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Abstract: This research attempts to introduce the production methodology of an anomaly detection
dataset using ten desirable requirements. Subsequently, the article presents the produced dataset
named UGRansome, created with up-to-date and modern network traffic (netflow), which represents
cyclostationary patterns of normal and abnormal classes of threatening behaviours. It was discovered
that the timestamp of various network attacks is inferior to one minute and this feature pattern
was used to record the time taken by the threat to infiltrate a network node. The main asset of the
proposed dataset is its implication in the detection of zero-day attacks and anomalies that have
not been explored before and cannot be recognised by known threats signatures. For instance, the
UDP Scan attack has been found to utilise the lowest netflow in the corpus, while the Razy utilises
the highest one. In turn, the EDA2 and Globe malware are the most abnormal zero-day threats
in the proposed dataset. These feature patterns are included in the corpus, but derived from two
well-known datasets, namely, UGR’16 and ransomware that include real-life instances. The former
incorporates cyclostationary patterns while the latter includes ransomware features. The UGRansome
dataset was tested with cross-validation and compared to the KDD99 and NSL-KDD datasets to
assess the performance of Ensemble Learning algorithms. False alarms have been minimized with
a null empirical error during the experiment, which demonstrates that implementing the Random
Forest algorithm applied to UGRansome can facilitate accurate results to enhance zero-day threats
detection. Additionally, most zero-day threats such as Razy, Globe, EDA2, and TowerWeb are
recognised as advanced persistent threats that are cyclostationary in nature and it is predicted that
they will be using spamming and phishing for intrusion. Lastly, achieving the UGRansome balance
was found to be NP-Hard due to real life-threatening classes that do not have a uniform distribution
in terms of several instances.

Keywords: netflow; anomaly detection; ensemble learning; zero-day threats; feature extraction;
feature engineering; datasets; feature selection; cyclostationarity; ransomware; advanced persis-
tent threats

1. Introduction

Network traffic is infected by a plethora of malware and security threats to be
managed [1,2]. Security issues to be resolved and managed emanate from the complexity
and vulnerability of the network architecture [3,4]. To protect the network, different pre-
ventive techniques such as Intrusion Detection Systems (IDSs) were implemented [1–4]. In
essence, an IDS can be stratified as a network-based intrusion detection system (NIDS) that
controls networking events such as firewall logs or netflow, and host-based intrusion detec-
tion system (HIDS), which monitors events related to the network such as systems logs [5].
Moreover, both NIDS and HIDS can be classified into a tripartite manner: anomaly, hybrid,
and signature-based intrusion detection systems (SIDSs) [5,6]. Anomaly-based intrusion
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detection systems (AIDSs) scrutinize computer networks under normal settings and any
divergence will be tagged as intrusions [6]. In turn, the SIDS depends on a prearranged
repository of known intrusions to track down a network threat by relying on predefined
parameters that determined if a networking event is malicious or not [5]. Consequently,
Kasongo and Sun [6] have argued that the SIDS repository should be updated manually by
the computer network operator. Lastly, hybrid-based IDSs can be defined as a juxtaposition
of both AIDSs and SIDSs [6,7]. For consistency, this article will use the term NIDS to repre-
sent an IDS because they have been used interchangeably in the literature [3,4,6,7]. The
term “zero-day” attack refers to any unknown and cyclostationary network threat carried
out without the knowledge of the network administrator. James P. Anderson wrote the
first article about NIDSs in 1980, and his research concentrated on computer surveillance
and security threats, and he categorized network threats into internal and external [8].
Then to monitor the network security, the information system (IS) should provide the
network administrator with a mechanism that detects unusual network behaviours, such
as abnormal connection, and identify the internal/external intruder strategy [7]. However,
enough network features should be utilised to train Machine Learning algorithms to be
able to detect network threats in real-time and real-life settings [9]. During the attack
detection process, the network administrator will then be able to detect the issue based
on results produced by trained Machine Learning algorithms [3,5]. The problem faced by
Machine Learning is the inability to detect novel network threatening behaviours because
its algorithms have been trained with legacy datasets such as the Knowledge Discovery and
Data Mining 1999 (KDD99) and the Network Security Laboratory–Knowledge Discovery
and Data Mining (NSL-KDD) [9]. With this in mind, this article intends to propose a new
dataset to detect zero-day threats. In addition, the research aims to suggest the production
methodology of the new dataset. An Ensemble Learning approach has been used to assess
this methodology using the Gini Importance, Out-of-Bag (OOB) error, and the Receiver
Operating Characteristic curve (ROC). This research demonstrates that the implementation
of the Random Forest algorithm applied to the proposed dataset can facilitate accurate
results to enhance zero-day threats detection and proposes an approach that detects novel
network threatening behaviour captured in the given dataset, but were not captured in
previous legacy datasets. The classification problem addressed in this article is to stratify
well-known from unknown network attacks. The pivotal contribution of this article can be
stated as follows:

1. A new dataset production methodology using fuzzy merging.
2. The proposition and introduction of a new dataset that contains modern network

flow (netflow) and zero-day attacks.

The article is structured as follows: Previous investigations, including ample criticism
of existing datasets utilised for the Network Intrusion Detection Problem (NIDP), are
debated in Section 2. The employed methodology to build and evaluate UGRansome
is explained in Section 3. Section 4 discusses results achieved using Decision Tree and
Random Forest classifiers. In Section 5, the conclusions of this research are given.

2. Related Works

This section reviews journals, conference proceedings, and articles on various ap-
proaches, techniques, and insights used to design Intrusion Detection datasets for classify-
ing and detecting malware. The demerits and merits of these approaches are also raised
during the discussion. The research uses the term legacy datasets or legacy malware to
describe the first datasets and aged network threats to be utilised and detected in the
NIDL enabling the cybersecurity community to conduct various experiments. Two legacy
datasets have been extensively used for the NIDP:

1. The Defense Advanced Research Projects Agency (DARPA) dataset. This dataset
is compressed into binary and is four GB in size and includes synthetic netflow
having approximately 7 M of connection features—where 2 M represents the testing
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corpus [10]. The DARPA 1999 incorporates tcpdump netflow files extracted from a
synthetic network system. One outside the network and the other inside. Additional
host-based features have been retrieved from four victimized network systems that
include various network threats between Internet Protocols (IPs) [10]. This dataset is
outdated because it was created in 1998.

2. The KDD99 dataset. It has been derived from the DARPA98 dataset and it is made
of 49 M of single connection features with 41 attributes [10,11]. These features are
labelled as normal network threats or not. Mohd et al. [12] stated that they have been
classified into User to Root (U2R), Denial of Service (DoS), Probing, and Remote to
Local (R2L). Similarly, the testing corpus also includes 14 attacks and features that
have been stratified into (i) network traffic and basic connection of Transmission
Control Protocols (TCPs) [12]. (ii) Content of features collected from the payload
information and (iii) number of logins that failed. This dataset is also outdated
because it was fabricated in 1999 by the DARPA.

