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Abstract: The security of Internet of Things environments is a critical and trending topic, due to
the nature of the networks and the sensitivity of the exchanged information. In this paper, we
investigate the security of the Message Queue Telemetry Transport (MQTT) protocol, widely adopted
in IoT infrastructures. We exploit two specific weaknesses of MQTT, identified during our research
activities, allowing the client to configure the KeepAlive parameter and MQTT packets to execute
an innovative cyber threat against the MQTT broker. In order to validate the exploitation of such
vulnerabilities, we propose SlowTT, a novel “Slow” denial of service attack aimed at targeting MQTT
through low-rate techniques, characterized by minimum attack bandwidth and computational power
requirements. We validate SlowTT against real MQTT services, by considering both plaintext and
encrypted communications and by comparing the effects of the attack when targeting different
application daemons and protocol versions. Results show that SlowTT is extremely successful, and
it can exploit the identified vulnerability to execute a denial of service against the IoT network by
keeping the connection alive for a long time.

Keywords: Internet of Things, protocols security; cyber security; network security; slow DoS
attack; MQTT

1. Introduction

Currently, the Internet of Things (IoT) is a consolidated technology and is integrated into daily life
and communication systems. In Internet of Things applications, simple objects are able to elaborate,
process, and communicate information of the surrounding applications and send it to other IoT
devices or more complex systems. In the IoT world, IoT applications can be different depending on
the user’s needs. Some examples of applications concern the monitoring of workouts through IoT
devices [1], the control of the perimeter of houses/industrial environments [2], or sensors to measure
the temperature and humidity of a monitored area [3]. The adoption of IoT in our lives introduces new
opportunities for a large number of applications, where the primary aim is to improve the quality of
human life.

A very interesting and practical application of IoT technology is in Industry 4.0. Intelligent devices
and machinery, implemented following the innovation brought by the IoT, are revolutionizing the
scenario of the production and maintenance of machines, becoming increasingly innovative through
the production of data and digital analysis. The Industrial Internet of Things (IIoT), the so-called the
industrial application of the IoT, is a term coined to be adopted and applied exclusively in the new
era of industry called Industry 4.0 [4]. The purpose of the IIoT is to optimize production processes,
connecting machines together and supporting data processing to allow predictive analysis activities,
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able for example to predict maintenance requirements and activities, thus potentially leading to the
reduction of significant costs and more efficient production systems.

Due to the different nature of IoT applications, a standard that defines in detail the protocols
or constraints to connect IoT devices has not yet been created. For this reason, IoT networks
could be implemented by using different communication protocols. An ad hoc communication
protocol available for implementing IoT networks is Message Queue Telemetry Transport (MQTT),
a publisher/subscriber system introduced in 1999 [5] and adopted currently [6] in the IoT [7],
the IIoT [8], and other contexts [9]. The MQTT protocol is based on the TCP/IP stack, and it is
positioned at the application layer of such a stack. Being a protocol adopted in IoT and IIoT networks,
communications security is a critical and delicate aspect, since the processed data/information are
related to sensitive industrial contexts [10]. Moreover, the security of IoT systems is a critical topic since
it is important to identify possible vulnerabilities and innovative threats to protect them efficiently as
the information and data transmitted are extremely sensitive [11].

In this paper, we study and evaluate the security aspects of the MQTT protocol, since such a
protocol is adopted both in industrial [12] and home automation applications [13], to identify possible
vulnerabilities and design innovative attack approaches to exploit the possible weaknesses of the
protocol. In particular, the proposed research work is contextualized in the topic of IoT security, where
the exploitation of specifics parameters of MQTT are introduced, through the design, development,
and validation of an improved version of the Slow DoS against Internet of Things Environments
(SlowITe) attack [14] called SlowTT, the acronym of Slow denial of service against MQTT. SlowITe is a
preliminary slow denial of service attack (SDA) against MQTT. In this work, we try to improve the
SlowITe cyber threat, by improving the weaknesses of the tool, and to exploit other vulnerabilities
identified inside the protocol and its parameters. Since, to the best of our knowledge, no previous
SDA threats have been designed to target MQTT except SlowITe, while the main focus is HTTP and
HTTPS [15–17], the proposed SlowTT threat should be considered a relevant advancement in the IoT
security field.

The remainder of the paper is structured as follows: Section 2 reports the related work on the topic.
Section 3 describes the MQTT protocol, while Section 4 describes in detail the SlowTT attack. Executed
tests and obtained results are reported in Sections 5 and 6. Section 7 introduces instead protection
approaches able to protect an IoT system from the proposed threat. Finally, Section 8 concludes the
paper and reports further works on the topic.

