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Abstract: In the wearable health monitoring based on compressed sensing, atrial fibrillation detection
directly from the compressed ECG can effectively reduce the time cost of data processing rather than
classification after reconstruction. However, the existing methods for atrial fibrillation detection from
compressed ECG did not fully benefit from the existing prior information, resulting in unsatisfactory
classification performance, especially in some applications that require high compression ratio (CR).
In this paper, we propose a deep learning method to detect atrial fibrillation directly from compressed
ECG without reconstruction. Specifically, we design a deep network model for one-dimensional
ECG signals, and the measurement matrix is used to initialize the first layer of the model so that
the proposed model can obtain more prior information which benefits improving the classification
performance of atrial fibrillation detection from compressed ECG. The experimental results on the
MIT-BIH Atrial Fibrillation Database show that when the CR is 10%, the accuracy and F1 score of
the proposed method reach 97.52% and 98.02%, respectively. Compared with the atrial fibrillation
detection from original ECG, the corresponding accuracy and F1 score are only reduced by 0.88%
and 0.69%. Even at a high CR of 90%, the accuracy and F1 score are still only reduced by 6.77%
and 5.31%, respectively. All of the experimental results demonstrate that the proposed method is
superior to other existing methods for atrial fibrillation detection from compressed ECG. Therefore,
the proposed method is promising for atrial fibrillation detection in wearable health monitoring
based on compressed sensing.

Keywords: wearable health monitoring; electrocardiogram; atrial fibrillation; compressed sensing;
measurement matrix; deep learning

1. Introduction

Atrial fibrillation (AF) is the most common type of persistent arrhythmia. It is closely related
to the occurrence of thrombosis, stroke, and even death, posing an imminent threat to human
health [1,2]. Therefore, real-time detection of atrial fibrillation and corresponding intervention is
important to prevent the occurrence of related diseases. In recent years, wearable technology-based
health monitoring has rapidly developed, and compressed sensing (CS) [3–5] is increasingly used in
wearable health monitoring due to its low sampling rate and low power consumption [6]. Compressed
sensing can collect physiological signals at a much lower sampling rate than Nyquist on wearable
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devices and accurately reconstruct the original signals at remote devices, thus greatly reducing the
power consumption of wearable devices and extending their battery life [7].

Usually, the wearable health monitoring system based on compressed sensing will first accurately
reconstruct the original ECG signals after the compressed ECG data are collected and transmitted to the
remote devices, and then make a further diagnostic analysis based on the reconstructed ECG signal [8].
However, the time required for signal reconstruction is likely to affect the real-time performance of
automatic diagnosis, especially when most of the compressed sensing reconstruction algorithms have
high computational complexity [9]. In the automatic AF detection, to obtain a more accurate analysis
result, it is usually necessary to analyze a length of ECG signal frame of 5 to tens of seconds, which will
bring a certain processing delay [10]. If a lot of time is consumed during signal reconstruction, it is
difficult to ensure the real-time performance of AF monitoring.

To solve the problem of real-time performance degradation caused by the signal reconstruction
process in the wearable AF monitoring system based on compressed sensing, Da Poian et al. [11]
proposed a matched filtering method to extract RR intervals directly from compressed ECG data,
so that compressed ECG can be used directly for AF detection without reconstruction. However,
the RR intervals extracted by Da Poian’s method at a higher compression ratio is not accurate, resulting
in unsatisfactory classification performance for AF detection. In addition, Zhang et al. [12] proposed a
deep learning method, which directly inputs the collected compressed ECG into the neural network
model, and then outputs the results of AF detection. In fact, if there is no other prior information,
the compressed ECG contains much less information than the original ECG, so it is difficult to obtain
satisfactory classification performance by only relying on the compressed ECG data.

In this paper, we propose a method to detect atrial fibrillation directly from compressed ECG
signals, which makes full use of the existing prior information to improve the classification performance
of AF detection. Specifically, we designed a deep neural network model for one-dimensional ECG
signals, which directly inputs the compressed ECG signal to the model, and outputs the detection
result of atrial fibrillation at the end of the model, thereby eliminating the process of ECG signal
reconstruction. To fully benefit from the prior information contained in the measurement matrix,
so as to improve the classification performance of atrial fibrillation detection, we designed the first
layer of the deep network model as a fully connected layer and initialized the weights of this layer
with the pseudo-inverse of the measurement matrix. The experimental results on the MIT-BIH Atrial
Fibrillation Database show that our proposed method is superior to the existing algorithms for directly
detecting atrial fibrillation from compressed ECG, and the initialization using the measurement matrix
effectively improves the classification performance of AF detection from compressed ECG. In summary,
the main contributions of this paper are as follows:

• To address the real-time problem of atrial fibrillation detection based on compressed sensing,
a deep learning method to detect atrial fibrillation directly from the compressed ECG is proposed
without the need to reconstruct the ECG, thereby ensuring the real-time detection of atrial
fibrillation in wearable health monitoring.

