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Abstract: A micro-expression is defined as an uncontrollable muscular movement shown on the
face of humans when one is trying to conceal or repress his true emotions. Many researchers have
applied the deep learning framework to micro-expression recognition in recent years. However,
few have introduced the human visual attention mechanism to micro-expression recognition. In this
study, we propose a three-dimensional (3D) spatiotemporal convolutional neural network with
the convolutional block attention module (CBAM) for micro-expression recognition. First image
sequences were input to a medium-sized convolutional neural network (CNN) to extract visual
features. Afterwards, it learned to allocate the feature weights in an adaptive manner with
the help of a convolutional block attention module. The method was testified in spontaneous
micro-expression databases (Chinese Academy of Sciences Micro-expression II (CASME II),
Spontaneous Micro-expression Database (SMIC)). The experimental results show that the 3D CNN with
convolutional block attention module outperformed other algorithms in micro-expression recognition.

Keywords: micro-expression recognition; 3D convolutional neural network (3D CNN); convolutional
block attention module (CBAM); adaptive feature weights; spatiotemporal features

1. Introduction

Emotions are the inner feelings of human beings and expressions are the windows of human
emotions. A micro-expression on the face is a unique expression that happens spontaneously.
When humans try to conceal their true emotions, the restrained feelings are shown by fast muscular
movement out of a spontaneous physical reaction [1]. Therefore, a micro-expression is one of the
foundations for the judgment of human psychological status.

In contrast to normal facial expressions that usually sustained 1/2 s to 4 s [2], the micro-expressions
of humans last so short that they tend to be neglected. The duration of a micro-expression is only
1/25 s to 1/5 s with low intensity [3]. Porter suggested that micro-expressions are generated by parts
of human faces as the result of muscular movement [4]. The micro-expression recognition is more
difficult than the macro one because of its features.

Thanks to the development of artificial intelligence, the human–computer interaction better
facilitates the study of micro-expression recognition. Specifically, Hinton proposed the concept of deep
learning in 2006 [5], which is an important branch of machine learning. Deep learning excelled at feature
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extraction and categorization in image recognition. More and more researchers made breakthroughs
by combining machine learning or deep learning with micro-expression recognition [6–8].

Different from macro-expressions, micro-expressions consist of facial muscle movement with low
intensity and short duration. What is more, this facial muscle movement tends to happen in some small
but specific facial regions. For example, the macro-expression of happiness will involve the movement
of action unit (AU)6 and AU12 with high intensity, which results in the raise of cheeks, wrinkling
of outer corner of eyes, smaller of eye region, open of mouth or raise of mouth corner. However,
the micro-expression of happiness will involve low intensity of AU12 or AU6, which results in the slight
raise of the mouth corner or smaller of eye area. Therefore, for the recognition of micro-expression,
we may focus on the mouth corner and eye regions without paying attention to other regions of the
face. The attention model is a suitable method for performing this attention mechanism. It is thus used
in this research.

The attention mechanism was added to the designed deep convolutional neural network (CNN)
for micro-expression recognition. This method can not only extract the overall features of human faces,
but also concentrate on some key features. Since micro-expressions only occur in parts of the human
face, the attention mechanism helps to focus on specific facial regions, learning and acquiring the
important features.

In our work, we designed a three-dimensional convolutional neural network (3D CNN) to learn
spatiotemporal information, and a convolutional block attention module (CBAM) was appended after
the 3D CNN. The proposed method was able to learn the information at the target domain effectively
and to emphasize the features at important regions and this improved the ability of feature extraction.

The contributions of this study contain three aspects:

(1) this study designed a six-layer 3D CNN and took the whole face into the network for
micro-expression recognition;

(2) the researchers reached the optimized network structure by monitoring the recognition accuracy
while decreasing the convolutional layers successively on the basis of the existed network;

(3) this study combined the convolutional block attention module (CBAM) with its 3D CNN to
simulate visual attention mechanism and enhance the information flows in channels and spaces.

