
  information

Article

Modeling the Paraphrase Detection Task over a
Heterogeneous Graph Network with
Data Augmentation †

Rafael T. Anchiêta 1,2,* , Rogério F. de Sousa 1,2 and Thiago A. S. Pardo 1

1 Interinstitutional Center for Computational Linguistics, University of São Paulo, São Carlos 13566-590,
Brazil; rogerio.sousa@ifpi.edu.br (R.F.d.S.); taspardo@icmc.usp.br (T.A.S.P.)

2 Federal Institute of Piauí, Picos 64600-000, Brazil
* Correspondence: rta@ifpi.edu.br
† This paper is an extended version of our paper published in 14th International Conference on the

Computational Processing of Portuguese (PROPOR 2020), Evora, Portugal, 2–4 March 2020.

Received: 29 July 2020; Accepted: 28 August 2020; Published: 1 September 2020
����������
�������

Abstract: Paraphrase detection is a Natural-Language Processing (NLP) task that aims at
automatically identifying whether two sentences convey the same meaning (even with different
words). For the Portuguese language, most of the works model this task as a machine-learning
solution, extracting features and training a classifier. In this paper, following a different line,
we explore a graph structure representation and model the paraphrase identification task over
a heterogeneous network. We also adopt a back-translation strategy for data augmentation to balance
the dataset we use. Our approach, although simple, outperforms the best results reported for the
paraphrase detection task in Portuguese, showing that graph structures may capture better the
semantic relatedness among sentences.
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1. Introduction

Paraphrase detection is a Natural-Language Processing (NLP) task that aims to automatically
identify whether two sentences convey the same meaning. Bhagat and Hovy [1] define paraphrase as
sentences or phrases that convey the same meaning using different wording. Moreover, these sentences
represent alternative surface forms in the same language, expressing the same semantic content of the
original forms [2].

Formally, a paraphrase may be modeled as a mutual (or bidirectional) entailment between a
text T and a hypothesis H in the form, T → H and H → T, that means T entails H and H entails T.
For example, given a text T and a hypothesis H below, one may claim that they are paraphrases of
each other, since T → H and H → T.

T It is a strange term, but we have become used to it.
H This term is strange; however, we are accustomed to it.

According to Anchiêta and Pardo [3], studies that have focused on the paraphrase detection
task for the Portuguese language (as defined above) are rare. A reason for this is the lack of large
available corpora of paraphrases. As a consequence, there are few developed methods for paraphrase
identification that could be useful for varied NLP tasks that might benefit from such knowledge,
as semantic parsing [4], machine translation [5], automatic summarization [6], question answering [7]
and plagiarism detection [8], among others.

Information 2020, 11, 422; doi:10.3390/info11090422 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-4209-9013
https://orcid.org/0000-0003-4589-6157
https://orcid.org/0000-0003-2111-1319
http://www.mdpi.com/2078-2489/11/9/422?type=check_update&version=1
http://dx.doi.org/10.3390/info11090422
http://www.mdpi.com/journal/information


Information 2020, 11, 422 2 of 12

To try to overcome such barriers, researchers developed and used the ASSIN corpus [9], which is
focused on the textual entailment recognition task, but includes paraphrase examples. Formally,
entailment recognition is the task of deciding whether the meaning of one text may be inferred from
another [9].

The existing works that aim to detect paraphrase sentences in Portuguese [3,10], model this task
as a machine-learning solution, building feature-value tables and training and testing classifiers. For a
new sentence pair, features are computed and fed into the classifier to predict if the two sentences
are paraphrases of each other. These approaches may suffer from two drawbacks. In the first one,
the features may not capture well the semantics of the sentence pairs, producing unsatisfactory results.
In the second, the authors apply sampling techniques to mitigate the unbalance issues of the ASSIN
corpus, aiming to get more balanced data to improve the results of their models. These under- or
over-sampling techniques may suffer from some shortcomings. In the over-sampling, the minority
class can lead to model overfitting, introducing duplicate instances from a pool of instances that is
already small [11]. On the other hand, in the under-sampling, the majority class can end up leaving out
important instances that provide important differences between the two classes [12]. Other strategies
that make use of synthetic data also suffer from criticism on the quality of the generated data.