2. Related Work

In order to detect possible vulnerabilities that could be exploited by an attacker in an IoT network,
it is important to consider the security of wireless networks and the panorama of attacks against
these networks. Given the low power consumption and the limited capacity of the IoT devices,
security features are not always adequately implemented [18]. For this reason, security research
activities related to IoT environments are important in order to improve the security of these devices
and ensure greater reliability and efficiency in data transmission. An analysis about the security of
IoT networks by identifying crucial aspects related to common vulnerabilities by considering both
hardware and software aspects is investigated in [19,20], while a focus on security challenges in
the IoT field, also proposing security solutions, in addressed in [21,22]. Likewise, security issues in
environments such as healthcare, smart home, or vehicle management are analysized in [23]. Our work
covers all IoT environments since the threat developed is able to target the central node of the network
independently of the context.

By considering the security investigation of communication protocols for IoT networks, studies
and comparisons between communication protocols available on this topic, by analyzing the
characteristics, features, and functionalities, are investigated in [24–30]. The communication protocols
available for IoT could be based on existing communication protocols, such as CoAP, MQTT, or the
Advanced Message Queuing Protocol (AMQP), that are based on the TCP/IP stack; instead, other



Information 2020, 11, 452 3 of 18

protocols change the entire stack, for example, ZigBee 6LoWPAN or Z-Wave. The security aspects
of these protocols are interesting research topics as demonstrated in [31–42]. Based on these
considerations, the IoT requires more studies and works related to security aspects.

The Constrained Application Protocol (CoAP) is a specialized Internet application protocol for
constrained devices [43]. It allows devices with limited computational power to communicate on
the Internet. The protocol is specific for constrained hardware such as micro-controllers, low-power
sensors, and IoT devices that cannot be executed over HTTP or TLS. It is a simplification of the HTTP
protocol running on UDP, which helps to save bandwidth. It is designed for use between devices
on the same constrained network (e.g., low-power and data loss networks), between devices and
general nodes on the Internet, and between devices on different bound networks, both connected by
an Internet network [44]. CoAP allows ensuring the security of the communication by implementing
a Datagram Transport Layer Security (DTLS) , a TLS version on UDP [45], in order to protect the
information [46,47]. Security aspects of CoAP by investigating common threats such as replay, DoS,
and man-in-the-middle are analyzed in [48,49]. CoAP is vulnerable also to IP address spoofing.

The AMQP [50] is an open standard that defines an application-level protocol for message-oriented
middleware. AMQP is defined in such a way as to guarantee messaging, queuing, routing (with
point-to-point and publication-subscription paradigms), reliability, and security. AMQP is an
application-level binary protocol designed to efficiently support a wide range of messaging applications
and communication schemes. The AMQP standard consists mainly of [51]: message, the key element
of the entire communication process; producer, creates a message and sends it; broker, distributes the
message according to rules defined to different queues; and finally, consumer, which takes the message
from the queue where it can access and reprocess it. The security aspects and threats were analyzed
in [52]. In particular, the authors showed that AMQP could be exploited by using common threats
such as replay [53], masquerade, modification, and denial of service [54].

MQTT is a lightweight, publish-subscribe ISO standard (ISO/IEC PRF 20922) protocol placed
on top of TCP/IP [55]. It has been designed for situations where low impact is required and where
bandwidth is limited. The publish-subscribe pattern requires a message broker. MQTT provides
three types of quality of service [6]. Facebook currently uses MQTT for their messaging app, not only
because the protocol retains battery power during cell-to-phone messaging, but also because, despite
inconsistent Internet connections around the world, the protocol allows delivering messages efficiently
in milliseconds [56]. Most major cloud service providers [57], including AWS, Google Cloud, IBM
Bluemix, and Microsoft Azure, support MQTT, as well as the IoT Carriots, Everything, and ThingWorx
platforms. MQTT is suitable for applications that use Machine-to-Machine (M2M) and IoT devices
for real-time analysis, preventive maintenance, and monitoring, among other uses, in environments
such as smart homes, healthcare, logistics, industry, and production [58]. The adoption of Shodan
(available at: https://www.shodan.io/) to detect a vulnerable MQTT broker connected to the public
Internet and how to exploit it is proposed in [59,60]. A distributed denial of service attack with the
related detection system is implemented in [59–61]. Cyber threats against MQTT such as DoS, identity
spoofing, information disclosure, the elevation of privileges, and data tampering are executed in [62,63].
By analyzing these works, our work is focused on another threat classification: the slow DoS attacks.
These types of threats are not widely considered in the IoT context, so the proposed level brings an
improvement in the security of IoT devices and networks.

A comparison of different communication protocols was accomplished by [64–67], where MQTT,
CoAP, AMQP, and HTTP were investigated in terms of security, power consumption, resource
requirements, Quality of Service (QoS), reliability, and the characteristics of the protocols.

The previous works mentioned highlighted the critical security of IoT protocols since a malicious
user can exploit possible vulnerabilities or weaknesses in order to create damage or to steal
sensitive information in the environments where IoT technologies are applied. During our work,
we theorized about and implemented SlowTT, an innovative cyber threat against MQTT able to
make an MQTT-based IoT network unreachable. It is based on SlowITe, the first version of the cyber
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threat [14]. SlowTT is an advancement of SlowITe to optimize the threat in terms of bandwidth and
efficiency and to solve SlowITe’s limits (e.g., SlowITe is able to keep connections alive for a specific
time [14]). The proposed attack should be considered an advancement in the field of the research of
communication protocols used in the Internet of Things networks.