2. Related Works

Polikovsky and other researchers [9] divided human faces into specific regions according to facial
action coding system (FACS), based on which they proposed the 3D-gradient direction histogram for
movement description. To extend the general texture features to the dynamic ones, Zhao et al. [10]
proposed a feature descriptor named as local binary patterns on three orthogonal planes (LBP-TOP)
for micro-expression recognition. This method achieved better accuracy. Pfister et al. [11] normalized
videos of different lengths on the basis of a temporal interpolation model. Meanwhile, they extracted
the image features with the help of the spatiotemporal local texture descriptors (SLTDs) in combination
with multi-kernel learning (MKL) to recognize micro-expressions. Furthermore, Wang et al. [12]
proposed the method of tensor independent color space (TICS) from the perspective of color space.
This model extracted the dynamic texture features from the color components with better performance.
Moreover, Liu et al. [13] proposed the method of main directional mean optical flow (MDMO),
which used optical flow estimation technology to calculate the subtle motion of 36 regions of interest
(ROIs). In addition, they aligned all the frames in the video clips of micro-expressions in the approach
driven by optical flows.

These traditional methods for feature extraction have contributed significantly to the micro-
expression researches. However, the approaches mentioned above do not achieve high accuracy in
micro-expression recognition. As compensation for inefficiency, deep learning is able to advance the
capability of feature presentations.
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Deep learning has been gradually applied to computer vision [14], natural language processing [15],
and other fields. In this context, a growing number of researchers have applied neural network to
various tasks in the study of micro-expressions, such as detection, recognition, etc.

One of the most popular methods in the study of deep learning is CNN. Since the popularity
of the LeNet [16], designed by LeCun in 1998, various network structures have been designed (e.g.,
AlexNet [17], GoogleNet [14], VGG-Net [18], etc.). They have been widely applied in fields of
facial recognition and voice recognition. However, these models are confined to two-dimensional
data processing. In recent years, researchers have utilized 3D CNN in consideration of the
temporal dimension.

Peng et al. [19] employed a 3D CNN with the dual temporal scale in micro-expression recognition.
After computing the optical flow of two video clips which had different numbers of frames, the dual
temporal scale network with the support vector machine (SVM) generated satisfactory results.
In addition, Li et al. [20] presented a micro-expression recognition method based on the image
sequence (i.e., introducing both the gray sequence and the optical flow sequence to a 3D CNN).
This 3D CNN could catch subtle motion flows, promoting recognition accuracy. On the other hand,
Reddy et al. [21] testified the feature fusion of eyes and mouth as well as features on the whole face,
concluding that learning the facial features on the whole face accomplished the micro-expression
recognition task better with the help of two kinds of spatiotemporal CNNs. In consideration of
overfitting that might occur when using small sample data in deep network, Peng et al. [22] applied
fine-tuning on the micro-expression database after pre-training ResNet 10 on the macro-expression
database from the perspective of transfer learning. Xia et al. [7] proposed spatiotemporal recurrent
convolutional networks to capture the spatiotemporal feature from micro-expression video clips.
They also adopted temporal data augmentation strategies to enlarge training data and proposed a
balanced loss mechanism, which showed its effectiveness on spontaneous micro-expression databases.
Verma et al. [6] utilized a dynamic imaging technique to convert the sequence into a frame of image
sequences, and proposed a Lateral Accretive Hybrid Network (LEARNet) to learn the subtle features
of the face area, which involves the cross decoupled relationship between convolution layers. Based on
the standard micro-expression databases, the results of the proposed algorithm were improved to a
certain extent compared with ResNet.

3. Materials and Methods

3.1. 3D CNN

CNN processes large amounts of data by utilizing convolutional layers and pooling layers
continuously, which has shown better performance than traditional algorithms in feature extraction.

In many micro-expression recognition studies of CNN, researchers applied 2D CNN to extract
features from apex frames. However, as a micro-expression is a movement of facial muscles,
the successive video frames contain temporal information. The more dynamic information about
micro-expressions is captured, the more key data acquired. To obtain dynamic information, Ji et al. [23]
updated 2D CNN to 3D CNN to extract features from the temporal domain and the spatial domain of
the image sequence at the same time for analysis of spatiotemporal information.

