiments on FilmTrust, MovieLens 1 M and 
10 M datasets, the proposed BLS-SVD++ algorithm outperforms SVD and other recommended 
algorithms on RMSE and MAE. Moreover, Recall is compared on MovieLens 1 M and 10 M datasets. 
The experimental results prove that the BLS-SVD++ algorithm can reduce the overall calculation time 
by reducing the total number of iterations. Under the calculation efficiency, through the adaptive 
learning rate to search for the optimal solution, the final prediction result is more accurate. 

Despite the good rating prediction effect, there are still some areas we ignored in this method. 
In future work, we will consider the introduction of new metrics to measure the proposed approach 
more comprehensively. We will continue to achieve more accurate and comprehensive predictions 
based on web page views, browsing stay time, social networks, and evaluation information. 
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