3. The MQTT Protocol

As mentioned in Section 2, IoT networks could be implemented by using different application
protocols such as MQTT, AMQP, or CoAP or communication protocols that implement the entire
communication stack such as ZigBee or Z-Wave. In this work, we focused on the MQTT protocol
since this application communication protocol is widely adopted in industrial [68], automation [3],
healthcare, and other different contexts [55]. Moreover, the Organization for the Advancement of
Structured Information Standards (OASIS) has declared that IBM’s MQTT protocol is the reference
standard for communication for the Internet of Things [69]. For these reasons, the security of the
MQTT protocol assumes a crucial and critical role in research activities since it is adopted in different
contexts where sensitive information is exchanged.

MQTT is a lightweight messaging protocol, created to obtain a protocol able to minimize
bandwidth in device communication and optimize energy consumption for applications that require
low battery power or with reduced computational power.

The MQTT protocol is based on the TCP/IP stack, positioning itself at the application level [64].
The MQTT protocol stack is mainly composed of four levels: physical, network, transport, and
application. The physical layer is associated with Ethernet or WiFi connections, while the network
layer is tied to IPv4 or IPv6 addresses (depending on how the network is set up). The transport layer
guarantees a stable connection thanks to TCP, and finally, at the application level, MQTT is positioned.

The protocol, which adopts a publish/subscribe communication model based on a central node
hosting the MQTT server called the broker, is used for M2M and plays an important role in the IoT. In
order to exchange information, the MQTT protocol uses a mechanism for publishing and subscribing
messages through the broker, able to manage thousands of clients simultaneously. In MQTT, if a
particular client wants to communicate with another client, it publishes a message on a certain channel
(called the topic) for the message broker. The message broker has the task of filtering and distributing
communications between publishers and subscribers. Each client can subscribe to multiple topics,
and every time a new message is published in a specific topic, the message broker distributes it to all
clients subscribed to that specific topic. An example of an MQTT network is shown in Figure 1. In this
example, two different sensors publish two different messages, m1 and m2, on the same MQTT topic t.
From the other side, when another device connects to the MQTT broker on the topic t, it receives the
messages m1 and m2.

Figure 1. Sample of a MQTT network.

The MQTT protocol is an interesting solution for wireless networks since its features allow
managing and mitigating possible connection issues. For example, if the communication from a
subscribed client to a broker is interrupted, the broker will store the messages for that client and send
messages when the client is connected again.

An MQTT session is divided into four phases: connection, authentication, communication, and
termination. A client starts by creating a TCP/IP connection to the broker using a standard port or
a custom port defined by the broker’s operators. The standard ports are 1883 for unencrypted
communications and 8883 for encrypted communications using SSL/TLS. During the SSL/TLS
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handshake, the client validates the server certificate to authenticate it. The client can also provide a
certificate to the broker server during the handshake. Since the MQTT protocol aims to be a protocol
for devices with limited resources and the IoT [70], SSL/TLS may not always be an option [71]. In such
cases, authentication could be implemented by using a username and plaintext password that is sent
by the client to the server as part of the CONNECT/CONNACK packet sequence [72]. These packets
are adopted by MQTT to authenticate a device on the broker. Otherwise, if devices have sufficient
computational power, MQTT allows authenticating devices by using the username/password and
communicating this information encrypted with SSL.

MQTT is considered a lightweight protocol because all its messages have a reduced code footprint.
Each message consists indeed of a fixed header, an optional variable header, a message payload with a
maximum size of 256 MB of information, and a QoS payload. The three different quality of service
levels determine how the content is managed by the MQTT protocol [7]. Although higher levels of
QoS are more reliable, they have more latency and bandwidth requirements, so subscriber customers
can specify the highest QoS level they wish to receive.

During the communication phase, a client can perform different operations, such as publication,
subscribe, unsubscribe, or ping. Considering the proposed work, the most important packets available
in MQTT networks are:

• CONNECT/CONNACK: packets adopted to authenticate a device on the MQTT broker.
• SUBSCRIBE/SUBACK: packets adopted to subscribe a client on a specific topic.
• UNSUBSCRIBE/UNSUBACK: packets adopted to unsubscribe a client from the topic.
• PINGREQ/PINGRESP: packets adopted to ping the broker server [73].
• DISCONNECT: packets adopted to disconnect the client from the MQTT broker [74].