To fulfill these gaps and explore other approaches for paraphrase detection, in this paper,
inspired by Sousa et al. [13], we model the paraphrase detection task as a heterogeneous network.
In this network, nodes represent tokens and sentence pairs, and the edges link the two node types.
Networks/graphs have shown to be a powerful data structure that may capture well the relationship
among the objects of interest [14].

Based on the network, we feed and train a classifier to predict if two sentences are paraphrases
of each other. To evaluate our method, we use the ASSIN corpus. However, instead of applying a
sampling technique to balance it, we adopt a back-translation strategy [15] for data augmentation to
balance the data. This strategy maintains the original sentence pairs from the ASSIN corpus and add
real sentences from another corpus with good translation quality. Our proposed method outperforms
the best reported results, both in F-score and accuracy measures. Furthermore, the back-translation
strategy helps to produce better models.

The remaining of this paper is organized as follows. Section 2 briefly presents the related work.
In Section 3, we show the used corpora. Section 4 details our methodology to balance the ASSIN
corpus and to model the problem. Section 5 presents the conducted experiments and obtained results.
Finally, in Section 6, we conclude the paper, giving directions for future work.

2. Related Work

As pointed by Anchiêta and Pardo [3], few approaches strictly tackle the paraphrase detection
task for the Portuguese language. Most of the research is on entailment identification that, according to
Souza and Sanches [10], is different from paraphrase detection. Thus, following Souza and Sanches [10],
we focus on the paraphrase detection task.

Consoli et al. [16] analyzed the capabilities of the coreference resolution tool CORP [17] for
identification of paraphrases. The authors used CORP to identify noun phrases that may help to detect
paraphrases between sentence pairs. They evaluated their method on 116 sentence pairs from the
ASSIN corpus, achieving 0.53 F-score.

Rocha and Cardoso [18] modeled the task as a supervised machine-learning problem. However,
they handled the issue as a multi-class task, classifying sentence pairs into entailment, none,
or paraphrase. Thus, they employed a set of features of the lexical, syntactic, and semantic levels
to represent the sentences in numerical values, and fed these features into some machine-learning
algorithms. They evaluated their method on the training set of the ASSIN corpus, using both European
and Portuguese partitions. The method obtained 0.52 of F-score using an SVM classifier.

Souza and Sanches [10] also dealt with the problem using a supervised machine-learning strategy.
However, their objective was to explore sentence embeddings for this task. They used a pre-trained
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FastText model [19] and the following features: the average of the vectors, the value of Smooth
Inverse Frequency (SIF) [20], and weighted aggregation based on Inverse Document Frequency (IDF).
With these features, their method reached 0.33 of F-score using an SVM classifier on balanced data of
the ASSIN corpus for European and Portuguese partitions.

Cordeiro et al. [21] developed a metric named SUMO-METRIC for semantic relatedness between
two sentences based on the overlapping of lexical units. Although the authors evaluated their metric
on a corpus for the English language, the metric is language-independent.

Anchiêta and Pardo [3] explored the potentialities of four semantic features to identify paraphrase
sentences. They computed the similarity of two encoded sentences as a graph using a semantic
parser [22] and a semantic metric [23], the value of Smooth Inverse Frequency (SIF) [20], the cosine
distance between two embedded sentences, and the value of the Word Mover’s Distance (WMD) [24]
between two embedded sentences. From these features, they trained an SVM classifier and obtained
0.80 F-score on the balanced ASSIN corpus.

For the English language, according to Mohamed and Oussalah [25], most of the research is
categorized into three high levels, namely: corpus-based, knowledge-based, and hybrid methods.
Here, in order to have a panoramic view of the achieved contributions for this language and to allow
(indirect) comparisons to Portuguese state of the art, we briefly present the best results in the literature.

Mohamed and Oussalah [25] adopted a hybrid method addressing the problem of evaluating
sentence-to-sentence semantic similarity when the sentences contain a set of named entities.
The authors aimed to distinguish the computation of the semantic similarity of named entity tokens
from the rest of the sentence text based on the integration of word semantic similarity derived from
WordNet taxonomic relations [26], and named entity semantic relatedness inferred from Wikipedia
entity co-occurrences and underpinned by Normalized Google Distance [27]. This approach reached
85.2% F-score on the MSRP corpus [28].