3.2. Convolutional Block Attention Module (CBAM)

Woo et al. [24] proposed the idea of a convolutional block attention module. Figure 1 demonstrates
the structure of CBAM.

Convolutional block attention module (CBAM) enables the attention module to be applied to both
the channel dimension and the spatial dimension. We will elaborate how it works from aspects of
channel attention module and spatial attention module.
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Figure 1. Convolutional block attention module (CBAM) structure.

Firstly, the preceding 3D CNN transferred the input data X into the feature map F ∈ RC×H×W

(i.e., C represents the number of channels, H represents the height, and W the width, of the feature
map) before it entered the CBAM. F was then processed by the channel attention module and spatial
attention module as follows:

F′ = Mc(F) ⊗ F,
F′′ = Ms(F′) ⊗ F′,

(1)

Where ⊗ represents the element-wise multiplication, F′ represents the result of the feature map
multiplying the channel attention map, and F′′ represents the result of the spatial attention map
multiplying F′ or the final output.

(i) Channel attention module
As each channel in the feature map represents one specific detector, the attention sector helped to

extract the channels that contained the useful information.
To complete the feature extraction and reduce data lost, the channel attention module squeezed

the feature map in the spatial dimension by using both global average pooling layer and global
max pooling layer. Figure 2 shows the channel attention module. The global average pooling layer
obtained the overall information, whereas the global max pooling layer captured information regarding
differences of the feature. The combination of the two layers worked better than any single one.
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Afterwards, the squeezed feature maps Fc
avg and Fc

max were sent to the shared network which
was constituted by the multi-layer perceptron (MLP) with one hidden layer. MLP was set at certain
compression ratio to reduce the parameter and computation. The sigmoid function then computed the
channel attention map of Mc(F) ∈ RC×1×1, the process of which was as follows:

Mc(F) = σ(MLP(Avgpool(F)) + MLP(Maxpool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(2)

Fc
avg and Fc

max represent the squeezed feature maps of the two pooling layers, with σ demonstrating
the sigmoid function. W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights of the MLP respectively.
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(ii) Spatial attention module
As illustrated in Figure 3, the spatial attention module laid more emphasis on the parts of the

feature map, which attained better reaction, in comparison with the channel attention module. For the
feature maps generated in the channel attention module, the global average pooling layer and the global
max pooling layer squeezed into two 2D feature maps: Fs

avg and Fs
max along the channel dimension,

in order to highlight the regions containing key information.
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The two 2D feature maps were concatenated to generate the effective feature map for
convolution. After the convolution operation, the sigmoid function computed the spatial attention
map: Ms(F) ∈ R1×H×W as follows:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ( f 7×7([Fs

avg; Fs
max])),

(3)

where Fs
avg and Fs

max are the feature maps squeezed in the channel dimension, and σ represents the
sigmoid function.

CBAM introduced the attention mechanism to the CNN, making the channel module and the
spatial module cooperate. The two modules learned the key information in both the channel dimension
and the spatial dimension and redistributed the weight of the features in an adaptive way.

3.3. The Proposed System

In this study, we propose a 3D spatiotemporal CNN with convolutional block attention module,
which was named as Convolutional Block Attention Module Network (CBAMNet).

The Basic Network extracted the overall spatiotemporal features of all the input data. Next,
CBAM processed the feature maps and distributed the weights of the channel dimension and spatial
dimension in an adaptive way.

The Basic Network and CBAM were both indispensable in that the Basic Network focused on the
global information in the spatiotemporal dimension whereas CBAM highlighted the features. The two
parts complemented one another, improving the function of the network.