4. The SlowTT Attack

The proposed slow denial of service against MQTT (SlowTT) is an optimized and more efficient
version of the SlowITe attack against the MQTT protocol. As described in [14], SlowITe has some
limitations that SlowTT aims to optimize and improve. In particular, SlowITe is able to keep all
the connections available on the network busy for the time defined in the KeepAlive parameter
(by exploiting the 1.5 times management of the KeepAlive parameter), and SlowTT aims to keep
connections alive for an infinite time by exploiting the parameters and network configurations adopted
by the MQTT protocol in order to avoid re-establishment of the connections or to avoid the high
value of the KeepAlive parameter that could be suspected (although defining a high KeepAlive value
as not legitimate is not correct). In addition, SlowTT allows setting lower KeepAlive values as it
keeps connections active by exploiting the PING packets to simulate an even more legitimate behavior
of IoT sensors (think of a fire alarm that remains connected, but as long as there is no fire, it never
communicates information). The value of KeepAlive does not affect the behavior of the attack as
SlowTT is able to keep the connections open by exploiting the PING packet. Furthermore, the attack by
keeping the connections open prevents a legitimate client from occupying them as soon as the broker
closes them. In that case, the DoS status is still reached for each subsequent client, but this could lead
to problems as the legitimate connection is not controlled by the attacker and should be occupied as
soon as it becomes free [17]. With SlowTT, however, this does not happen as the connections are not
closed by the broker. Therefore, starting from the first version of the attack, we carried out an in-depth
study of the MQTT communication protocol to identify other parameters and network packets to be
used to implement the innovative version of the attack.

From the first version of SlowITe, an innovative version was idealized, theorized, and
implemented. The aim is to implement a denial of service attack against the MQTT protocol that makes
a network unreachable by legitimate users and also that is difficult to identify and mitigate. Based on
these features, we developed the SlowTT tool to send MQTT packets to the broker. The threat tool
instantiates a high number of connections with the MQTT broker and tries to keep connections busy
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to prevent the client’s connection by exploiting the CONNECT and PING packets. In order to briefly
summarize the SlowTT approach, the tool has the following flow:

1. Connection with the MQTT broker by exploiting the CONNECT packet.
2. Sending packets to keep the connection alive by exploiting the PING packet.

With this approach, the MQTT broker will never close the connection because through the PING
packet, the attacker keeps instantiated connections alive. In order to develop an efficient version of the
SlowTT tool, initially, three different versions of the thread were developed based on packets adopted
to perform the attack.

Before proceeding with tests to validate the other versions of SlowTT, we further optimized the
attack by working on two very important parameters: Wait Timeout (WT) and KeepAlive. The Wait
Timeout is a client-side parameter configured by SlowTT to define the interval time between each
PING packet to keep the connection alive. The KeepAlive parameter, on the other hand, is adopted
in communication with the MQTT broker and used server-side. Such a parameter identifies the time
MQTT connections remain alive (without an exchange of packets) before the MQTT broker closes the
connection with the client. These parameters are related among themselves, as the Wait Timeout has
to be lower than the server-side timeout (e.g., KeepAlive, for MQTT), in order to avoid server-side
connection closures. After an in-depth study of the MQTT protocol, we noted two critical issues
regarding the KeepAlive parameter that can be exploited by the attacker to perform SlowTT effectively
and efficiently. The KeepAlive is not defined by the MQTT broker, but by the client through the
CONNECT packet during the authentication phase; in addition to the client’s ID, the KeepAlive is also
transmitted. This can be used by an attacker to occupy the connection as much as possible without the
MQTT broker closing it. The maximum time supported by the KeepAlive is 65,535 seconds. The second
critical issue is that the protocol MQTT keeps the connections alive for 1.5 times the KeepAlive time,
specifically with the following sentence “If the Keep Alive value is non-zero and the Server does not
receive a Control Packet from the Client within one and a half times the Keep Alive time period, it
MUST disconnect the Network Connection to the Client as if the network had failed” in the MQTT
white paper (available at: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html).
These two critical issues are fully exploited in SlowTT; as with the CONNECT packet, the attack
tool sets a KeepAlive, and knowing that the MQTT broker closes the connection after 1.5 times the
KeepAlive time, the tool sends the PING packet a few seconds before connection closure. These two
aspects are very critical and important since by configuring in the right way the KeepAlive and Wait
Timeout parameters, it is possible to drastically reduce the number of packets sent on the network by
the attacker. In this way, the threat is very complex to detect since the tool simulates, in all its aspects,
a legitimate connection that sends packets with a certain time.

Finally, in order to make the attack efficient and make the MQTT broker unreachable by legitimate
clients, SlowTT must occupy all available connections. The number of connections that the MQTT
broker is able to manage is defined within the configuration file. By default, a maximum number of
connections is not set, but again, within the configuration file, it is described that the maximum number
of connections is “around 1024” (available at: https://github.com/eclipse/mosquitto/blob/master/
mosquitto.conf) since most operating systems have a default socket limit of 1024 for processes, so
during the test phase, the SlowTT attack will create an number of connections equal to 1024 to execute
the attack against the MQTT broker. Table 1 summarizes the improvement of SlowTT compared
with SlowITe.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf
https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf
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Table 1. Features comparison between Slow denial of service against MQTT (SlowTT) and SlowITe.