The network traffic flows of the two aforementioned datasets lacked efficient statistical
attestation having low rates, victimize hosts have skewed proportion or distribution, only
four main attacks types have been categorised with unbalanced distribution (U2R, DoS,
Probing, and R2L). The DARPA dataset presents statistical issues and could not enable the
detection of novel malware with high accuracy [9]. These limitations have motivated the
cybersecurity community to create the NSL-KDD dataset as an improved version of the
DARPA and KDD99 datasets. With the NSL-KDD dataset, redundancy has been reduced
compared to the KDD99, KDD98, and DARPA datasets [3,13]. Even though current studies
in the NIDL still utilise these legacy datasets due to inherent issues and criticisms pointed
out, other scientists have also created updated and novel datasets. For instance, the centre
for cybersecurity in Australia has created and published the UNSW-NB15 dataset [14].
The Coburg Network Intrusion Detection Dataset (CIDDS-001) has been published by the
University of Coburg while the CICIDS dataset was published by the University of New
Brunswick. These published datasets aim to provide various types of features such as those
relying on updated malware, namely DoS and Bonet, or to retrieve current and realistic
netflow under the assumption that netflow features in the current NIDL have changed and
evolved since the creation of the DARPA datasets. Hence, building novel datasets such as
UGRansome that incorporate cyclostationary and zero-day attack features are becoming
crucial. Some of these recent datasets are chronologically listed in Table 1 with a short
description of their types and demerits. SDN stands for Software-Defined Networking and
IoT means Internet of Things.

Table 1. The most recent datasets for the NIDP in the NIDL.

Name Dataset Type Disadvantage

Sperotto [15] Netflow A single host extracted features.
MAWI working lab [16] Tcpdump False Alarms generation.

CTU-13 [17] Tracing flow Short netflow.
UNB ISCX [18] Netflow Limited to Windows XP.

ADFA-LD12 [19] IDS Limited to normal tracing.
UNSW-NB15 [20] Tcpdump & netflow Uncorrelated synthetic netflow.

CICIDS [21] Netflow Lack of triangulated features.
SDN [22] Static & dynamic IoT Limited to SDN & IoT.

2.1. Requirements to Evaluate IDS Datasets

We have mentioned the existence of additional datasets that have been used in the
NIDL [9]. This article has just discussed those that are slightly related to the one that
we intend to create. We have also identified desirable requirements to evaluate Anomaly
Detection datasets and discuss ten relevant prerequisites:
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1. The year of creation. This requirement represents the date or year in which malware,
as well as netflow, were collected. It is more relevant than the year of publication
since netflow and novel intrusions appear daily. The UGRansome dataset is created
in 2021.

2. Availability. With this requirement, one can determine if datasets are publicly avail-
able to enable a third party to utilise and assess them. The UGRansome is available
on ResearchGate.

3. Normal behaviour. This requirement determines if the dataset is made of abnormal
and/or normal behaviours. The UGRansome includes normal and anomalous be-
haviours because it has been built for anomaly detection. If UGRansome does not
include instances of normal behaviours, this will represent a severe methodological
bias because any dataset intended to support research on anomaly detection must also
include instances of normal behaviours. The category of normal behaviour is made
of various well-known threats such as SSH, Port Scanning, Bonet, DoS, UDP Scan,
and NerisBonet. The authors refer to “well-known” threats as to normal behaviour
because these types of network attacks are known by the network administrator and
they can also be detected in the current intrusion detection landscape [23–25]. The
dataset does not incorporate instances of non-threatening behaviour.

4. Abnormal behaviour. The requirement specifies the inclusion of abnormality within
the dataset. The UGRansome incorporates abnormal netflow patterns. The category of
abnormal behaviour includes unknown zero-day threats such as JigSaw, APT, EDA2,
Flyper, TowerWeb, NoobCrypt, DMALockerv3, and Globe. The authors refer to
“unknown” threats as to abnormal behaviour because these types of network attacks
are unknown by the network administrator and they cannot also be easily recognised
in the current intrusion detection landscape [26].

5. Features. This requirement is relevant to train or test the NIDS. The normal category
consists of 91,360 patterns, whereas the abnormal stands at 56,598. The remain-
ing category (59,576) represents the total of cyclostationary feature patterns in the
UGRansome. These patterns are recorded in the normal and abnormal categories.

6. Updated attack-flow. A NIDS dataset should at least incorporate real network features
updated with a methodology such as Deep Packet Inspection (DPI) that focuses on
network traffic management. Managed traffic of the DPI can be extracted and stored
in a repository to build the IDS dataset that will include various anomalies detected by
the DPI. The UGRansome incorporates real malware and netflow patterns extracted
from publicly available datasets. The University of Granada 16 (UGR’16) dataset was
used because it was designed in 2018 [27]. The ransomware dataset built in 2019 was
also utilised to retrieve salient malware patterns [28].

7. Labelling. Records should be accurately labelled as normal or not and the malware
category is an important requirement for classification and prediction. The UGRan-
some features are accurately labelled into three predictive categories such as anomaly
(abnormal), signature (normal), and synthetic signature (abnormal and normal). Ran-
somware families represent abnormal classes while well-known network threats are
recorded as a normal category.

8. Duration. Datasets are created during a specific period (hours, days, weeks, months,
and years). This requirement can also represent the time taken to record a specific
network pattern. The UGRansome was produced using extracted malware and
netflow patterns from publicly available datasets relinquished in 2018 and 2019.

9. Documentation. A dataset description is an important requirement to understand its char-
acteristics, merits, and demerits. This article serves as the UGRansome documentation.

10. Format. Usually, datasets have been built into different formats such as csv, pcap, and
tcpdump [9]. The UGRansome is formatted in a csv format.

Figure 1 illustrates various outdated datasets that failed to solve the problem of novel
network threats detection in the current NIDL [9]. These datasets (DARPA, KDD99, and
NSL-KDD) have been published and extensively used, but they systematically incorporate
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legacy malware that no longer attacks current network systems [9] (see Figure 2). As such,
this research is attempting to utilise a novel palliative, such as the creation of a new dataset
that includes novel anomalies with cyclostationary behaviours to address the issue of
zero-day threats recognition.

Figure 1. Outdated datasets for the NIDP. The DARPA, KDD99, and NSL-KDD datasets are the most
utilised in the current NIDL.

Figure 2. Legacy network threats for the NIDP. The U2R, R2L, DoS and Probing are the most recurrent
network threats detected for the NIDP.

2.2. Novel Network Threats

This section presents a recent taxonomy of novel network threats whilst trying to
differentiate them from legacy malware included in outdated datasets presented in Figure 2
and discussed by Hindy et al. [9] or Moustafa et al. [29]. These network threats might be
stratified as presented in the following Figure 3 (SSL stands for Secure Socket Layer).
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Figure 3. Recent malware detected in the current NIDL.

In this article, ransomware can be thought of as novel malware or zero-day attacks,
and they are stratified into different families incorporated in the UGRansome. It is im-
portant to note that ransom software (commonly referred to as “ransomware”) can attack
different platforms, especially computer networks (Figure 4). Recently, the Internet of
Things (IoT) has also been infiltrated by this kind of malware and will continue to infil-
trate other platforms such as schools, universities, governments, and hospitals [30]. It is,
therefore, imperative to understand different ransomware families and their infiltration
mechanisms. There are two types of ransomware, the first encrypts the victim’s data
and the second prevents them from accessing the system [28,30,31]. An overview of the
ransomware infiltration process is shown in Figure 4, where it has been subdivided into
four phases (infection, command, destruction, and extortion). The network and server
circles represent the vulnerable platforms, while the encryption circle illustrates the attack
technique that can also lock the platform. The bitcoins circle represent the ransom payment
mode in cryptocurrency.