• In order to fully benefit from the existing prior information, we designed the first layer of the deep
network model as a fully connected layer, and then used the measurement matrix to initialize
the weights of this layer, so that the model can learn the features related to atrial fibrillation more
easily. As a result, the classification performance of the model can be effectively improved.

• Experiments on the MIT-BIH Atrial Fibrillation Database show that the classification performance
of the proposed method is superior to the existing methods for detecting atrial fibrillation from
compressed ECG. Especially at higher compression ratios, it can effectively reduce the loss of
classification performance caused by signal compression.

The remainder of this paper is organized as follows: Section 2 states problem description and
motivation; Section 3 presents the proposed method; Section 4 describes datasets, experimental setup,
evaluation metrics, and experimental results; conclusions are given in the last section.
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2. Problem Description and Motivation

2.1. Importance of Measurement Matrix in Compressed Sensing

Compressed sensing is a framework used for data sampling and compression. It performs sensing
and compression at the same time. Compared with the traditional data sampling and compression
methods, it costs much less energy [13]. Thus, it is being used more and more in the cases which
require low-power data acquisition extending the battery life [14]. The basic mathematical model of
compressed sensing can be expressed as

s = Φα , (1)

where α ∈ RN×1 is the original signal, Φ ∈ RM×N(M� N) is the measurement matrix, and s ∈ RM×1

is the compressed signal. The original signal is projected from the high-dimensional space to the
low-dimensional space through the measurement matrix, so as to realize the compression of the
original signal. Therefore, the measurement matrix is an important link between the compressed
signal and the original signal. Compressed sensing reconstruction algorithms [15–18] can use the
measurement matrix to accurately reconstruct the original signal from the compressed data. Thus,
a lot of important information in the original signal can be obtained by using the measurement
matrix. If there is only the compressed signal without knowing the measurement matrix, it is difficult
to infer from the low-dimensional space back to the high-dimensional space. This is actually like
wavelet-based compression and reconstruction: if there are only wavelet coefficients, but the wavelet
basis is unknown, it is also difficult to reconstruct the original signal.

As shown in Figure 1, we take a normal ECG and atrial fibrillation ECG as examples. Figure 1a,b
are a normal ECG segment and an atrial fibrillation ECG segment, respectively. In normal ECG,
each heartbeat contains a P wave reflecting atrial activity and a QRS complex reflecting ventricular
activity, and the R peak (marked by red circles in the figure) is the most prominent peak in each
heartbeat. In AF ECG, the P wave disappears and is replaced by a continuous fibrillating wave,
and the RR interval (interval between two adjacent R peaks) sequence is absolutely irregular. Usually,
atrial fibrillation waves are difficult to extract due to their small amplitude and are easily disturbed
by noise. Therefore, the RR interval sequence is more commonly used to automatically diagnose
atrial fibrillation [19]. Figure 1c,d are the compressed data of (a) and (b), respectively, and the
compression ratio corresponding to the measurement matrix is 60%. From the time domain waveform,
the compressed data are not consistent with the dimension of the original ECG segment, and some
waveform characteristics of the original ECG are not clearly shown in the compressed data. Thus,
it is difficult to obtain some features of the original ECG only from the compressed ECG. Then,
we multiplied the pseudo-inverse of the measurement matrix with the compressed data in Figure 1c,d
to get the waveform in Figure 1e,f. This simple multiplication can be regarded as a crude reconstruction;
of course, the signal is already seriously distorted relative to the original ECG. However, in fact, we can
still see all the R peaks (red circles) in the original ECG from Figure 1e,f. This shows that, through a
simple operation on the measurement matrix, we have actually recovered the positions of the R peaks
in the original ECG. Therefore, it can fully benefit from the prior information of the measurement
matrix and obtain the effective features of the original ECG to improve the classification performance
of atrial fibrillation detection.
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Figure 1. An example of compressed sensing of normal ECG segment and AF ECG segment. (a) is
a normal ECG segment and (b) is an ECG segment with AF; (c,d) are the compressed data of (a,b),
respectively; (e,f) are the results of multiplying the pseudo-inverse of the measurement matrix with the
compressed normal ECG and AF ECG, respectively.

2.2. AF Detection Based on Compressed Sensing

The electrocardiogram is currently the most effective way to detect atrial fibrillation [20]. The main
characteristic of atrial fibrillation on the electrocardiogram is that the P wave disappears and is
replaced by continuous and irregular tremor waves. In addition, due to the absolute irregularity of the
ventricular rate, the RR interval time series is absolutely irregular.