Feature SlowTT SlowITe

Duration time Keep connections alive When the 1.5 times KeepAlive value expires,
for infinite time connections are closed

KeepAlive The attack does not The attack strictly depends
depend on the value of KeepAlive on the value of KeepAlive

Behavior More realistic behavior Anomalous behavior
(CONNECT and PING) (just CONNECT is a rare approach)

5. Testbed

In order to test and validate the innovative SlowTT attack proposed in Section 4, a dedicated IoT
test network based on MQTT was implemented. The network contains an MQTT broker, in order
to manage messages exchanged on the MQTT network and different connected clients. The victim
of the SlowTT attack is the MQTT broker since SlowTT aims to make it unreachable and to avoid
legitimate connections.

As demonstrated in [14,75–77], a slow DoS attack, against a web application or an IoT protocol
such as MQTT, requires low performance, computational power, and bandwidth to target the victim.
Furthermore, mobile smartphones, botnets, and basic IoT devices are able to execute this kind of threat.
For these reasons, we decided to adopt an IoT device for the vector attack; in particular, we adopted a
Raspberry Pi 3 Model B connected to the broker. The testbed network aims to represent a real network
scenario where IoT devices with limited computing power and hardware are able to execute cyber
threats against other devices connected to the real network.

The MQTT broker is implemented by using the Eclipse Mosquitto tool [78], an open-source
message broker (EPL/EDL license) that implements the MQTT protocol Versions 5.0, 3.1.1, and 3.1.
Mosquitto is lightweight and is suitable for use on all devices, from single board low-power computers
to complete servers. In particular, Mosquitto v1.6.2 based on MQTT Version 3.1.1 was installed in
the broker. The MQTT broker implements standard configuration (e.g., the MQTT listening port is
1883 for clear communication; instead, the listening port for encrypted communication is 8883), and
no constraints on the maximum connection number were entered so that, as mentioned in Section 3,
the MQTT broker is able to manage around 1024 connections (due to limits on the number of processes
the server can manage). Furthermore, TLS encryption and MQTT Version 5 are considered in these
tests to evaluate the new version of the SlowTT attack. In particular, communication is encrypted with
SSL/TLS (TLS v1.2).

In order to validate and verify the efficiency of the SlowTT attack, validation software was
developed to verify that a DoS attack is not simple because the MQTT broker should be, at the same
time, alive and dead (based on the Schrödinger’s cat paradox [79]). In order to verify if SlowTT is
able to reach the DoS status, the validation tool alters the MQTT broker status by trying to connect a
legitimate client to the broker. This solution checks every second if it is possible to connect to the broker.
The validation tool developed is adopted to validate SlowTT’s efficacy server-side: if the validation
software is able to connect, that means that the DoS attack was not effective (in that time); instead,
if it is not able to connect, this means that the attack is successful because all possible connections are
instantiated by SlowTT.

The following scenario can be summarized in the following steps:

• The Raspberry Pi device starts to execute the SlowTT attack.
• In order to validate the attack, the MQTT broker checks if there are connections available on the

MQTT broker by using the validation tool.

The tests and results reported in Section 6 were carried out with the following times: 20 min of
execution of the attack, KeepAlive set at 65,535 s, and Wait Timeout set to 60 s. The results obtained
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are extremely interesting and innovative as they demonstrate that the SlowTT attack is able to make
an MQTT network inaccessible to legitimate clients.

6. Executed Tests and Obtained Results

In this section, we report the obtained results related to the performed tests. Initially, we developed
different versions of SlowTT by combining possible packets available in MQTT communications.
Then, we performed preliminary tests to identify the best approach to develop an efficient and
performing version of the tool. Finally, we describe in detail the obtained results in terms of network
traffic and bandwidth.

6.1. Identification of the Best Approach to Adopt

As mentioned in Section 4, we implemented three different versions of the cyber threat in order
to achieve the purpose of the tool. The concept of the implementation is to test different versions of
the tool by combining network packets available in MQTT. Based on these constraints, the developed
versions are the following:

• Connect + Ping: both the CONNECT and PING packets adopted; in the following called SlowTT.
• Only Connect: only CONNECT packets adopted. This version is SlowITe.
• Only Ping: only PING packets adopted; in the following called Slowping.

The Slowping version is not able to perform the attack since without the CONNECT packet, it is
impossible to complete the authentication process on the MQTT server based on the TCP three way
handshake between the attacker and the broker, so this version is not able to establish a connection to
execute the attack. The attack flow is reported in Figure 2. The Wait Timeout parameter is reported as
wt in the figure.

Figure 2. Slowping attack flow.

SlowITe instead is able to establish multiple connections with the MQTT server and to set the
KeepAlive value since the authentication phase is completed by the attacker device. After this phase,
as shown in Figure 3, SlowITe does not send any other packets to the MQTT server due to its nature.
We further investigate and compare this attack with other versions in the rest of the paper.

Figure 3. SlowITe attack flow.