Figure 4. Ransomware processes and infiltration techniques.

2.3. The Evolution of Ransomware

PC Cyborg is the first documented ransomware that used encryption of files. Never-
theless, malware of this kind appeared. Examples such as “Robbinhood,” “Ekans,” “Ryuk,”
and “Seftad,” among others, have evolved exponentially since 1990 (Figure 5). Similarly,
novel infiltration strategies were implemented, and new algorithms based on encryption
were created thereafter. Moreover, variants such as Advanced Persistent Threats (APT)
were appearing from 2015 to 2020 (Figure 5) (“CryptoLocker”, “Locky”, “JigSaw”, “Locker-
Gaga” and “SamSam”). With the COVID-19 pandemic since 2020, zero-day malware are
even switching to COVID-19 themes and use various tactics to launch different attacks on
hospitals, and a novel ransomware-type named CovidLocker was created [30] (see Figure 5
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that depicts the year distribution of ransomware from 1989 to 2021). Most of these attacks
use various infiltration approaches such as phishing or spamming [28,30].

Figure 5. The year distribution of ransomware. RAAS stands for ransomware as a service.

According to Oz et al. [30], the financial damages caused by ransomware amounted to
over 1 Billion USD. However, the actual financial damages are probably much higher than
this number because victims remain silent about the attack and pay ransoms without di-
vulging the incident, while hackers do not often publish datasets from victimised networks.
A descriptive statistic of the ransomware dataset used in [28] is illustrated in Figure 6 with
the Locky malware generating the most significant financial damages recorded in bitcoins
(BTC) and USD [28].

Figure 6. The financial damages caused by ransomware.

Generally, email links and attachments are the most common infiltration techniques
use by ransomware. If the victim downloads the attachment or clicks on the link provided,
which contains the threats, all files might be made inaccessible via encryption until the
victim pays the ransom. Therefore, this type of infiltration will need various features to
operate, such as addresses use for transactions, the ransom cost, type/cluster, behaviour
(cyclostationarity), directory and much more (see Figure 7, where the most common
ransomware features have been presented). UGRansome involves specific features, such
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as the financial damages caused by the zero-day threats, seed/expended addresses, each
threat cluster and cyclostationary netflow patterns retrieved with the principal component
analysis (PCA) (Figure 7).

Figure 7. Ransomware features.

Figure 8 presents the virus total/share datasets as the most used in the NIDL. These
types of datasets are build from online scan search engines and incorporate features pre-
sented in Figure 7, namely, opcodes, malicious files, registries, malicious directories, API
calls, and noise or entropy. The personal wallet and bitcoin datasets are mostly used
in the blockchain field. The Alexa/MACCDC traffic datasets contain recent threatening
behaviours of various websites. These datasets include various patterns: (i) the popularity
of the victimised website and the number of visitation. Other malicious operations can
also be incorporated. For instance, (ii) the malicious coinminers, which generally hijack
CPU consumption to mine cryptocurrency; (iii) abnormal external links that are mali-
cious by redirecting victims to malicious websites; and (iv) web skimmers threats, that are
implemented to steal payment card information from checkout forms.

Figure 8. Ransomware datasets for the NIDP.

2.4. Cyclostationarity of Zero-Day Threats

In 1996, the concept of netflow was created to extract IP flows when they exit or
penetrate a network [32]. By this means, it became possible for the network administrator
to (i) assess the destination and source of networking traffic, (ii) determine the category of



Information 2021, 12, 405 9 of 34

services, and (iii) understand the causes of intrusion. A cyclostationary netflow can then
be thought of as network traffic with statistical characteristics that vary with time [32]. A
cyclostationary malware can be defined as any zero-day threat that changes its behaviour
based on the system constraints. For instance, the intrusion methods used by ransomware
can varies by using different intrusion techniques such as phishing, spam, and infected
files. However, it is realistic to posit that the ransomware might have constant properties
that can be utilised to detect it. For instance, the address used for anonymous transactions
might be identical for certain attacks. The UGR’16 dataset includes cyclostationary netflow
and it is made of well-known (normal) malware extracted from an internet service provider
(ISP) [27]. UGR’16 is subdivided into two corpora (Calibration and TEST). The Calibration
corpus was created in 2016 from March to June, while the TEST corpus was designed
from July to August. UGR’16 integrates various malware categories, namely secure shell
(SSH), scan, spam, Bonet, DoS, and port scanning [27]. The UGRansome dataset integrates
them as normal behaviours. All pattern categories of the UGRansome have been stratified
as follows:

1. The category of synthetic and signature malware. It represents characteristics of
well-known as well as unknown attacks. A considerable number of signatures have
been implemented to detect well-known malware, but there is still ongoing work
towards the design of signatures or keys detecting unknown ones. This category
exhibits both normality and abnormality.

2. The category of signature malware. It depicts well-known malware with available
keys that have been released and updated regularly. This type of malware can be
effectively detected using specific signatures because their behaviours are known.
The signature category portrays normality.

3. The category of anomaly malware. It is a set of unknown malware for which signa-
tures or keys do not yet exist. Abnormality is illustrated by this category that includes
the most zero-day attacks.

A numerical description of the UGR’16 netflow is illustrated in Figure 9, which demon-
strates that this dataset is imbalanced because of the Spam malware that has the highest
representation in the TEST corpus. Similarly, the UGR’16 has four types of source ports
(5068, 5066, 5062, and 5061) scanned from 5000 to 5059 [27]. Table 2 portrays relevant
features of this dataset, while Section 3 delves deeper into the feature selection and engi-
neering process.

Figure 9. The TEST corpus of the UGR’16 dataset.
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Table 2. Relevant features of the UGR’16 dataset.

Features Description

Protocol Communication rules.
Flag Netflow states.

Forwarding status The states of outgoing netflow.
Type of service A service provided by a netflow.

Packet exchanged The packets exchanged between hosts.
Port Communication endpoints between hosts.

IP address Unique string that identifies each host.
Duration Netflow duration.

Timestamp Netflow termination.