The most commonly used method for the automatic detection of atrial fibrillation is machine
learning. These methods first extract the morphological and statistical features of the ECG, and then
use these features as input to train a classifier to automatically identify whether the ECG contains atrial
fibrillation. In recent years, due to the powerful feature extraction capabilities of deep neural networks,
end-to-end AF detection methods based on deep learning have achieved better accuracy [21]. In the
deep learning-based AF detection method, there is no need to extract the ECG features in advance,
but directly input the original signal into the network model.

In a wearable health monitoring system based on compressed sensing, after the compressed
ECG data are collected and transmitted to the remote devices, the original ECG signal is usually
reconstructed first, and then the reconstructed signal is used for automatic diagnosis and analysis.
The blue arrow in Figure 2 is the basic process of AF detection in a wearable health monitoring system
based on compressed sensing. First, the compressed ECG signal needs to be collected on the wearable
device using compressed sensing; then, the collected compressed data are transmitted to the remote
device through a wireless connection; after receiving the compressed data, the remote device usually
uses a compressed sensing reconstruction algorithm to reconstruct the ECG signals, and then uses
the reconstructed ECG signals for automatic AF detection [22]. However, most of the compressed
sensing reconstruction algorithms have high computational complexity. If the computing performance
of remote devices is limited, such as smartphones or smartwatches, the reconstruction process will
consume a lot of time. As a result, the real-time performance of AF detection is seriously affected.
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Figure 2. AF Detection based on compressed sensing.

Since the original signal can be reconstructed from the compressed data with high precision,
it means that the compressed data contain most of the information of the original signal. Therefore, it is
possible to directly use the compressed data for AF detection without reconstruction, just as shown by
the red arrow in Figure 2. Da Poian et al. [11] proposed a heartbeat detection method called compressed
sensing matched filtering (CSMF) [23], which can directly detect the locations of the R peaks from
compressed ECG data, thus obtaining the RR intervals. The same method is also used to detect systolic
peak from compressed photoplethysmography [24]. Then, based on the RR intervals, a support vector
machine (SVM) classifier is used to detect the presence of atrial fibrillation. Although their proposed
method alleviates the adverse impact of signal reconstruction on real-time performance, the accuracy
of AF detection is significantly lower than that of AF detection on the reconstructed signal at the same
compression ratio. In addition, Zhang et al. [12] also eliminated the signal reconstruction process and
proposed an end-to-end AF detection method for compressed ECG signals based on deep learning.
They directly input the compressed ECG signal segments into the designed convolutional neural
network model and output the result of AF detection at the end of the model.

However, Zhang’s method ignored the measurement matrix, which is an important link between
the compressed signal and the original signal. Based on a large amount of data and the powerful
learning ability of deep neural networks, Zhang’s method has learned the mapping relationship
between compressed ECG and AF labels to a certain extent. However, if the prior information of the
measurement matrix is used to train the network model at the same time, then the network model may
be easier to learn some important features about the original ECG, thereby improving the classification
performance of the model.

This paper aims at the problems of insufficient utilization of existing prior information and poor
classification performance of AF detection in compressed ECG and makes full use of the available
prior information to improve the classification performance of AF detection from compressed ECG.

3. Proposed Method

In order to solve the problem of AF detection of compressed ECG, a deep neural network model
for one-dimensional ECG signals is proposed based on deep learning.

3.1. Loss Function

AF detection is to automatically identify whether there is atrial fibrillation in the ECG segment,
which is actually a binary classification problem in machine learning. Therefore, we use binary
cross-entropy loss for AF detection, which is defined as follows:

L = −
K

∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)], (2)

where i is the index of the ECG segment, there are a total of K ECG segments, yi is the label of the i-th
ECG segment, and ŷi is the probability of whether the input ECG segment has atrial fibrillation.
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3.2. Model Architecture

In this paper, we design a one-dimensional neural network model using one-dimensional ECG
signals for AF detection based on residual network [25] and grouped convolution [26]. The network
model we proposed refers to ResNeXT [27] and is simplified and modified for our problem.
The high-level architecture of the proposed model is shown in Figure 3a.

(a)Architecture of the proposed model (b)Bottleneck block

Figure 3. Proposed model for AF detection from compressed ECG.

The model starts with a fully connected layer, followed by a one-dimensional convolutional layer
with a kernel size of 3 and a filter number of 64, and four bottleneck blocks. The four bottleneck
blocks are divided into four stages, and each bottleneck block is a stage. The width of the bottleneck
block is 4d, where d starts from 1 and increases with each stage. Finally, a global pooling layer, a fully
connected layer, and a sigmoid layer produce an output probability value, which is between 0 and 1.