Overfitting problems may happen when small data were used in a deep network. According to
previous work [19,25], it confirms that the medium-size network trained on a small database may
get higher recognition accuracy than a large or complicated network trained on the same dataset.
We therefore designed a medium-size CNN. Figure 4 shows the overall structure of the CBAMNet,
which includes six convolutional layers and six pooling layers.
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Basic Network

The Basic Network is assigned as the front part of CBAMNet as shown in Figure 5. It is a 3D CNN,
constituted by six 3D convolutional layers and six 3D pooling layers.
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The number of filters in the convolutional layer in the Basic Network is set as 32, 32, 32, 64, 64,
and 64 from the first to the last layer, respectively. The kernel of each convolutional layer is set as
3 × 3 × 3 and that of each pooling layer is set as 2 × 2 × 2. A batch normalization layer normalized
the feature maps, which were generated from the convolutional layer and sent the maps to the
Rectified Linear Units (ReLU) activation function to accelerate the training process. The dropout layer
could deactivate some neurons to avoid overfitting. Finally, the softmax layer classified the image
sequences into different types of micro-expressions. Table 1 concludes the detailed information of the
Basic Network.

Table 1. The detailed configuration of Basic Network.

Layers Kernel Parameter Settings Number of Kernels Output

Data 64 × 64 × 16
Conv1 3 × 3 × 3 32 64 × 64 × 16
Pool1 2 × 2 × 2 - 64 × 64 × 16
Conv2 3 × 3 × 3 32 64 × 64 × 16
Pool2 2 × 2 × 2 - 32 × 32 × 8
Conv3 3 × 3 × 3 32 32 × 32 × 8
Pool3 2 × 2 × 2 - 16 × 16 × 4
Conv4 3 × 3 × 3 64 16 × 16 × 4
Pool4 2 × 2 × 2 - 16 × 16 × 4
Conv5 3 × 3 × 3 64 16 × 16 × 4
Pool5 2 × 2 × 2 - 8 × 8 × 2
Conv6 3 × 3 × 3 64 8 × 8 × 2
Pool6 2 × 2 × 2 - 4 × 4 × 1
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3.4. Experiments

The network was run in the TensorFlow environment. A desktop computer with graphics
processing unit (GPU) of NVIDIA Geforce GTX 1080 processed all the data.

3.4.1. Database

CASME II [26] is a spontaneous micro-expression database. This database was upgraded from
CASME [27] by Yan et al. in 2014. It contains 247 micro-expression samples from 26 participants.
CASME II includes emotions of disgust, happiness, repression, surprise, sadness, fear, and others.
The frame rate of the camera used for collecting the data is 200/fps and the image resolution is
640 × 480 to acquire information of the facial muscular movement clearly and effectively. According to
previous work [28,29], we divided all the video sequences into three categories: negative (N), positive
(P), and surprise (S). Negative video sequences include disgust and repression video sequences,
and positive only contains happiness.

Spontaneous Micro-expression Database (SMIC) [30] was created by Zhao’s team at Oulu
University. The high speed (HS) dataset consists of 164 micro-expression sequences from 16 subjects.
The camera frame rate is 100/fps and the image resolution is 640 × 480. The database divides
micro-expression sequences into three categories: positive, negative, and surprise.

3.4.2. Data Pre-Processing

Before inputting to the network, the data were pre-processed by the following steps, which are
illustrated in Figure 6.Information 2020, 11, x FOR PEER REVIEW 8 of 15 
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(1) Facial image cropping
The key facial regions were cropped in advance to avoid the interference of background factors

other than human faces. Firstly, we determined the key regions by discriminative response map fitting
(DRMF) [31]. DRMF detected the image sequence frame by frame and testified 66 landmark points on
the face for each frame. Figure 7 shows the 66 landmark points on the face. Next, all the human face
regions were kept according to the landmark points. The cropped area is demonstrated in Figure 8.
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(2) Sequence motion amplification
To learn about the temporal motion information that was difficult to detect in the image sequence,

we applied the Eulerian video magnification method proposed by Wu et al. [32] to amplify the hidden
movement information in the adjacent frames.

The cropped regions of human faces were processed by down-sampling to generate the Laplacian
pyramid. Then the IIR filter worked on the images of all dimensions by filtering of the temporal
dimension. The 2D image signals were approached by Taylor series with fixed magnification factor
(αk) on each band. The final step was to reconstruct the micro-expression sequence from the Laplacian
pyramid images.

(3) Data augmentation
We randomly sampled the images’ sequences and regained the length of each sub-sequence to

16 frames by using the linear interpolation method [33]. In this way, the number of subsamples of
every category almost reached 5000.