Various researches, such as [33–35], have revealed a decrease in the effectiveness of
IDS frameworks. Association rule techniques are usually implemented to select the most
efficient properties from IDS datasets, and Machine Learning algorithms are utilised to
assess both false alarm rates and precision. Results demonstrate that the UNSW-NB15
dataset has better properties than the KDD99 dataset. Three benchmark datasets used for
the NIDP that use Machine Learning algorithms have also been scrutinized in the current
NIDL [36]. The experiment is conducted with supervised algorithms, such as Neural
Network, which segregates the differences between actual and synthetic netflow. A rapid
Feature Selection algorithm that pinpoints minor data source quality of features has also
been used [37]. The differences in arbitrary variables are applied to discover the integrity of
features. The NSL-KDD and KDD99 datasets use a legacy version of the malware, thereby
negatively impacting their sureness. The UNSW-NB15 dataset is then suggested for testing
and training the AIDS model performance [38–40]. Nonetheless, the UNSW-NB15 dataset
has few disadvantages, namely the inclusion of unrealistic malware, reliability problems,
and imbalanced features. The CICIDS 2017 dataset [21,41] is proposed as the most reliable
data source for testing and training NIDS models, especially the AIDS due to its user’s
profile comportment, which focused on SSH, FTP, emails protocols, HTTPS, and HTTP.
Similarly, the CICIDS 2017 dataset is reasonable and uses updated malware [42]. Analytical
research based on the CIC-IDS-2017 dataset with Machine Learning algorithms has used
the K-Means and K-Nearest Neighbour algorithms to assess the Machine Learning model
complexity [43]. Detection techniques are trained to identify anomalous features dependent
on Machine Learning and Artificial Intelligence for anomaly detection and illustrate an
autonomous capacity to differentiate abnormal from normal system actions. The AIDS
framework has been suggested using Deep Learning and Machine Learning for stratifying
lines connection into binary or multi-classes [43,44]. An attempt is made to enhance the
AIDS Accuracy for performing the stratification of binary class. The problem appears in
multi-class malware. Predominantly, most of the data sources in cybersecurity are imbal-
anced. So, it is necessary to use robust metrics to assess a NIDS based on the nature of
testing and training data. Although, the performance accuracy enhancement reaches up to
99.00% in some of the current work. In whatever way, depending only on accuracy does not
mimic the actual NIDS performance because the model is prone to empirical errors for the
minority than the majority class and vice versa. Disregarding the norm of the classification
error, sensitivity, confusion matrix, and recall, affect the evaluation efficiency. Besides, very
little studies concentrate on IDS efficiency, such as testing time, training time, detection
time, memory consumption, and CPU overload. Thus, the selection of the most suitable
performance evaluation criterion is becoming crucial for the NIDP [45,46]. In turn, Data
Science techniques implement feature selection by utilising a tripartite methodology, such
as Filter, Hybrid, and Wrapper [47]. The anomaly detection algorithms can spot relevant
features to detect malware when used in combination with Feature Selection algorithms.
The aim of using Feature Selection techniques is to enhance the malware detection per-
formance of NIDS models and optimise their detection rate and time [48]. Most of the
studies opt for a Feature Selection over enhancing the Intrusion Detection algorithms to
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resolve the false alarm problem in the NIDL. However, downgrading the parameters or
features can lead to overfitting that biases Machine Learning algorithms toward specific
malware categories [49]. Additionally, Feature Selection cannot detect certain malware
if the subset is not normalised with labelled features and some parameter functions that
substantiate the results. Setting up the Feature Selection for novel malware detection might
be challenging due to the lack of features [50]. The examination of current researches of
NIDSs reveals that existing studies are not meant for gauging IDS models using Ensemble
Learning, but concentrate on enhancing the recognition of specific algorithms. In addition,
the current Machine Learning algorithms are yet to produce optimal performance. Table 3
has identified various demerits and aspects of different existing studies that focused on
the selection of datasets, validation problems, and evaluation metrics. Table 3 depicts that
most of the current studies only depend on accuracy to assess the performance of NIDSs.
Furthermore, validation problems in which very few existing studies have contrasted their
work with the trending AIDS. Lastly, a standardized benchmarking approach is lacking
in the current literature for Ensemble Learning models. For that reason, it is necessary to
come up with a concise benchmarking approach for assessing and testing the performance
of the Ensemble Learning models in the current NIDL. For instance, the degree of freedom
of the Machine Learning model was not considered in [3] to evaluate the number of ad-
justable parameters or weights and [51] suggested to fine-tune “hyper-parameters” in the
framework doing the learning, but it is still not an optimal evaluation approach. In [52,53],
various assessment methods have been suggested to test and assess Machine Learning
models without mentioning the confusion matrix. Recently, Maseer et al. [54] have used
the CICIDS 2017 dataset to evaluate the Machine Learning model but the time complexity
and confusion matrix were not considered. The discussion of the validation drawbacks
presented in [3,51–54] is summarised in Table 3.

Table 3. The disadvantages of existing studies.

References Drawbacks

[3] The time complexity was not considered.
[51] Lack of robust validation methods.
[52] The confusion matrix was not considered.
[53] Binary stratification was considered without confusion matrix.
[54] The time complexity and confusion matrix are not considered.

3. Materials and Methods

The identification of zero-day threats using Ensemble Learning techniques can be
implemented in two phases—namely, Feature Extraction and classification. The Feature
Extraction retrieves relevant patterns from a given dataset by providing features that best
represent the original data source while the classification technique aims at providing zero-
day threats taxonomy. Our proposed framework relies on Ensemble Learning algorithms,
which can detect ransomware and also provide precise predictions of cyclostationary zero-
day attacks. Ensemble Learning refers to a specific Machine Learning method of training a
model of weak classifiers. The model is in the following form:

FT(x) =
T

∑
t=1

ft(x), (1)

where each ft is a weak Machine Learning algorithm that takes an observation x as input
and returns a value indicating the class of that observation. The Tth sample classifier is
positive if the sample is in a positive cluster and negative otherwise. Each weak algorithm
produces an output h(xi) or hypothesis for each sample in the training set. At each tth
iteration, a specific weak algorithm is selected and assigned a coefficient αt such that the
sum of the training error Et of the resulting ensemble classifiers is optimized:



Information 2021, 12, 405 12 of 34

Et = ∑
i

E[Ft−1(xi) + αih(xi)], (2)

Ft−1(x) is the ensemble classifiers that have been built up to the previous stage of
training, E(F) is the error function and

ft(x) = αth(x), (3)

is the weak algorithm that is being considered for addition to the final classifier. The Feature
Extraction and classification steps required data gathering, dimensionality reduction with
PCA, model building/testing, and model evaluation to produce final results. Figure 10
portrays processes required in the proposed methodology that begins with data gathering
and ends with the model assessment phase.

Figure 10. An overview of the suggested zero-day threats detection framework.

3.1. Data Gathering

The gathering of features from the UGR’16 and ransomware datasets is a crucial
step for the Machine Learning algorithms to achieve successful results. In this research,
extracted features from the aforementioned datasets are triangulated and the Decision Tree
and Random Forest algorithms are trained on them to accurately delineate the requirements
for implementable applications of the Ensemble Learning model. This Ensemble Learning
model uses the UGR’16 files presented in Table 4. However, Table 4 shows that the selected
corpus is imbalanced with the blacklist malware having the highest proportion. The
collector rel-outgoing.csv file is used to extract ransomware features. This file is also
imbalanced due to the CryptXXX malware proportion (Figure 11).

Table 4. The UGR’16 files.

Filename Period Week Size Features Status

Spam May 3 32,358 KB Spam malware Normal attack
Scan 44 August 2 2020 KB Scan malware Normal attack
Scan 11 August 2 527 KB Scan malware Normal attack
Bonet July 5 5284 KB Bonet malware Normal attack

Blacklist May 4 37,962 KB Blacklist malware Normal attack
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Figure 11. Imbalanced features of the ransomware dataset. APT stands for Advanced Persistent
Threat.