Figure 3b shows the specific structure and parameters of the bottleneck block. The bottleneck
block contains three one-dimensional convolutional layers, and the middle convolutional layer is based
on grouped convolution. The first and third layers are two one-dimensional convolutional layers.
The detailed parameters of the four bottleneck blocks are shown in Table 1. Each convolutional layer is
followed by a batch normalization. We use ReLU as the activation function. Since the bottleneck block
uses a skip connection to directly pass the input of the bottleneck block to the end of the bottleneck
block, the input of the bottleneck block is added to the output of the last layer and then activated by
the activation function.
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Table 1. Detail parameters of bottleneck blocks.

First Stage Second Stage Third Stage Forth Stage

1D conv
kernel size = 1

number of filters = 64
kernel size = 1

number of filters = 128
kernel size = 1

number of filters = 256
kernel size = 1

number of filters = 512

1D
grouped conv

kernel size = 3
number of filters = 64

group = 16

kernel size = 3
number of filters = 128

group = 16

kernel size = 3
number of filters = 256

group = 16

kernel size = 3
number of filters = 512

group = 16

1D conv
kernel size = 1

number of filters = 128
kernel size = 1

number of filters = 256
kernel size = 1

number of filters = 512
kernel size = 1

number of filters = 1024

3.3. Initialization Using Measurement Matrix and Training

The first layer of the proposed model is a fully connected layer, and its weight matrix is represented
by W. Its input dimension is M which is the length of the input compressed ECG segment, and its
output dimension is set to N which is the length of the original ECG segment. Then, the dimension of
its weight matrix W is N ×M, which is also the dimension of the pseudo-inverse of the measurement
matrix. We denote the entire neural network model as f (·), the input is the compressed ECG s, and the
output is the label y; then, y = f (s). Then, we define the part of the model except the first layer as g(·),
and the output of the model can be expressed as

y = f (s) = g (Ws) . (3)

In order to make full use of the prior information of the known measurement matrix, we use Φ†,
which represents the pseudo-inverse of measurement matrix to initialize the first layer of the model.
Specifically, Φ† is assigned to the weight matrix of the first fully connected layer as the initial value,
that is, Wini = Φ†, where Wini indicates the initial value of W. Thus, the output size of this layer is
equal to the length of the original ECG segment. When the initial value of this layer remains constant,
the output of the compressed ECG through this layer is equivalent to the matrix-vector multiplication
described in Figure 1, which can be regarded as a very rough reconstruction of ECG segment. If so,
a lot of potentially useful information will be lost.

Therefore, we only use Φ† to initialize the weight matrix W of the first layer, and W will be
fine-tuned in the process of supervised training. In the process of training, the atrial fibrillation label
is used to mine more potential information from the compressed ECG that can distinguish different
types of ECG.

In the training, we use an Adam optimizer with mini-batch to train our network model, and the
batch size is set to 256. The epoch is set to 100. Then, we set the learning rate of the model to lr = 0.001,
and since we only fine-tune the first fully connected layer, the corresponding learning rate is set to
0.1*lr. The model is implemented based on Python 3.6 and a Pytorch framework [28] of version
1.4.0. The network model is trained on a computer equipped with a CPU of Intel i9-9700k (Intel
Corporation Co., Ltd., Santa Clara, CA, USA), 32 GB RAM, and two GPUs of Nvidia RTX 2080Ti
(Nvidia Corporation, Santa Clara, CA, USA).

4. Experiments and Results

4.1. MIT-BIH Atrial Fibrillation Database

The data set used in this paper is from the MIT-BIH atrial fibrillation database [29], which is
currently the most widely used atrial fibrillation data set. The database contains 25 long-term ECG
records of human subjects with atrial fibrillation (mainly paroxysmal). Among them, records 00735 and
03665 only have beat files and unaudited QRS wave annotation files. Therefore, only 23 ECG signals
including two channels are used for recording.

The duration of each recording is about 10 hours and contains two channels of ECG signals.
All ECG signals are sampled at a sampling rate of 250 Hz with a resolution of 12 bits and an accuracy
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of ±10 mV. The original analog recording was made using a dynamic electrocardiograph at Beth Israel
Hospital in Boston, with a typical recording bandwidth of about 0.1 Hz to 40 Hz. There are four types
of rhythm annotations in the dataset: “AFIB” (atrial fibrillation), “AFL” (atrial flutter), “J” (AV nodal
rhythm), and ”N” (used to represent all other rhythms).

According to the setting of most research work based on this data set, we divide these four types
of rhythms into two categories, of which the three types of rhythms “AFL”, “J”, and “N” are merged
into one category, namely “Non-AF”, and “AFIB” is another category, namely ”AF”.