Ji and Eisenstein [29] adopted a corpus-based approach and used a distributional similarity model
by designing a discriminative term-weight metric called TF-KLD. This metric outperforms the TF-IDF
weighting scheme by re-weighting the sentence-term matrix in a different way. The authors evaluated
their method on the MSRP corpus and achieved an 85.96% F-score.

Issa et al. [30] also adopted a corpus-based approach. For that, they combined Latent Semantic
Analysis (LSA) [31] with Abstract Meaning Representation (AMR) [32] parsing. In this combination,
the authors re-weighted the LSA sentence-term matrix according to a probability distribution over
the AMR nodes, which was accomplish by means of the PageRank algorithm [33]. With this strategy,
the authors reached 90% F-score on the MSRP corpus.

As we can see, our graph-based method is different from the literature both in the Portuguese and
English languages. Moreover, our approach does not make use of external knowledge for computing
sophisticated features: it uses only the sentences and tokens of the corpus.

3. Corpora

3.1. The ASSIN Corpus

ASSIN (Semantic Similarity Assessment and textual INference) [9] is a corpus with semantic
similarity score and entailment annotations for sentence pairs in Portuguese, which was released
for a shared task of the PROPOR 2016 Conference (http://nilc.icmc.usp.br/assin/). The corpus
has 10,000 sentence pairs, half of which is written in Brazilian Portuguese and half in European
Portuguese. Moreover, each language has 2500, 500, and 2000 pairs for training, development,
and testing, respectively, as presented in Table 1.

Besides that organization, the sentence pairs of the corpus are labeled with inference classification,
as entailment, none, and paraphrase, as shown in Table 2. One can see that the corpus is unbalanced
concerning the paraphrase label, since the proportion of entailment and none labels is much higher
than the paraphrase label.

http://nilc.icmc.usp.br/assin/
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Table 1. The ASSIN corpus.

Portuguese Language Training Development Testing

Brazilian 2500 500 2000
European 2500 500 2000

Table 2. Frequency of the labels in the ASSIN corpus.

Label
Brazilian Port. European Port.

Total # Proportion %
Train. Dev. Test. Train. Dev. Test.

Entailment 437 92 341 613 116 481 2080 20.80
None 1947 384 1553 1708 338 1386 7316 73.16

Paraphrase 116 24 106 179 46 133 604 6.04

3.2. The MSRP Corpus

MSRP (Microsoft Research Paraphrase) [28] is a widely used corpus for the paraphrase detection
task for English. The sentence pairs are annotated in a binary strategy, i.e., as paraphrases or
non-paraphrases. The corpus has 5801 sentence pairs, where 3900 are paraphrases and 1901 are
non-paraphrases, as exposed in Table 3. As we can see, the MSRP corpus is unbalanced concerning the
non-paraphrase label.

Table 3. Splits of the MSRP Corpus.

Label Training Testing Total # Proportion %

Paraphrase 2753 1147 3900 67.54
Non-paraphrase 1323 578 1901 32.46

In what follows, we detailed the developed methods for paraphrase identification and our strategy
to mitigate the unbalance of the ASSIN corpus.

4. A New Method for Paraphrase Identification

4.1. Balancing the ASSIN Corpus

To formulate the paraphrase identification task as a binary classification problem, we did a
modification to the ASSIN corpus, since it has three labels. Thus, we joined the entailment and none
labels of the corpus into one unique label named “non-paraphrase”, which is our negative class,
as presented in Table 4.

Table 4. New configuration of the ASSIN corpus.

Label Training Development Testing Total # Proportion %

Non-paraphrase 4705 930 3761 9396 93.96
Paraphrase 295 70 239 604 6.04

As we can see, the new configuration of the corpus is unbalanced concerning non-paraphrase
label. Aiming to balance the corpus, we used the MSRP corpus. For that, we adopted a back-translation
strategy [15] to translate the sentences of the MSRP corpus from English to Portuguese, as illustrated
in Figure 1.
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English PortugueseTranslate to Portuguese

English

Translate Back 
to English

Compare

Original
sentences

Translated
sentences

Figure 1. Back-Translation approach.