(4) Data normalization
Normalization included two procedures: both the length of sequences and the size of images are

normalized. The length of the micro-expression sequences in the database differed from each other.
We thus normalized the image sequences into 16 frames. Furthermore, in order to reduce the amount
of calculation, the size of the image was normalized to 64 × 64.

4. Results and Discussion

All the data after enhancement were divided into 10 groups according to the numbering of the
images. The cross-validation was performed by taking nine groups of data as the training set, and the
rest as the testing set. Each group of the data was the testing set. Since the images are numbered
according to the subjects (i.e., the images of the same subject will have continuous numbering),
the training set and the testing set will include different subjects. The cross-validation in this research
is thus a cross-dataset validation.

4.1. Comparison with the Basic Network

The image sequence was sized into 16 × 64 × 64 × 3. The Basic Network and the CBAMNet
proposed were both tested and verified on CASME II. Table 2 shows the average results of ten-fold
cross-validation of the single network (Basic Network) and the CBAMNet on CASME II.

Table 2. Comparison of Basic Network.

Architecture Accuracy

Basic Network 67.78%
CBAMNet 69.92%
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The Basic Network used CNN as the only way to extract the overall features of human faces.
The accuracy of this method was 67.78%. In contrast, the recognition rate of CBAMNet reached 69.92%.
The results indicated that under the same 3D spatiotemporal CNN, the network which added the
convolutional block attention module improved the recognition performance.

4.2. Comparisons with Different Basic Network Structures

The Basic Network is a neural network comprised of six convolutional layers. We decreased
the number of the convolutional layers one by one to study the influence of different layers on CNN
recognition. Other parameters on the network remained unchanged. Table 3 shows the network
structures of the sub-networks.

Table 3. The network structures of sub-networks.

Sub-Network 1 Sub-Network 2 Sub-Network 3 Sub-Network 4

2 Layers 3 Layers 4 Layers 5 Layers

Conv1 3 × 3 × 3 Conv1 3 × 3 × 3 Conv1 3 × 3 × 3 Conv1 3 × 3 × 3
Pool1 2 × 2 × 2 Pool1 2 × 2 × 2 Pool1 2 × 2 × 2 Pool1 2 × 2 × 2
Conv2 3 × 3 × 3 Conv2 3 × 3 × 3 Conv2 3 × 3 × 3 Conv2 3 × 3 × 3
Pool2 2 × 2 × 2 Pool2 2 × 2 × 2 Pool2 2 × 2 × 2 Pool2 2 × 2 × 2

Conv3 3 × 3 × 3 Conv3 3 × 3 × 3 Conv3 3 × 3 × 3
Pool3 2 × 2 × 2 Pool3 2 × 2 × 2 Pool3 2 × 2 × 2

Conv4 3 × 3 × 3 Conv4 3 × 3 × 3
Pool4 2 × 2 × 2 Pool4 2 × 2 × 2

Conv5 3 × 3 × 3
Pool5 2 × 2 × 2

The sub-networks were tested on CASME II by experiments, and the average results of ten-fold
cross-validation are shown in the following figure.

Figure 9 illustrates the recognition accuracy of the Basic Network on CASME II after deleting one,
two, three, and four convolutional layers, respectively. It is seen that when the last layer is deleted
(five convolutional layers), the performance is worse than the Basic Network. The recognition rate
with four convolutional layers is higher than that with five convolutional layers. The rate declines as
the convolutional layers are deleted gradually. However, the overall trend shows that the distinction
between sub-networks is subtle. This indicates that the network functioned stably. The reason might
be that the batch normalization layer accelerated the convergence speed and that the dropout layer
improved the generalization function. Judging from the recognition performance, the network with six
convolutional layers is suitable for the recognition. As a result, we chose the six-layer network as the
Basic Network.
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4.3. Comparison with Other Methods on CASME II

We also compared the CBAMNet with other methods on CASME II. First of all, the LBP-TOP was
studied. LBP-TOP was upgraded from static local binary pattern to learn the dynamic texture features.