4.2. Experimental Setup

In the experiment, we divided the ECG signals in the MIT-BIH Atrial Fibrillation Database
into segments with a duration of 10 s, and, since the sampling rate of the ECG signals was 250 Hz,
the number of sampling points for an ECG segment was N = 2500. Then, the ECG segments are
annotated according to the rhythm annotations in the data set. When the ECG segment contains AF
beats, the ECG segment is labeled “AF”; otherwise, it is labeled “Non-AF”. After these ECG segments
are labeled, we randomly divide all ECG segments into 70% training set, 10% validation set, and 20%
test set. We use the validation set to adjust the hyperparameters of the model and select the optimal
model to test on the test set. Then, all the ECG segments are compressed by a measurement matrix.
The compression ratio (CR) was defined as:

CR =
N −M

N
. (4)

We used sparse binary matrix [30] as the measurement matrix, and it was generated with
dimension M× N, where M = {2250, 2000, ..., 500, 250}, N = 2500, and the corresponding compression
ratios are 10%, 20%, ..., 80%, 90%. At the same compression rate, all ECG segments are compressed
using the same measurement matrix. In the experimental results, except for the Gaussian random
matrix [31] used in Section 4.4.3 to compare the effects of different measurement matrices on
classification performance, the other experiments are all used sparse binary matrices as a measurement
matrix, including the two methods compared.

4.3. Evaluation Metrics

In the experiments, we used accuracy (Acc), F1 score, sensitivity (Se), specificity (Sp), and Youden
index (YI) to evaluate the classification performance of the proposed method. These evaluation metrics
are expressed as follows:

Acc =
TP + TN

TP + FP + TN + FN
, (5)

F1 =
2TP

2TP + FP + FN
, (6)

Se =
TP

TP + FN
, (7)

Sp =
TN

TN + FP
, (8)

YI = Se + Sp− 1 , (9)

where TP, TN, FP, and FN indicate true positive, true negative, false positive, and false negative,
respectively. In our experiment, we regarded the ECG segment labeled “AF” as positive, while the one
labeled “Non-AF” was negative. After the proposed model is trained well, we obtain the values of
TP, TN, FP, and FN based on the prediction results of the test set, and calculate the listed evaluation
metrics as the experimental results.
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4.4. Results

4.4.1. Comparison of AF Detection from Compressed ECG and Reconstructed ECG, Respectively

In order to further demonstrate the advantage of detecting AF directly from compressed
ECG, we compare the experimental results of the proposed method with that of AF detection
from reconstructed ECG. In the experiment, we used the BSBL-BO algorithm [32,33] to reconstruct
the ECG segments, which is an excellent algorithm for physiological signal reconstruction. Then,
the reconstructed ECG segments were input into the proposed neural network model without the
first fully connected layer. Table 2 shows the results of the experiment. As can be seen from Table 2,
when the compression ratio is less than 70%, no matter whether the AF detection is from compressed
ECG or reconstructed ECG, the classification performance is very close, and there is no very obvious
difference. When the compression ratio is 80% and 90%, the classification performance of AF detection
from compressed ECG is significantly better than that from reconstructed ECG. This is because the
reconstruction algorithm can easily lose some potential useful information when the compression
ratio is high, and our proposed method does not depend on the quality of signal reconstruction,
but directly learns useful features from the compressed ECG. Therefore, the loss of information in the
signal reconstruction process is avoided.

Table 2. Comparison of classification performance of atrial fibrillation detection from compressed ECG
and reconstructed ECG, respectively. This table shows that the classification performance of proposed
method is not inferior to the classification from reconstructed ECG, and real-time performance of the
proposed method is much better. Bold numbers represent the best results between the compared
methods.

Metric
CR

10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc(%) Reconstructed 97.62 97.21 96.69 96.19 95.47 95.22 94.26 91.16 88.46
Compressed 97.52 97.17 96.65 96.32 95.81 95.16 94.46 93.55 91.63

F1(%) Reconstructed 98.08 97.77 97.36 96.95 96.39 96.18 95.44 92.96 90.65
Compressed 98.02 97.74 97.31 97.07 96.65 96.13 95.59 94.89 93.40

Se(%) Reconstructed 98.24 97.38 96.9 96.77 95.68 95.87 94.43 92.18 91.56
Compressed 97.59 97.49 97.33 96.48 96.29 95.70 94.70 93.61 91.80

Sp(%) Reconstructed 96.59 96.92 96.34 95.23 95.11 94.13 93.96 89.39 83.61
Compressed 97.40 96.65 95.53 96.05 95.01 94.24 94.04 93.43 91.32