The UGR’16 dataset is obtained from Maciá-Fernández et al. [27] (https://nesg.ugr.es/
nesg-ugr16/). In turn, the ransomware dataset was obtained from Paquet-Clouston et al. [28],
but Zenodo was utilised to retrieve it (https://zenodo.org/record/1238041#.YQ5wPogzbIU).
A description of the UGR’16 features has already been provided in Table 2 (Section 2.4). The
features of the ransomware dataset include the following:

1. BTC: this refers to the total amount of Bitcoins paid for the ransomware.
2. USD: this is also the total amount of USD paid for the ransomware.
3. Cluster: this represents the cluster assigned per ransomware. This cluster is a numeri-

cal value that has been assigned for each ransomware.
4. Seed and expended addresses. An address used by the ransomware to anonymously

receive bitcoins or USD. This address is a string with an alphanumeric.
5. Ransomware. The name of the zero-day threat. For instance, WannaCry, Locky, APT,

Globe, JigSaw, EDA2, and SamSam.

The class labels of the Machine Learning model (signature, synthetic signature, and
anomaly) and the presented features are utilised to build the stratification framework.

3.2. Principal Component Analysis

Machine Learning algorithms are widely used to address a range of classification
and prediction issues. The unsatisfactory performance of Ensemble Learning techniques
originates from underfitting or overfitting features. This study confirmed that the elimi-
nation of irrelevant features has guaranteed the performance of selected algorithms and
sped up their computation. PCA was used on the UGR’16 and ransomware datasets to
extract relevant features. The features produced by the PCA was manually triangulated
and merged in the final and normalised UGRansome dataset. The PCA algorithm can be
viewed as the sampling method of this research and can be formulated as follows:

R =
1

t − 1
+

l

∑
t=1

([x(t)x(t)T ]), (4)

where x(t) and t = 1, 2...l are stochastic having n-dimensional input features x with a
matrix R having zero mean, the mathematical formulation of the covariance is stated in
Equation (4). The computation of x(t) into output features y(t) is linearly implemented:

y(t) = QTx(t), (5)

Q represents orthogonality of the n*n matrix type with i columns viewed as eigenvec-
tors of that matrix. The mathematical formulation of eigenvalues that need to be solved is:

yi(t) = QTx(t), (6)

Equation (6) ranges from 1...n with yi as the new component representing the ith
principal component. The PCA algorithm relies on data factorisation that uses a set

https://nesg.ugr.es/nesg-ugr16/
https://nesg.ugr.es/nesg-ugr16/
https://zenodo.org/record/1238041#.YQ5wPogzbIU
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of parameters that maximize feature variance and can be utilised to classify relevant
information from un-normalized datasets. However, the disadvantage of PCA is that
features should be standardised before its implementation for the algorithm to produce
accurate results. Table 5 depicts the PCA results where the most relevant features are the
timestamps, IP address, network protocol, malware extraction date, and network flag.

Table 5. The PCA results.

File Rows Variables Relevant Feature Total

Blacklist 3,311,559 13 Timestamp 2761
Spam 203,693 13 IP address 377,425

Scan 44 547,468 13 TCP 3,311,559
Scan 11 140,541 13 Flag 2,087,293
Bonet 607,036 13 Date 2759

It has been found that there is a timestamp fluctuation of most scan threats (Figure 12).
The timestamp is used to determine the moment a threat packet is flooded through various
access devices of the system. The Scan malware timestamp is inferior to one minute.

Figure 12. The timestamp fluctuation of the Scan malware.

IP addresses have been classified into different classes during the data labelling process
and each valid IP address belongs to a specific range (Class A: 1-126, class B: 128-191, class
C: 192-223, and class D: 224-239). Nonetheless, class A and C are the most dominant IP
addresses in this corpus (Figure 13). Masking IP addresses into four classes is not an
arbitrary choice, but the aim is to secure the identity of the host by protecting its personal
information from hackers, advertisers, and unknown third parties.

Figure 13. Imbalanced IP addresses of the Bonet malware.

Lastly, the UDP and TCP are also the most important network protocols used by
various network threats (Figure 14 and Table 5).
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Figure 14. Imbalanced network protocols of the Bonet malware.

The overall experiment indicates that the selected UGR’16 files are imbalanced. The
expanded rel-outgoing.csv file was the second file used to extract ransomware features.
This file has 28,104 rows and eight columns. Features extracted from this file are shown in
Table 6 with the Locky malware classified as the most relevant ransomware (27,423).

Table 6. The PCA results on the ransomware dataset.

Ransomware Cluster Total Status

Locky 1 27,423 Abnormal
CryptXXX 2 352 Abnormal

CryptoLocker20 3 124 Abnormal
CryptoLocker 5 40 Abnormal
DMALocker 6 22 Abnormal

Others None 71 -

Extracted seed/expended addresses are condensed to eight strings during the data
labelling process. This is beneficial in terms of data privacy and the computation of Machine
Learning algorithms. For instance, an address type 1Q8vibLr8Tora3jtSVUBj1yjF presented
in Figure 15 is shortened to 1Q8vibLz.

Figure 15. Imbalanced seed and expended addresses in the ransomware dataset.

Results of the Feature Extraction reveals that the address type 1DA11mPS generates
more financial damages (Figure 16).
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Figure 16. The total of the financial damages generated per address type.

This corpus was unclean, messy and prone to error. It was thus crucial to perform a
presence checking while building UGRansome to check that features have been captured
properly and null or empty fields were not used or considered in the sample. The length
checking checked for the length of the field. The range checking checked for a field range:
for instance, the port number, and timestamp ranges. The PCA algorithm extracted addi-
tional zero-day attacks, namely EDA2 and Globe. New addresses have been extracted for
the Locky family (1dice8EM) and DMALockerv3 (1dice6Yg). In general, most zero-day
threats use different addresses for anonymous transactions. The challenge is the use of het-
erogeneous, imbalanced, and noisy data that complicates the implementation of Machine
Learning algorithms to classify, predict, and detect novel network anomalies. To resolve
this issue, features have been pre-processed using a Feature Engineering approach that
constructs the most structured and sustainable dataset suitable for processing (Figure 17).
Hence, Feature Engineering can be defined as the main solution used to design the UGRan-
some dataset. It consists of translating structured or unstructured feature variables into
new variables that can be processed by Machine Learning algorithms. Extracted features
of the UGRansome have been manually reduced, merged, tabulated, and transformed
during the Feature Engineering phase (Figure 18). The format of the final dataset is pre-
sented in Table 7 with quantitative and qualitative data that can be view as numeric and
categorical features.

Figure 17. The cleaned UGRansome dataset with no missing values.
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Figure 18. The nine phases followed during the UGRansome construction process. Data collection,
feature extraction, feature selection, fuzzy merging, data pre-processing, prediction subdivision, data
visualisation, Machine Learning, and evaluation.

Table 7. The tabulate format of the final dataset with 14 attributes.