Information 2020, 11, 452 9 of 18

Finally, the SlowTT version is the most promising version of SlowTT since, after establishing
a connection by using the CONNECT packet and setting the KeepAlive parameter, it sends PING
packets before the KeepAlive expired to keep the connection alive, as reported in Figure 4. The Wait
Timeout parameter is reported as wt in the figures.

Figure 4. SlowTT attack flow.

Based on the previous consideration, we investigated and evaluated SlowITe and SlowTT since
the Slowping version is not able to perform the attack since it is unable to create a TCP connection.

In order to validate the SlowTT attack, the first test executed is to demonstrate the difference
between the SlowTT and SlowITe versions. For this test, we executed the attack for 120 s with the
KeepAlive set to 60 s and with a PING message after 80 s in order to keep the connection established.
The PING message is sent after 80 s since, as mentioned in Section 4, connections are kept alive for 1.5
times the KeepAlive value that, in this test equal to 90 s. Figure 5 shows the obtained result in terms of
network traffic.

SlowTT and SlowITe executed against MQTT broker

Figure 5. Comparison between the SlowTT and SlowITe attack tools.

The result demonstrate that the SlowTT attack (blue line in Figure 5) is able to keep the connection
alive over the time set by the KeepAlive parameter by exploiting the PING packet. Instead, the SlowITe
version of the tool (red line in Figure 5) closed the connection when the KeepAlive time expired.
Furthermore, Figure 5 demonstrates that the MQTT protocol keeps the connection alive for 1.5 times
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the value of the KeepAlive parameter, as mentioned in Section 3. Furthermore, the confirmation of
MQTT’s behavior on the KeepAlive parameter can be exploited by the attacker to optimize the SlowTT
attack and drastically reduce the number of packets needed to make the MQTT broker unreachable,
simulating normal network traffic and thus making the detection of the activities very complex.

6.2. Executed Tests and Results on the Testbed

In the previous section, we demonstrated the different approaches between SlowTT and SlowITe.
Although the aim of both attacks is the same, the approach adopted in SlowTT is innovative since
it is possible to keep alive instantiated connections for an infinite time, while in SlowITe, once the
KeepAlive time expires, the broker automatically closes the connections.

After validating the SlowTT approach, in this section, we carried out further tests to validate the
efficiency and performance of SlowTT compared with SlowITe. The tests were performed for both
attacks by using the same scenario to avoid technical issues with configurations/parameters/features.
In summary, the tests were performed for 20 min, with a KeepAlive value of 65,535 s and a Wait
Timeout value of 60 s, as described in Section 4. The value of KeepAlive was not considered of
significant importance in these tests since the aim is to demonstrate that the attack is able to make a
broker unreachable, the target of DoS attacks; it is used in the previous test to prove that the SlowTT
attack is able to keep the connection alive for a potentially infinite time. Firstly, we tested the SlowTT
version of the attack. The attacker initialized the connections and every 60 s sent a PING packet against
the MQTT broker. At the same time, on the MQTT Mosquitto broker, the broker checks every second if
there are connections available in order to validate the efficacy of SlowTT. The broker reports zero if a
connection is available on the broker or one if a connection is not available. The results obtained are
shown in Figure 6.

SlowTT tool test against an MQTT broker server establishing 1024 connections

Figure 6. Network traffic of the SlowTT.

The results obtained demonstrate the efficiency and innovation of the SlowTT attack. As shown in
Figure 6, the attacker creates 1016 connections; at the same time, the MQTT broker can no longer accept
other requests since all connections are instantiated by the attack. The results are confirmed by the
validation since it reported the value one. Analyzing Figure 6, when the attack begins, the maximum
number of connections managed by the MQTT broker has not yet been reached, and the MQTT broker
reports zero as there are connections available. By analyzing the obtained results, it is possible to
confirm that SlowTT is able to perform a DoS attack against an MQTT broker, making the broker
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unreachable by establishing all available connections on the MQTT server, and therefore, no clients are
able to connect and communicate with other devices. From the bandwidth point of view, the SlowTT
version requires 42.89 kbps. The execution of this attack against an MQTT broker can lead to serious
damages, as MQTT is used in very critical environments (industrial, logistics, critical infrastructure
monitoring, healthcare, smart homes, cyber physical systems, etc.) by IoT devices to communicate
in real time sensitive data and information recovered from the environment in analysis, and in the
case that the communication channel stops working, critical situations can arise with the loss of
sensitive information.

After running the test using SlowTT, we performed the same tests with SlowITe in order to
compare and evaluate the results. The scenario configuration was the same as the previous test; only
the attack tool changed. The test was performed for 20 min, with a KeepAlive value of 65,535 s, a Wait
Timeout value of 60 s, and several connections equal to 1024.