YI(%) Reconstructed 94.84 94.31 93.24 92.00 90.79 90.01 88.40 81.57 75.17
Compressed 95.00 94.14 92.87 92.54 91.30 89.95 88.74 87.05 83.12

CPU time(s) Reconstructed 26.472 22.624 16.891 12.358 8.200 4.856 2.919 1.885 1.056
Compressed 0.0127 0.0126 0.0130 0.0127 0.0128 0.0125 0.0129 0.0124 0.0130

In addition, in the last two rows of Table 2, we list the average CPU time required by the two
methods to detect AF for each ECG segment, where AF detection from the reconstructed ECG includes
two stages of reconstruction and classification, while AF detection from the compressed ECG only
includes the time required for reconstruction. As can be seen from the results in the table, the time
required for AF detection from compressed ECG does not change much at different compression
ratios, while the time required for AF detection from reconstructed ECG decreases with the increase of
compression ratio. Most of the time consumed by the AF detection from reconstructed ECG comes
from the process of ECG reconstruction, while the time required for ECG classification is very little,
which leads to a difference of two to three orders of magnitude in the average CPU time required by
the two methods. In order to show it more intuitively, the average CPU time of the two methods with
different compression ratios is represented by the curve graph shown in Figure 4, and the vertical
axis of the CPU time in the figure is represented by a logarithm. It can be clearly seen from the figure
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that the CPU time of AF detection from compressed ECG is two to three orders of magnitude less
than that of reconstructed ECG. In addition, the higher the compression ratio, the smaller the size of
the measurement matrix, and the matrix operation during reconstruction will be simpler, resulting
in less time for reconstruction. This is why the blue curve in Figure 4 decreases as the compression
ratio increases.

Figure 4. Average CPU time of AF detection from compressed ECG and reconstructed ECG.

Of course, we only take the BSBL-BO algorithm as an example, and there are many compressed
sensing reconstruction algorithms with a lower computational complexity that can greatly reduce the
time required for the reconstruction process. However, it is difficult to guarantee the quality of signal
reconstruction, especially at high compression ratios. For the definite signal reconstruction process, it is
difficult to avoid the loss of potential useful information. Our proposed method dynamically adjusts
the weights initialized with the measurement matrix according to the information of labels during the
supervised training process. Thus, in order to avoid the loss of potentially useful information caused
by the signal reconstruction process before the deep network training, it is a better choice to improve
real-time performance by eliminating the reconstruction process.

4.4.2. Comparison of Different Methods for AF Detection from Compressed ECG

We compared the classification performance of the proposed method with the existing compressed
ECG-based AF detection methods using the evaluation metrics listed in Section 4.2, and Table 3 shows
the detailed experimental results. The table lists the comparison of the classification performance of
the three methods for the compression ratio from 10% to 90%. In addition, CR = 0% represents the
result of AF detection using the original ECG.

The experimental results of the methods proposed by Da Poian and Zhang are directly quoted
from their articles. Our proposed method and Zhang’s method are both end-to-end methods based on
deep learning, which can directly classify the input ECG, whether it is compressed or not. In particular,
our proposed method will remove the fully connected layer initialized with the measurement matrix
in the model when classifying the original ECG. Since Da Poian’s method extracted features from
compressed ECG through specially designed matching filtering, her method cannot directly classify
the original ECG, so this method did not have classification results for original ECG.

As can be seen from this table, when classifying the original signal (CR = 0%), Zhang’s method and
our proposed method have very similar classification performance from various evaluation metrics,
and Zhang’s method is slightly better. When classifying the compressed ECG, Zhang’s method
inputted the compressed ECG directly into the network model and ignored the measurement matrix,
while our method added a fully connected layer initialized by the measurement matrix at the front of
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the network model. Therefore, our method could make full use of the information of compressed ECG
and measurement matrix, which are both necessary in compressed sensing reconstruction.

Table 3. Comparison of classification performance between the proposed method and existing methods
for AF detection from compressed ECG. Sensitivity (Se) is the probability of no missed diagnosis,
while specific (Sp) is the probability of no misdiagnosis. This table shows that the classification
performance of the proposed method is superior than the other methods. Bold numbers represent the
best results among the compared methods.