Column Attribute Example Format

1 Prediction SS Categorical
2 Ransomware EDA2 Categorical
3 Bitcoins (BTC) 60 BTC Numeric
4 Dollars (USD) 400 USD Numeric
5 Cluster 1 Numeric
6 Seed Address 1dice6yg Categorical
7 Expended Address 4ePEyKtk Categorical
8 Port 5062 Numeric
9 Malware SSH Categorical

10 Network traffic 918,919,000 bytes Numeric
11 IP address Class A Categorical
12 Flag AF Categorical
13 Protocol TCP Categorical
14 Timestamp 40 s Numeric

The VIM package of RStudio has been used to detect missing values of the dataset. In
Figure 17, missing values should be indicated with a red colour. Hence, the UGRansome
is created without missing values since it contains no attributes marked with red (see
Figure 17). The VIM package can be used in RStudio to visualize imputed and missing
values that pose a serious problem in every Machine Learning project. VIM, on the contrary,
helps not only to spot missing values but also to extract insights into other properties of
the quality of features.

Three RStudio functions have been used during the data pre-processing phase to trans-
late instances of attributes presented in Table 7. The suppressWarnings (column) suppresses
bias in the transformation of numeric features. The factor (column) translates a variable
data type into a categorical feature while the numeric (column) transforms it into a numeri-
cal value. The numeric ( ) and factor ( ) functions are used in R to transform and distinguish
feature patterns (numeric and categorical). The transformation of extracted features using
the aforementioned R functions improves the Machine Learning efficiency. The source code
used in this research and the UGRansome dataset has been made available to support repro-
ducible experiments in cybersecurity (https://www.researchgate.net/publication/342200
905_An_Ensemble_Learning_Framework_for_Anomaly_Detection_in_the_Existing_

https://www.researchgate.net/publication/342200905_An_Ensemble_Learning_Framework_for_Anomaly_Detection_in_the_Existing_
https://www.researchgate.net/publication/342200905_An_Ensemble_Learning_Framework_for_Anomaly_Detection_in_the_Existing_
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Network_Intrusion_Detection_Landscape, Public files/Ugransome.zip). The data pre-
processing unit has been commented out in the given code.

3.3. UGRansome Model

The research followed the approach given in Figure 19 to build the UGRansome
dataset. The UGR’16 and ransomware datasets are considered as sources from which
relevant network patterns are extracted using the PCA algorithm (Figure 18). The fuzzy
merging has been utilised as a manual and intuitionistic Feature Engineering method that uses
these patterns and triangulates them to achieve the UGRansome balance (Figures 18 and 19).

The advantage of using triangulation is that drawbacks of one dataset (UGR’16)
can be compensated by the advantages of the other dataset (ransomware) because they
share similarities. As such, the reliability and credibility of results can be improved to
minimise false interpretation of zero-day threats behaviours. The fuzzy merging approach
is an important paradigm that enables the combination of normal and abnormal attack
classes. Data points are first extracted from their original repositories which contained
the aforementioned csv files (this extraction methodology is similar to Feature Selection).
Extracted data points are then translated via Feature Engineering into a format that makes
them suitable for Machine Learning computation. The fuzzy merging transformation and
selection technique include: (i) dimensionality reduction that removed irrelevant columns
and row-data from original data sources, (ii) applying data fusion and processing, (iii) and
loading processed features in a specific directory. This study demonstrates that extremely
complex data improves the classification performance of the Random Forest algorithm.
Hence, this fuzzy merging approach incorporates two stages—namely, data cleansing
and modelling.

Figure 19. The UGRansome model.

3.4. Data Cleaning

The data cleaning process requires the deletion of inaccurate, redundant, and obsolete
features as well as correcting typos and detecting erroneous data. With data modelling,
features are labelled with three predictive outputs (anomaly, signature, and synthetic
signature). Network flags have been cleaned because they contained dots that have been
removed for certain flags. These dots could bias the computation of Machine Learning
algorithms. Files used to extract relevant network patterns contained missing values that
have been excluded from the UGRansome dataset (Figure 17). Lastly, the predictive classes
of various malware have been also condensed, the anomaly category is labelled with A, the
synthetic signature category with SS, and the signature category with S (Figures 18 and 20).

Network_Intrusion_Detection_Landscape
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Figure 20. An instance of the UGRansome dataset.

3.5. Data Modelling

This section introduces and proposes the new dataset, which is derived from these
two aforementioned datasets. Normal features have been retrieved from the UGR’16
and merged with zero-day threats of the ransomware dataset (Figures 18 and 20). The
UGRansome data structure is presented in Table 8.

Table 8. The data structure of UGRansome.

Abnormal Attack Normal Attack Prediction Labelled

Locky DoS SS Synthetic Signature
APT DoS SS Synthetic Signature

WannaCry Bonet SS Synthetic Signature
Flyper Nerisbonet SS Synthetic Signature

TowerWeb Spam A Anomaly
SamSam Spam A Anomaly
JigSaw Scan A Anomaly

CryptoLocker types Blacklist S Signature
Globe UDP Scan A Anomaly

DMALocker Port Scanning A Anomaly

This data structure is divided into three predictive classes: SS, S, and A. Similarly,
these classes are also subdivided into 16 zero-day attacks that represent abnormality:
Locky, APT, WannaCry, TowerWeb, Globev3, EDA2, JigSaw, Cryptohitman, CryptXXX,
CryptoLocker2015, CryptoLocker, NoobCrypt, DMALocker, Flyper, SamSam, and Globe.
Lastly, instances of normal behaviours correspond to a specific well-known malware: DoS,
Bonet, Spam, Scan, SSH, Port Scanning, Blacklist, UDP Scan, and Nerisbonet. Figure 20
and Table 8 present the UGRansome model with well-known malware, zero-day attacks,
and their category (S, SS, and A). This is the most important model of the dataset as it will
be used to train and test the recognition and predictions of cyclostationary and zero-day
malware. Figure 21 visualises the UGRansome features in terms of network protocols.
The TCP remains the network protocol with the highest proportion because it is widely
used for web applications and to verify the quality of packets travelling between two
network nodes.
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Figure 21. The UGRansome network protocols.

Figure 22 visualises the UGRansome features in terms of zero-day threats and their
respective timestamps. CryptXXX and Globe can be thought of as the ransomware that
required the most timestamp constraints. The association between ransomware families
and timestamps is justified by keeping the attack records when the packet is being cre-
ated, exchanged or deleted. The timestamp is valuable to record the time taken by the
network threat.

Figure 22. The timestamp of ransomware in the UGRansome dataset.

Lastly, Figure 23 depicts the most relevant features of the UGRansome with IP ad-
dresses of class C having the highest proportion. The required amount of data entailed for
a successful Machine Learning model relies on different factors, such as the complexity
of algorithms used and the problem that depends on functions utilised to receive various
inputs and compute corresponding output values. In turn, the complexity of selected
algorithms results from attempting to identify hidden relationships or correlations between
output and input pairs. The UGRansome dataset has 207,534 rows and 14 attributes, and
this determines how much data is required to train and test the Machine Learning model,
but it is the number of rows that matter as well as the sampling frequency.
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Figure 23. The most relevant features of the UGRansome dataset.