According to this figure, we translated the original sentences from the MSRP corpus to Portuguese,
using the machine translation model provided by the Google Translate API (https://cloud.google.com/
translate/). We adopted this model due to the good results achieved by other researchers [34,35] when
using it. Next, we translate the Portuguese sentences back to English, because there are no Portuguese
reference sentences to evaluate the quality of the translations. This way, we may measure the quality
of the translations, comparing the original sentences (reference sentences) with the back-translated
sentences (hypothesis sentences). To compute the quality of the translations, we calculated the
harmonic mean between ROUGE (We used the F-score of the ROUGE-L.) [36] and BLEU [37] metrics,
as in Equation (1).

F1 = 2× rouge× bleu
rouge + bleu

(1)

We achieved 0.844 mean value (with a 0.08 standard deviation) when comparing the reference
sentences to the hypothesis sentences. Taking into account the state-of-the-art results in machine
translation [38], which achieves 35 points on the BLEU score, we may consider that the translated
sentences from English to Portuguese have a good quality due to reached results both in the mean
and the standard deviation. Thus, we used the translated sentences of the MSRP corpus to make the
ASSIN corpus less unbalanced. Table 5 presents the ASSIN corpus plus the translated sentences of the
MSRP corpus.

To create this less unbalanced corpus, we got the 2753 paraphrastic sentences from the training set
of the MSRP corpus and put 2000 into the training set and 753 into the development set of the ASSIN
corpus, respectively. As a consequence of these operations, the training set will have 2295 sentences and
the development set will have 823 sentences. Moreover, we also got the 1147 paraphrastic sentences
from the testing set of the MSRP corpus and put them into the testing set of the ASSIN corpus. As a
result of that operation, the testing set will have 1386 sentences. After these procedures, we obtained a
corpus in Portuguese with similar proportions in relation to the MSRP corpus.

Table 5. ASSIN corpus plus the translated sentences of the MSRP corpus.

Label Training Development Testing Total # Proportion %

Non-paraphrase 4705 930 3761 9396 67.60
Paraphrase 2295 823 1386 4504 32.40

4.2. Modeling the Paraphrase Identification Task

To extract features, we first model the paraphrase identification task over a heterogeneous graph
network. This network contains abundant information with structural relations (edges) among
multi-typed nodes as well as unstructured contend associated with each node [39,40]. It has been
used to automate feature engineering tasks, facilitating machine-learning tasks, and proving good

https://cloud.google.com/translate/
https://cloud.google.com/translate/
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results for other tasks as helpfulness prediction, text classification and scientific impact measurement,
among others [13,41–43].

We borrowed the formulation of a heterogeneous network from Chang et al. [42] and adapted it
to our purpose. Our network may be viewed as a graph G = (V, E), where V = {v1, ..., vn} is a set
of vertices and E is a set of edges, where an edge ei,j ∈ {1, ..., n} belongs to the set E if and only if an
undirected and unweighted link exists between nodes i and j. Moreover, the graph G is associated
with an object type mapping function fv : V → O, where O represents object sets and each node vi ∈ V
belongs to one particular object type as fv(vi) ∈ O.

In our network, we defined two node types and two constraints. In the former, the nodes are
tokens and sentence pairs, while in the latter the constraints are: (i) there is no link among token nodes
and (ii) there is no link among sentence pair nodes. Thus, we link only token nodes with sentence pair
nodes. We present the general scheme and an overview of the network in Figures 2 and 3, respectively.

Token
Sentence
pair

Figure 2. Scheme of the heterogeneous graph network.

As one can see, the edges are undirected and unweighted, and a sentence pair node may share
several token nodes whenever the token is in the sentence pair, i.e., the edges between token nodes
and sentence pair nodes are based on word occurrence in sentence pairs.

Sentence pairs

Tokens

Figure 3. Overview of the heterogeneous graph network.

To extract the features regarding the network object classes, we applied a regularization method.
Regularization is a kind of transductive classification method that aims to find a set of labels,
minimizing a cost function and satisfying two conditions: (i) the method needs to be consistent
with the set of labels manually annotated and (ii) the method needs to be consistent with the network
topology, considering that nearest neighbors tend to have the same labels [14].