As for the test performed by using SlowTT, the attack is able to create 1016 connections that clog
the network and make it unreachable by other clients (maybe legitimate ones). The figure related to
the attack executed by using SlowITe is not reported since the network analysis reports a graph similar
to Figure 6. In this case as well, as in the previous one, when the SlowITe attack reaches the maximum
number of connections established by the MQTT broker, the validation tool reports the value of one
while in the first seconds of the attack, the value of zero is reported as not all the connections were
occupied. From the bandwidth point of view, the Connect version requires 9.53 kbps, and this value is
lower than the SlowTT value as PING packets are not sent. However, comparing the two data, there is
not a large discrepancy that could be used to identify attacks. As mentioned in Section 4, both attacks
are very complex to detect in terms of bandwidth and data transmitted because, as these tests show,
the network resources used are very minimal.

The real difference between the two versions is related to the value of the KeepAlive parameter.
If the KeepAlive is set with a low value, the SlowTT attack is more efficient because by exploiting the
PING packets, it is able to keep the server busy longer and therefore independent of the KeepAlive
value. The Wait Timeout between the PING packets must be less than the KeepAlive. For the
same reason, the SlowITe attack has a good effect only if the KeepAlive time is long; otherwise, the
connections are closed when the time is expired.

6.3. Targeting an MQTT Service Running on SSL

As demonstrated in [14], SlowITe, a preliminary version of SlowTT, is able to target and exploit
communication encrypted with SSL/TLS. In order to cover more IoT scenarios, we tested SlowTT also
against an MQTT network encrypted with SSL/TLS. In this test, the testbed is composed of the same
devices and configured with the same parameters of the previous tests, but the MQTT broker encrypts
the communication by using TLS v1.2.

In order to instantiate connections, SlowTT must be able to communicate over SSL. In our tests,
we hypothesized that the attacker is an external device to the network, that is without access to the
certificates necessary to communicate legitimately with the broker. The first step is to authenticate
the attacker on the MQTT broker by encrypting packets with SSL; otherwise, the MQTT broker is not
able to authenticate the device. In order to establish a connection encrypted with SSL, we adopted an
approach to retrieve the public key used by the MQTT broker to encrypt the communication. When the
public key is retrieved, we imported this certificate into the attacker’s keystore. By using this approach,
SlowTT is able to encrypt packets with SSL and to communicate on the network.

When the attacker is authenticated on the broker, the workflow of SlowTT is the same as described
in the plaintext tests. The results obtained once again demonstrate that SlowTT is able to correctly
execute the attack even with encrypted communication with TLS v1.2. The network traffic analysis
obtained during tests shows graphs equal to Figure 6, so we do not publish them here. In conclusion,
what was previously demonstrated in [14] is confirmed: SlowTT is able to bypass the SSL encryption
of the MQTT protocol and establish all the connections necessary for the attack.
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6.4. SlowTT Against MQTT Version 5

In 2019, OASIS released Version 5 of MQTT, a refinement of Version 3.1.1 to improve protocol
features and applications [80]. The new features of MQTT Version 5 include: better error reporting;
a reason code has been added to responses to publications PUBACK/PUBREC; shared subscriptions:
if the message rate on a subscription is high, shared subscriptions can be used to balance the load
of messages; message properties, used to implement the other features; message and session expiry,
an option to discard messages if not forwarded to other clients; other limits such as maximum packet
size and the number of (QoS > 0) messages that are transmitted to the client.

Although this new version is not yet much adopted at the implementation level, we decided to
test SlowTT against Version 5 of MQTT to highlight the innovation of the attack. In order to perform
the attack on this new version of MQTT, studies were carried out initially on the level of network
traffic and packets to compare the differences between the two versions. Based on the packets used by
the attack, we noticed a difference in the CONNECT packet since, in addition to changing the version
of the protocol defined within the packet, there is a new parameter called Properties. This property is
used by all MQTT v5 packets and allows users to transfer additional information.

In order to execute the SlowTT attack against MQTT Version 5, we developed a dedicated version
of the tool able to adopt the new CONNECT packet as a vector attack. In order to validate the new
feature of SlowTT, we tested against an MQTT network based on Version 5 with Mosquitto as the
broker since it supports MQTT Version 5 (available at: https://mosquitto.org/).

As the tests performed and fully described in the previous sections, also in this case, the attack is
able to reach the DoS status and make the MQTT broker unreachable from legitimate connections.

7. Detection Systems and Algorithms

As can be deduced from the previous sections, the SlowTT attack can cause serious damage if
performed against IoT systems adopted in sensitive contexts. For this reason, the implementation of a
SlowTT attack detection and mitigation algorithms is a critical challenge in order to identify in real
time the execution of the attack and instantiate a protection system to mitigate the attack and to limit
the damages.