The UGRansome data structure has a uniform distribution that can be summarised
as follows:

1. The TCP has the highest number of features (92,157) in terms of network protocols.
2. AF has the highest number of features (72,814) in terms of network flags.
3. Locky has the highest number of features (33,870) in terms of ransomware.
4. The address type 1DA11mPS has the highest number of features (82,048) in terms of

seed/expended addresses.
5. IP addresses of class C have the highest number of features (95,508) compared to class

A, B, and D.
6. The SSH attack has the highest number of features (34,972) compared to Spam,

Blacklist, UDP Scan, DoS, and Bonet attacks.
7. The signature (S) attack prediction has the highest number of features (91,360) com-

pared to the anomaly (A), and synthetic signature (SS). This can be seen in Figure 24.

Figure 24. The proportion of signature (S) malware types in the UGRansome dataset. This proportion
represents normal attacks because it incorporates threats that match well-known malware signatures.
The abnormal attacks are recorded in the anomaly (A) and synthetic signature (SS) categories.

Figure 25 illustrates the behaviours of normal attacks in the UGRansome dataset.
The UDP Scan uses the lowest degree of netflow because it allows fast packets flooding.
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However, this process can also cause data loss by creating vulnerability endpoints for
DoS attacks.

Figure 25. The proportion of normal malware in the UGRansome dataset.

Figure 26 depicts the proportion of abnormal attacks in the UGRansome dataset. These
network attacks represent zero-day threats. The Razy malware utilises the highest degree
of netflow. It is a zero-day threat that uses asymmetric encryption techniques to encrypts
files by appending the “.razy1337 ” or “.razy ” extension to the name of the file that has
been encrypted.

Figure 26. The proportion of abnormal malware in the UGRansome.

Figure 27 shows the uniform distribution of the UGRansome dataset. Normal and
abnormal attacks represent 9% of the dataset.

Figure 27. The uniform distribution of the UGRansome balanced with 9% of normal or well-known
threats and 9% of abnormal or unknown threats (ransomware).
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3.6. The Final Construction of the UGRansome Dataset

The final construction of the UGRansome dataset is explained in this section. The
dataset is designed for Anomaly Detection and should contain a mixture of normal and
abnormal network behaviours. Normal features patterns represent 41% of the dataset (9 +
18 + 14) while abnormality constitutes 44% (9 + 19 + 16). The remaining 15% reflects the
prediction attribute that can be normal or abnormal (44 + 41 + 15 = 100%). The category
of normal class attacks such as UDP Scan and Bonet represents 9%, while this is also
true for the category of abnormal class (ransomware). This uniform distribution was
achieved manually by compensating the number of extracted features that were not equally
distributed in the original data sources. The IP addresses (18%) and network flags (19%) are
less uniformed with a slight difference. The network protocols (14%) and seed/expended
addresses (16%) have a discrepancy of two percent. Each feature pattern was manually
recorded in the UGRansome dataset to belong to the abnormal or normal category (see
Figure 28).

Figure 28. The construction of the UGRansome dataset based on normal and abnormal category.

3.7. The Balance of the UGRansome

When discussing the dataset balance, one should not reduce the notion of balance to
the notion of uniform distribution. For a dataset to be considered balanced, the proportions
of different types of network behaviours captured in the dataset should correspond with
informed and intuitive judgments. For instance, the proportions in which different classes
of threatening network behaviour occur in real-life should correspond to proportions
in which they occur in the UGRansome dataset. This section discusses the balance of
the UGRansome concerning this understanding. First, the proportion in which different
classes of threatening network behaviour occurred was extracted from real-life using two
existing datasets, but contained imbalanced patterns [27,28] (see Figures 3 and 13–15 where
each of the threatening network behaviour classes has a different number of instances).
Second, to solve this problem, a fuzzy merging method was utilised on extracted patterns
to implement the dataset balance (Figure 29). Third, this research reveals that getting a
perfectly balanced dataset with the same number of instances for each category can be
view as an NP-Hard problem in Data Science.
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Figure 29. Achieving the dataset balance.

3.8. Testing UGRansome

This research uses cross-validation that can be thought of as a Machine Learning
technique utilised to approximate the skill of a model on unseen features. It uses a set
of limited records to approximate how the Machine Learning model performed during
the training stage. It is a well-known Machine Learning method due to its simplicity and
generally produces less biased estimation/prediction compared to other methods [6,20].
In short, cross-validation splits the data source into a training partition (80%) and the
remaining partition (20%) is used as a testing set. This research is also using the concept of
Ensemble Learning that requires training the data and test features in various ways [55].
The first step is to build an ensemble of Machine Learning classifiers. The second step is
to integrate the decisions given by these classifiers into a novel ensemble classifier. The
final-step model learns by combining the most suitable and optimal predictions/accuracy
from various first-step models [55]. The bagging approach has been used with two phases.
First, the Decision Tree and Random Forests algorithms are trained on the UGRansome
dataset. The prediction of the Decision Tree and Random Forest is then stored. However,
each observation in the UGRansome dataset is connected to the value it is expected to
predict or estimate. The second phase derives the expected prediction [55]. This ensemble
approach aggregates the Decision Tree and Random Forest into a base learner to output
the expected results. A Decision Tree algorithm utilises a supervised learning approach to
resolve Machine Learning classification problems. Other tree models can also be used as
classification trees when targeted variables accept inputs as discrete values. The major parts
of a Decision Tree are branches, leaves, and nodes. The set of attributes resulting in a class
label are represented by branches while leaves depict each class label [54]. These branches
operate with continuous and discrete data. The Decision Tree technique splits the samples
into homogeneous categories based on predefined splitter parameters. Nonetheless, this
algorithm faces an overfitting problem that can be solved by implementing boosting and
bagging algorithms. Discrete data are well suited for the Decision Tree algorithm [54]. As
already stated, it faces an overfitting problem that can be rectified by the Random Forest
algorithm which averages various deep Decision Trees. The Random Forest is also an
Ensemble Learning technique that solves regression and classification problems [54]. This
Machine Learning algorithm constructs various Decision Trees within the training time
scale and outputs the category of a specific feature by executing a stratification function to
produce enhanced results [54,55].

3.9. Evaluation of the Machine Learning Method

This study is using the accuracy metric to assess the Machine Learning method.
The formula computing this metric is given (FP stands for False Positive and FN is the
False Negative):

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)
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this metric refers to the difference of accurate predictions for both TP (True Positive) and
TN (True Negative) of malware compared with all tested cases. The sensitivity metric is
also used to compute the number of accurate classifications penalized by the occurrence of
missed observations:

Sensitivity(Recall) =
TP

TP + FN
. (8)

The specificity metric is used to measure the proportion of misclassified features. The
mathematical formulation computing the specificity is as follows:

Speci f icity =
TN

TN + FP
. (9)

The confusion matrix is also used to visualise the performance of selected Ensemble
Learning algorithms. It is a matching matrix with each row representing the observations
in a specific category and each column portraying the observations in a predicted category,
or vice versa (Figure 30). In Figure 30, FP and FN represent the occurrence of misclassified
observations belonging to a specific category. TN and TP represent correct classification.

Figure 30. The confusion matrix.