Secondly, the MicroExpSTCNN [21] was tested. It was a deep-learning model with 3D CNN that
extracted spatiotemporal features and classified the micro-expression sequences.

In addition, the Residual Network (RESNET) [34] was measured. It is a classification network
proposed by He et al. and it has been widely used in image recognition. To some degree, the RESNET
has solved some training difficulties in CNN. Since the target object was image sequence, we extended
RESNET to RESNET-3D in this research. We used the version of ResNet18. First the convolution
kernel and pooling kernel were converted into 3D form. The convolution kernel changed from 3 × 3 to
3 × 3 × 3, and the pooling kernel changed from 2 × 2 to 2 × 2 × 2. In addition, some other parameters
were changed accordingly. Table 4 shows the accuracy of different micro-expression recognition
methods on CASME II.

Table 4. Comparison of average recognition rates of different methods. LBP-TOP: local binary patterns
on three orthogonal planes; MicroExpSTCNN: xxx; RESNET-3D: Residual Network-3D; CBAMNet:
convolutional block attention module network.

Method Accuracy

LBP-TOP [10] 52.98%
MicroExpSTCNN [21] 66.07%
RESNET-3D [34] 65.01%
Basic Network 67.78%
CBAMNet 69.92%

The recognition performance achieved by MicroExpSTCNN (66.07%), RESNET-3D (65.01%),
and Basic Network (67.78%) do not distinct from each other significantly, which could be that they both
used neural networks. However, the Basic Network still slightly outperformed the other networks.
This indicates that our design in the network functions (i.e., the optimal arrangement of the layers),
improved the recognition rates and some batch normalization layers, and the drop out technology
helped to prevent over fitting. The Basic Network outperforms the RESNET-3D, though it has simple
network structure.

CBAMNet achieved the highest recognition rate (69.92%). This proves that the attention mechanism
after the Basic Network does help to improve the recognition. By adaptively redistributing the weights
of the channel features and the spatial features, the CBAM amplifies the specific information of
micro-expression, thus pushing the recognition to a new level.

4.4. Comparison with Other Methods on SMIC

In this section, we also tested all the algorithms on SMIC. The results are shown in Table 5. For the
SMIC database, it exhibits lower recognition performance compared to the CASME II. This performance
could be due to a lower camera frame rate (100/fps) and background noises, such as illumination,
shadows and so on. The recognition performance achieved by MicroExpSTCNN (50.92%), RESNET-3D
(49.53%), and Basic Network (52.03%) did not show significant difference. However, the proposed
CBAMNet achieved a higher recognition rate than the other models.
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Table 5. Comparison of average recognition rates of different methods.

Method Accuracy

LBP-TOP [10] 41.65%
MicroExpSTCNN [21] 50.92%
RESNET-3D [34] 49.53%
Basic Network 52.03%
CBAMNet 54.84%

4.5. Confusion Matrixes on CASME II

We also computed the confusion matrix of each algorithm on CASME II. Table 6 presents the
confusion matrix of the CBAMNet. The labels at the bottom represent the predicting categories and
those on the left represent the actual categories. The letters ‘N’, ‘P’ and ‘S’ represent negative, positive,
and surprise, respectively. Table 7 demonstrates the performance of different methods on CASME II.
It is seen that CBAMNet (N 69.44%, P 70.69%, S 69.65%) can achieve better performance than the Basic
Network (N 66.56%, P 69.47%, S 67.33%) in the recognition in every category.

Table 6. Confusion matrix of CBAMNet. N: negative; P: positive; S: surprise.

N 69.44% 13.17% 17.39%
P 23.98% 70.69% 5.33%
S 13.33% 17.02% 69.65%

N P S

Table 7. Comparison of different methods on CASME II.