Currently, a detection approach is still an open issue, but in the research field, different works
were performed to detect and mitigate the slow DoS attacks. In particular, a detection system based on
the analyses of specific spectral features of network traffic is implemented in [81]. This approach allows
identifying anomaly patterns of legitimate client behavior that is typically repetitive. Instead, slow
DoS attacks are detected by using a Fourier transform and mutual information in [82]. Information
are extracted by analyzing the features of the network traffic containing attacks in [83], and finally,
an intrusion detection system to detect slow DoS attacks from real-time network packets is proposed
in [84]. Such scientific works can be used as a starting point for developing a SlowTT attack detection
system, and machine learning algorithms or artificial intelligence algorithms may be adopted to classify
the attack. Considering identification of running SlowTT instances, we believe that the critical point
for the detection of the attack is related to the characterization of legitimate traffic. In particular,
while other similar solutions focus on traffic such as HTTP, FTP, or SMTP, where it is possible to
model users’ behavior, in the case of protocols such as MQTT (or SSH), it is not trivial to model
the behavior of a client. Indeed, in this case, due to the nature of IoT environments, devices could,
for instance, communicate periodically (like a temperature sensor designed to send updates every
minute) or randomly (like a motion sensor communicating just when a motion is detected), based on
their functionalities and activities.

A possible approach could be linked to the KeepAlive value set by the clients. If the KeepAlive
is higher than a threshold defined in the network, it avoids the connection. However, this algorithm
does not apply to the IoT context since, given the nature of this technology, the devices have different
behaviors and actions to perform. Hence, a device with a high KeepAlive value could be legitimate
and would not be authenticated on the network, losing sensitive and valuable information.

https://mosquitto.org/
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As for the detection phase of SlowITe, since defining parameters to identify legitimate connections
is a complex task due to the behavior of IoT networks and devices, an initial approach is to analyze
and manipulate packets that could be considered valid and legitimate. Due to the nature of the attacks,
packets are considered legitimate, by this approach, if they contain data/information communicated
by sensors to the central node. The packets that are considered valid and useful in this approach are the
Publish and Subscribe packets. In the attacks that we developed and described in this work and in [14],
these packets are not used. The proposed detection system could be based on the implementation of an
algorithm that checks every second how many legitimate and valid bits are exchanged by a connection.
If legitimate bits are zero after a certain time interval (based on the training of the model with traffic
considered legitimate), the detection algorithm considers the connection as malicious. Using this
approach, it is possible to perform the detection of SlowITe and SlowTT since in these attacks, there are
never useful packets, while normal MQTT communication is based on Publish and Subscribe packets
(these are considered useful packets in our approach).

Finally, a possible approach used in the context of detection systems is based on machine learning
algorithms. While in normal network systems, there are rich and well-known datasets used to train
these algorithms, at the moment, there are few datasets related to the IoT context, and they do not cover
all the aspects necessary to carry out sufficient training to define whether a connection is malicious
or legitimate.

8. Conclusions and Future Work

In this paper, we investigated the security of the Internet of Things, in particular related to the
MQTT protocol. We focused on the MQTT application protocol, widely adopted in many IoT contexts,
in order to identify its weakness to a slow denial of service attacks. We adopted low-rate DoS techniques
and approaches to target the application protocol, by designing and implementing the SlowTT attack,
an innovative version of the SlowITe attack aimed to exploit vulnerabilities inside the MQTT protocol.
In particular, we exploited the weaknesses to set the Keep-Alive parameter of the server from the client
itself and to adopt PING packets to keep a connection alive by avoiding the connection closure by the
server. These should be considered as weaknesses of the MQTT protocol, validated in the proposed
work, through the design and implementation of the SlowTT attack. Moreover, tests against SLL and
MQTT Version 5 were performed to cover more scenarios related to the MQTT. In these tests as well,
SlowTT is able to achieve its aims. The limitations are related to the low number of “legitimate” packets
(e.g., PUBLISH or SUBSCRIBE) and regarding the security configuration of the MQTT broker since if
the authentication based on username/password is implemented, SlowTT is not able to instantiate the
connections without knowing the credentials. A first approach to the detection phase was presented in
the work; future work concerns the implementation of the approach to detect the developed threat.

We tested the attack against a real network, targeting real MQTT services based on Eclipse
Mosquitto with a low-power node represented by a Raspberry Pi 3 Model B. Tests were executed,
firstly, to validate the improvement of SlowTT compared with SlowITe by analyzing the behavior of
the attacks against the server on a single connection based on plaintext communication, encrypted
communications, and MQTT Version 5 as well. We found that, after establishment, a single connection
can be kept alive for an infinite time by exploiting the PING packets. By analyzing the results of
the comparison between SlowTT and SlowITe, in SlowITe, the maximum time for a connection was
27 h; instead, in SlowTT, a connection could be alive for an infinite time. This is the added value of
SlowTT because, by keeping the connections open for a long time, legitimate connections are discarded.
Further work may be directed toward a refinement of SlowTT and to test against other possible brokers
running on cloud-based solutions. Additional extensions of the topic may refine the attack in order to
better emulate a legitimate client sending bogus data to the broker, with the aim to improve the attack
in view of potential protection systems able to filter out connections not sending relevant data to the
application. Regarding the detection system, future work may be the characterization of legitimate
MQTT data to model a real-time detection system. Besides, since we focused on the MQTT protocol,
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further investigations on the topic may consider other application layer IoT protocols like CoAP and
AMQP [64].
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