Metric Method
B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc(%)
Da Poian [11] - 94.93 94.51 94.10 93.27 92.55 90.32 86.92 80.13 65.37

Zhang [12] 98.43 96.23 96.04 95.91 95.49 95.13 94.80 93.85 92.69 88.08
Proposed 98.40 97.52 97.17 96.65 96.32 95.81 95.16 94.46 93.55 91.63

F1(%)
Da Poian [11] - 93.88 93.34 92.78 91.68 90.69 87.5 82.23 70.45 41.34

Zhang [12] 98.43 96.25 96.05 95.90 95.51 95.16 94.83 93.90 92.71 88.17
Proposed 98.71 98.02 97.74 97.31 97.07 96.65 96.13 95.59 94.89 93.40

Se(%)
Da Poian [11] - 90.47 89.63 88.47 86.85 85.24 79.79 72.00 57.10 29.88

Zhang [12] 98.10 95.92 95.69 95.51 95.21 94.67 94.46 93.29 92.67 87.65
Proposed 98.68 97.59 97.49 97.33 96.48 96.29 95.70 94.70 93.61 91.80

Sp(%)
Da Poian [11] - 98.30 98.19 98.33 98.06 97.97 98.10 97.74 96.46 89.88

Zhang [12] 98.76 96.55 96.38 96.26 95.77 95.60 95.16 94.44 92.72 88.52
Proposed 97.94 97.40 96.65 96.53 96.05 95.01 94.24 94.04 93.43 91.32

YI(%)
Da Poian [11] - 88.77 87.82 86.80 84.91 83.21 77.89 69.74 53.56 19.76

Zhang [12] 96.86 92.47 92.07 91.77 90.98 90.27 89.86 87.73 85.39 76.17
Proposed 96.62 95.00 94.14 93.86 92.54 91.30 89.95 88.74 87.05 83.12

The results in Table 3 show that the proposed method is very close to Zhang’s method in all the
evaluation metrics when classifying the original ECG. However, in the classification of compressed
ECG, the classification performance of the proposed method is better than that of Zhang’s method at
various compression ratios. Taking the F1 score as an example, the F1 scores of the proposed method
are 98.02% and 93.40% at a compression rate of 10% and 90%, respectively, which are 0.69% and 5.31%
lower than that of the original ECG. Correspondingly, the F1 scores of Zhang’s method are 96.25%
and 88.17% respectively, which is 2.18% and 10.26% lower than that of the original ECG. That is to
say, when the measurement matrix was ignored, Zhang’s method lost more classification performance
than the proposed method at the same compression ratio. Since our proposed method makes full use
of compressed ECG and measurement matrix, the classification performance loss caused by signal
compression is much smaller.

For a more intuitive comparison, we take the accuracy rate and F1 score as examples, and use the
curve graph shown in Figure 5 to compare the classification performance changes of three methods at
different compression ratios. It can be seen from the figure that the classification performance of the
proposed method is very close to that of Zhang’s method when the ECG is not compressed in terms
of accuracy or F1 score. However, after ECG compression, the classification performance of Zhang’s
method is much worse than that of the proposed method. Especially at a high compression ratio of
90%, the difference in classification performance between the two methods is more obvious. As for Da
Poian’s method, its classification performance is significantly worse.
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(a)Accuracy (b)F1 score

Figure 5. Comparison of accuracy and F1 score of three methods at different compression ratios.

Regarding the results of Da Poian’s method, we can see that it is far inferior to the other two
deep learning methods in most evaluation metrics, especially at high compression ratios. In addition,
it only performed better on the specificity. As we know, sensitivity is the probability of no missed
diagnosis, while specific is the probability of no misdiagnosis. For AF detection, sensitivity is more
important because once the patient misses the diagnosis, the patient may miss the optimal treatment
time. Relatively speaking, specificity is not the most important because patients are often further
checked after being misdiagnosed, so as to have the opportunity to correct the previous misdiagnosis.

4.4.3. Comparison of Different Measurement Matrices

To verify the effect of different measurement matrices on the classification performance of
the proposed method, we compared the two most commonly used measurement matrices: sparse
binary matrix (SBM) [30] and Gaussian random matrix (GRM) [31]. Table 4 shows the classification
performance of the proposed method when using different measurement matrices to compress the
ECG. The results of Zhang’s [12] method on different measurement matrices are also listed in the
table for comparison. It can be seen that, when using the same measurement matrix, the classification
performance of the proposed method on most evaluation metrics is better than that of Zhang’s method.
In addition, at most compression ratios, whether it is the proposed method or Zhang’s method,
the classification performance of the sparse binary matrix is slightly better than that of the Gaussian
random matrix. However, overall, there is no obvious difference in the classification performance
based on these two measurement matrices at the same compression ratio.