We tested three regularization methods: Gaussian Fields and Harmonic Function (GFHF) [44],
Learning with Local and Global Consistence (LLGC) [45], and GnetMine [14]. The regularization
algorithms require some nodes to be pre-labeled with their specific classes. Thus, one of the differences
between these methods is if they modify these pre-labeled nodes. For example, the GFHF method
does not modify the pre-labeled nodes, whereas the LLGC and GnetMine methods do. Besides,
the GnetMine method works only on the heterogeneous networks, while the GFHF and LLCG methods
work both on heterogeneous and homogeneous networks.
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As a result, the regularization methods produce values related to coordinates for each object in
the network, and these values may be used to feed a supervised machine-learning algorithm to learn
and predict labels [46]. Table 6 presents an example of the output of a regularization method, where id
is the identifier of the object, values refer to coordinates of each object in the network, and label 1 is a
paraphrase, while label 0 is a non-paraphrase.

Table 6. Result of a regularization method.

Id Value 1 Value 2 Label

0 0.002959 0.005986 1
29 0.002750 0.005323 1
54 0.003350 0.006426 0
69 0.003953 0.006793 0

4.3. Formulating the Paraphrase Identification Task

As before mentioned, we formulated the paraphrase identification task as a binary classification
problem. For that, to train machine-learning algorithms, our method receives as input data the
extracted features from a regularizer method in the form of (x(i)1 , x(i)2 , b(i)) for i ∈ [n], where n is

the number of training sentences, x(i)1 and x(i)2 are the input sentences, and b(i) ∈ {0, 1} is the label,

referring to a binary classification that informs whether x(i)1 and x(i)2 are paraphrases of each other.
In summary, the aim is to learn a classifier c that, given unseen sentence pairs, i.e., a set of sentences S,
classifies whether they are paraphrases, as in Equation (2).

c : S× S→ 0, 1 (2)

We tested four machine-learning algorithms, namely: Support Vector Machine (SVM), Naïve
Bayes (NB), Decision Tree (DT), and Neural Network (NN). In what follows, we detail our experiments
and the obtained results.

5. Experiments and Results

To evaluate our approach, we used the balanced ASSIN corpus with the translated sentences of
the MSRP corpus, as depicted in Table 5. Moreover, as we commented before, we tested some classifiers
from the Scikit-Learn library [47], as Support Vector Machine (SVM), Naïve Bayes (NB), Decision Trees
(DT) and Neural Networks (NN), and we evaluated three regularization methods. Recall that the
regularization methods require some nodes to be pre-labeled, so we ranged from 5% to 50% the number
of pre-labeled nodes. The regularizers randomly pre-labeled the nodes. Supposing that the percentage
of pre-labeled nodes is equal to 5%, it means that 0.25% of each class is randomly pre-labeled.

We achieved the best result with the LLGC regularizer, the NN classifier (We used a Multi-Layer
Perceptron (MLP) with 2 hidden layers and 20 neurons in each hidden layer.), and 30% of the
pre-labeled nodes on the balanced ASSIN corpus, as depicted in Table 7. It is important to highlight
that only the training set is pre-labeled. The regularizer does not have access to labels of the testing set.

As we can see, from the 30% of pre-labeled nodes, both F-score and accuracy remain constants.
We believe that the LLGC regularizer achieved the best results due to two properties. In the first place,
it allows the pre-labeled nodes to be altered. This helps to correct errors in the labeling of nodes,
improving the classification. In the second place, the algorithm decreases the excessive influence of
objects with a high degree in the definition of the information of the nearest classes. This allows that
the nodes get a different label from their neighbors.
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Table 7. Results of the LLGC regularizer and the NN classifier.