Method N P S

LBP-TOP [10] 56.65% 47.76% 54.55%
MicroExpSTCNN [21] 63.45% 68.98% 65.78%

RESNET-3D [34] 70.38% 62.17% 62.50%
Basic Network 66.56% 69.47% 67.33%

CBAMNet 69.44% 70.69% 69.65%

The accuracy of MicroExpSTCNN, Basic Network, and CBAMNet is higher than LBP-TOP,
suggesting the spatiotemporal information might assure the stability of the network. Additionally,
in all the methods based on CNN, the accuracy of the CBAMNet topped among the other methods in
almost all the expressions (except that RESNET-3D outperformed others in the negative expressions).
This suggests that the attention mechanism introduced to CBAMNet highlights some useful features
that helped recognition.

The recognition performance of proposed CBAMNet or Basic Network is more stable than
those of other methods by looking at the variations of the recognition rates of different categories.
CBAMNet achieved recognition rates of 69.44%, 70.69%, and 69.65%, and the standard deviation is
0.55%. The standard deviation values of Basic Network, LBP-TOP, MicroExpSTCNN, and RESNET-3D
are 1.23%, 3.79%, 2.27%, and 3.79%, respectively. This suggests that the proposed method may achieve
more stable recognition results in unbalanced sample states.

4.6. Confusion Matrixes on SMIC

We computed the confusion matrixes of all the algorithms above on SMIC. Table 8 presents the
confusion matrix of the CBAMNet on SMIC.
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Table 8. Confusion matrix of CBAMNet.

N 54.90% 28.00% 17.10%
P 34.50% 55.50% 10.00%
S 36.71% 9.17% 54.12%

N P S

To further analyze the recognition performance, Table 9 demonstrates the performance of different
methods on SMIC. The letters ‘N’, ‘P’, and ‘S’ represent negative, positive, and surprise, respectively.
It is seen that the recognition rates achieved by CBAMNet (N 54.90%, P 55.50%, S 54.12%) are more
stable than those of other methods. The standard deviation of recognition rates of CBAMNet is 0.56%,
while the standard deviation values of Basic Network, LBP-TOP, MicroExpSTCNN, and RESNET-3D
are 2.75%, 1.62%, 0.76%, and 2.94%, respectively.

Table 9. Comparison of different methods on SMIC.

Method N P S

LBP-TOP [10] 41.43% 43.74% 39.78%
MicroExpSTCNN [21] 51.33% 51.58% 49.86%

RESNET-3D [34] 53.67% 47.75% 47.17%
Basic Network 55.92% 49.92% 50.27%

CBAMNet 54.90% 55.50% 54.12%

4.7. Potential Application and Improvement

The method proposed by Zhi et al. [35] achieved remarkable results on micro-expression databases.
The overall accuracy is 97.6% and 97.4% on CASME II and SMIC, respectively. They proposed a
recognition algorithm for micro-expression sequences, which combines 3D CNNs with transfer learning.
Firstly, the normal facial expression database is utilized as the source data, and 3D CNN model is
pre-trained on it. Then the parameters of the overall network are stored and transferred to the
micro-expression databases.

The reason for the remarkable results of the algorithm may be due to the reasonable design of 3D
CNNs and the strong ability of transfer learning. The high level features of facial expression are learned
in larger datasets (normal facial expression database) and are then transferred to the micro-expression
recognition task. Though the accuracy achieved by our method is lower, our work proposes an
algorithm of integrating attention mechanism to emphasize useful information. The emphasis of
our work is the middle-size but suitable 3D CNN structure design and the attention mechanism.
Combing the attention mechanism with the other method, such as transfer learning, might further
improve the recognition rate. In the future we may pre-train a deeper network on larger normal
facial expression databases, and then fine-tune the network together with attention block on the
micro-expression database.

5. Conclusions

We introduced an attention mechanism into the micro-expression recognition in this research to
improve recognition performance. The deep model of 3D spatiotemporal CNN with convolutional
block attention module (CBAM) was proposed. The CBAMNet was constituted by two parts: the Basic
Network at the front which learned the overall movement of the micro-expressions and extracted
the spatiotemporal features from the image sequence; and CBAM following it which reinforced the
features and accelerated the information flow in the network. The network distributed the weight of
the features in an adaptive manner with the help of serial fusion. We further fused the Basic Network
and CBAM to extract expression features in motion. The experiment in the CASME II indicated that
CBAMNet outperformed other networks in micro-expression recognition.
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