Of course, how to choose a suitable measurement matrix does not all depend on the classification
performance. When designing algorithms related to compressed sensing, high-speed sampled digital
signals are usually used to implement signal compression through numerical simulation. However,
in practical applications, it is not possible to sample digital signals at high speed and then compress
them numerically. In order to take advantage of the low sampling rate of compressed sensing in
practical applications, it is necessary to design a special analog-to-information converter (AIC) [34,35]
through a hardware circuit according to the measurement matrix. Because the elements in the
Gaussian random matrix are randomly generated floating-point numbers, it is difficult to implement
the Gaussian random matrix through a hardware circuit. However, the sparse binary matrix is different.
The elements in it are all 0 s and 1 s, which is easy to implement on a hardware circuit. Therefore,
the sparse binary matrix is more suitable for practical applications.
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Table 4. Comparison of classification performance of AF detection from compressed ECG using
different measurement matrices. This table shows that the classification performance of the
proposed method is better than Zhang’s method [12] when using the same measurement matrix.
For the same method, there is no significant difference in classification performance using different
measurement matrices. Bold numbers represent the best results among the compared methods.

Metric Method Measurment
Matrix

CR

10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc(%)
Proposed SBM 97.52 97.17 96.65 96.32 95.81 95.16 94.46 93.55 91.63

GRM 97.32 96.89 96.50 96.05 95.60 94.99 94.35 93.36 91.75

Zhang [12] SBM 96.23 96.04 95.91 95.49 95.13 94.8 93.85 92.69 88.08
GRM 95.29 95.16 94.96 94.69 94.46 93.88 92.98 91.89 87.97

Se(%)
Proposed SBM 97.59 97.49 97.33 96.48 96.29 95.70 94.70 93.61 91.80

GRM 97.65 97.03 97.11 96.52 95.95 95.23 94.52 93.43 91.70

Zhang [12] SBM 95.92 95.69 95.51 95.21 94.67 94.46 93.29 92.67 87.65
GRM 94.81 94.58 94.19 94.23 94.37 93.08 92.75 92.36 88.55

Sp(%)
Proposed SBM 97.40 96.65 95.53 96.05 95.01 94.24 94.04 93.43 91.32

GRM 96.77 96.64 95.47 95.24 94.99 94.58 94.04 93.23 91.83

Zhang [12] SBM 96.55 96.38 96.26 95.77 95.60 95.16 94.44 92.72 88.52
GRM 95.78 95.75 95.76 95.69 94.54 94.71 93.22 91.43 87.41

YI(%)
Proposed SBM 95.00 94.14 92.87 92.54 91.30 89.95 88.74 87.05 83.12

GRM 94.42 93.68 92.59 91.77 90.95 89.81 88.56 86.67 83.54

Zhang [12] SBM 92.47 92.07 91.77 90.98 90.27 89.86 87.73 85.39 76.17
GRM 90.6 90.33 89.96 89.4 88.92 87.79 85.98 83.79 75.96

F1(%)
Proposed SBM 98.02 97.74 97.31 97.07 96.65 96.13 95.59 94.89 93.40

GRM 97.85 97.51 97.19 96.84 96.48 96.01 95.51 94.74 93.51

Zhang [12] SBM 96.25 96.05 95.9 95.51 95.16 94.83 93.9 92.71 88.17
GRM 95.32 95.19 95.01 94.73 94.47 93.94 93.01 91.86 87.90

5. Discussion

The experimental results in Table 2 show that the proposed method has a huge advantage
in real-time performance compared to the method of classification after reconstruction. Therefore,
for scenarios with real-time requirements, it is a better solution to detect atrial fibrillation directly from
the compressed ECG. The experimental results in Table 3 show that the proposed method has better
classification performance than the existing methods for atrial fibrillation detection from compressed
ECG. Table 4 compares the classification performance of the proposed method when using different
measurement matrices. From the experimental results, there is little difference between the sparse
binary matrix and Gaussian random matrix, but, in practical applications, the sparse binary matrix is
easier to implement.

6. Conclusions

In this paper, a deep learning method using a measurement matrix for initialization is proposed to
improve the classification performance of atrial fibrillation detection from compressed ECG. Different
from the existing method that simply used compressed ECG and corresponding labels for supervised
training, our proposed method fuses the prior information of the measurement matrix into the deep
network model, thus fully benefiting from the existing information (including compressed ECG and
measurement matrix) to improve the classification performance of atrial fibrillation detection from
compressed ECG.

Compared with the usual compressed ECG processing method (classification after reconstruction),
the proposed method eliminates the signal reconstruction stage. Therefore, the time required to process
the compressed ECG can be greatly reduced, thereby effectively improving the real-time performance
of atrial fibrillation detection. In summary, for compressed sensing-based wearable health monitoring
that requires real-time performance, direct atrial fibrillation detection from compressed ECG not only
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improves the real-time performance of atrial fibrillation detection but also helps to save the energy
of the equipment with less computational complexity. Therefore, the proposed method has good
application prospects in wearable health monitoring scenarios.
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