Pre-Labeled (%)

NN

F-Score Accuracy

Paraphrase Non-Paraphrase -

5 0.00 0.84 0.73
10 0.00 0.84 0.73
15 0.70 0.90 0.85
20 0.71 0.90 0.85
30 0.74 0.91 0.87
40 0.74 0.91 0.87
50 0.74 0.91 0.87

We compared our best result with the works of Anchiêta and Pardo [3] and Souza and Sanches [10],
since they also deal with the paraphrase detection task for Portuguese. Furthermore, we also compared
our method with another graph-based method [48]. This method is a Graph Convolutional Network,
which contains word nodes and document nodes. The number of nodes in the graph is the number of
documents plus the number of unique words in a corpus. The edges among the nodes are based on
word occurrence in documents and word co-occurrences in the whole corpus. Moreover, the weight
of the edge between a document node and a word node is the Term Frequency-Inverse Document
Frequency (TF-IDF) and the weight between two word nodes is the Pointwise Mutual Information
(PMI) [49] value. Equation (3) summarizes the approach to weight an edge between nodes.

Wi,j =


PMI(i, j) i, j are words, PMI(i, j) > 0

TF-IDFi,j i is document, j is word

1 i = j

0 otherwiese

(3)

In Table 8, we present the results of the comparison between the models, and, as we can see, our
strategy outperformed the other methods, achieving better results than other models with only 30% of
the pre-labeled data. It is important to say that we trained and evaluated these models on the balanced
ASSIN corpus.

Table 8. Comparison among approaches on the balanced ASSIN corpus.

Method F-score Accuracy
Paraphrase Non-Paraphrase -

Souza and Sanches [10] 0.45 0.55 0.50
Anchiêta and Pardo [3] 0.67 0.89 0.83

Yao et al. [48] 0.68 0.88 0.83

Ours 0.74 0.91 0.87

We further assessed whether the trained models on the balanced ASSIN corpus improve the
results of the models when evaluated on the ASSIN corpus without balancing, i.e., we are interested
in check if the data-augmentation strategy used to balance the ASSIN corpus contributes to improve
the results when tested on the original ASSIN corpus. The results of this investigation are shown
in Table 9.

One can see that all the models improved their results when trained on the ASSIN corpus with
data augmentation, showing that the back-translation strategy for the paraphrase detection task is
feasible to produce better models. For this experiment, the method of Anchiêta and Pardo [3] reached
the best results, on average. Also, the graph-based methods performed poorly, having difficulty to
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correctly predict a label with very few instances. ASSIN corpus has 239 instances as paraphrases and
3761 instances as non-paraphrases in the test set, as depicted in Table 4. To alleviate the difficulty
of graph-based models to predict a label with very few instances, one may use boosting strategies,
as RUSboost [50]. To investigate other approaches to tackle this subtlety remains for future work.

Table 9. Comparison among approaches on the ASSIN corpus.

Method Data-Augmentation F-Score
Paraphrase Non-Paraphrase

Souza and Sanches [10] 7 0.22 0.77
3 0.28 0.80

Anchiêta and Pardo [3] 7 0.32 0.88
3 0.35 0.92

Yao et al. [48] 7 0.00 0.89
3 0.02 0.93

Ours 7 0.00 0.90
3 0.07 0.98

The balanced corpus and our graph-based model are available at (https://github.com/RogerFig/
graph-paraphrase).

6. Final Remarks

In this paper, we presented a graph-based approach to model the paraphrase detection task.
We defined a heterogeneous network with two semantic node types; sentence pairs and tokens.
We created undirected and unweighted links among the token node and sentence pair node types.
More than the method, we detailed a data-augmentation strategy, using back-translation to balance the
dataset. Our approach outperformed the best results reported for paraphrase detection in Portuguese
on the balanced ASSIN corpus both on accuracy and F-score measures.

The defined network is flexible and may be adapted to include other node types, as the
embeddings of the sentences or tokens, for example. In addition, because of this flexibility,
other network topologies may be explored, as creating weighted links between sentence pair
nodes. Furthermore, heterogeneous networks may be applied to a broad range of other NLP tasks,
as summarization, dependency parsing, sentiment classification, automatic essay scoring, and others.
Another interesting future work is to verify which paraphrase types the systems detect. For that,
one could follow the work of Kovatchev et al. [51] to annotate the paraphrase types that occur in the
corpus. With this additional annotation layer, it may be possible to perform a qualitative evaluation,
helping to explain which paraphrase types the models identify.
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