The classification error is used to present the incorrect prediction rate. The mathemati-
cal formulation of the classification error is given in Equation (10). Lastly, the ROC curve is
also utilised to plot the sensitivity against the specificity.

Error =
FN + FP

TN + TP + FN + FP
, (10)

4. Results
4.1. Computing Environment

The Decision Tree and Random Forest algorithms were trained with the UGRansome
features using Rstudio with the caret library. Experiments were executed on a Windows 10
Operating System computer with a 64-bit Intel CPU (1600 Mhz).

Results of the Ensemble Learning Algorithms

The testing set has 186,780 observations with 14 variables. It was important to drop
the level for both training and testing sets before the construction of the Machine Learning
model. The number of variables tried at each split (mtry) is three and the Random Forest
model is using 10 trees. Its confusion matrix result is presented in Table 9 with a decrease
of the classification error for synthetic signature (SS) categories indicating accurate recog-
nition of various threatening behaviour for which signature keys are anomalous (known
and unknown).

Table 9. The result of the confusion matrix with the Random Forest model.

A S SS Error

A 49,884 389 166 0.011003390
S 648 80,490 265 0.011215803

SS 84 182 52,830 0.005009794
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The results of the Random Forest prediction are illustrated in Table 10 with signature
(S) categories having an occurrence of 81,602. This result confirms that the Random Forest
can still accurately detects well-known network threats such SSH, Bonet, and UDP Scan.

Table 10. Predictive results of the Random Forest model.

A S SS

A 50,633 465 16
S 254 81,602 114

SS 51 157 53,488

The Accuracy of the prediction presented in Table 10 is depicted in Table 11. The
anomaly (A) category has been accurately predicted with 99% of accuracy. This indicates
that the Random Forest can still accurately recognise anomalized threatening behaviour
that is unknown to the network administrator.

Table 11. The accuracy of the prediction with the Random Forest model.

A S SS

A 99.06 0.91 0.03
S 0.31 99.55 0.14

SS 0.09 0.29 99.61

The overall Accuracy of the Random Forest model is 99%, which is similar to the
results obtained by [56–60]. The most important features are depicted in Figure 31 that
presents the Mean Decrease value that measures the importance of a variable to estimate
the target variable values of all the trees used by the Random Forest model [54]. It shows
a higher Mean Decrease in Gini, indicating higher variable relevance. These variables
are displayed and sorted in the variable relevance plot implemented for the Random
Forest. The most relevant variables to this model are the highest in Figure 31 and have
the greatest Mean Decrease in Gini values (Financial damages (USD and BTC), network
status (flag), zero-day group (clusters), normal attacks (threats), network traffic (netflow
bytes), port number (port), and ransomware-type (family)). Similarly, the least relevant
variables are the lowest in Figure 31 and have the least Mean Decrease values (Network
protocol (protocol), IP address classes (IP address), and the timestamps (time)). The final
construction of the UGRansome dataset can be more or less extracted from Figure 31 where
the prediction attribute has been ignored in the plot because it was used to compute the
Mean Decreased value (see the given code).

Figure 31. The Mean Decreased value with only 13 attributes of the 14 which are in the UGRan-
some dataset.
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Figure 32 illustrates the satisfactory ROC-Accuracy value between specificity and
sensitivity that is equal to one. This result indicates that there is a 100% of probability that
the Random Forest model can identify zero-day threats behaviours by building different
Decision Trees and the output will be the attack categories selected by most trees which
can either be normal (S) or abnormal (A and SS).

The OOB error represents the mean of the prediction error for a specific training
set. The Random Forest model produced a null OBB error with the best mtry of three
(Figure 33). This result shows the minimisation rate of false alarms (false positive and
negative) in terms of detecting threatening behaviours of network threats.

Figure 32. The ROC result.

Figure 33. The best mtry result.

4.2. Decision Tree Results

The RStudio rpart library is used as the classification tree and the UGRansome dataset
is divided into training (80%) and testing (20%). The training set has 166,188 features
with 14 variables while the testing set has only 41,346 features. The overall performance
of the Decision Tree is not impressive due to the bias-variance dilemma [61] (various
Machine Learning algorithms will have different results on the UGRansome dataset).
Signature (S) malware categories are classified with an accuracy of 44% and this indicates
that the Decision Tree is not the most suitable algorithm for malware behaviour recognition.
Figure 34 shows the classification results of the Decision Tree algorithm where different
addresses (17dcMo4v, 1AEoiHYZ, 1DA11mPS, and 1NKi9Ak5) have been plotted against
various well-known threats such as SSH, Spam, Nerisbonet, and DoS. It can be seen that the
Spam malware uses all the address types in the UGRansome corpus. This result is a strong
prediction that the majority of zero-day attacks will still be using spamming/phishing for
intrusion. It can also be seen that most of the zero-day threats that use seed and expended
addresses shown in Figure 34 share similarities with the Bonet and SSH attacks. As such,
the Bonet and SSH attacks can be thought of as hybrid and cyclostationary network threats
that will vary with time.
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Figure 34. The stratification results of the Decision Tree algorithm that predict that zero-day threats
will be using spamming for intrusion in the near future. Nevertheless, phishing might also be used.

Figures 35 and 36 illustrate the prediction of the Decision Tree algorithm.

Figure 35. The predictive results of the Decision Tree model.

As shown in Figure 35, most of the blacklist and SSH attacks use an IP address of class
C. Figure 36 illustrates a strong prediction of zero-day attacks such as Advanced Persistent
Threats (APT) namely EDA2, and Razy. These persistent threats have been strongly
predicted to belong to anomalous categories such as synthetic signature (SS) and anomaly
(A) because they are either known or unknown and a key has not yet been implemented to
decrypt them. Until their mitigation, intruders/hackers will exploit the exposed network
system vulnerability to adversely steal important data. APT is generally undetected once
it has accessed the network system. It can be thought of as a state-sponsored group of
attackers that gain access to the system to steal data.

4.3. A Deeper Comparison of the UGRansome Dataset

In this section, the Random Forest and Decision Tree algorithms have been used on the
KDD99 and NSL-KDD datasets to compare their performances with the ones obtained with
the UGRansome dataset (see Table 12, where the overall accuracy of the Ensemble Learning
has been used to evaluate the Machine Learning models). The Accuracy metric of the
Random Forest algorithm is impressive for both datasets. However, the performance of the
Decision Tree on the UGRansome dataset was not sufficient because the algorithm is well
suited for discrete features. The KDD99 (http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html) and NSL-KDD (http://www.unb.ca/cic/datasets/nsl.html) are publicly
available for reproducible experiments. Figure 37 portrays attacks detected in the KDD99
dataset. These are legacy network threats that can also be detected in the NSL-KDD dataset
(Figure 38). Figure 37 exhibits imbalanced properties of the KDD99 dataset that contains
disproportional distribution between normal and abnormal attack classes. It also illustrates
redundant patterns of the KDD99 that generate false alarms.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.unb.ca/cic/datasets/nsl.html
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Figure 36. The prediction of the Decision Tree model.

Table 12. The comparison of UGRansome with legacy datasets.

Dataset Random Forest Decision Tree Final Ensemble Learning

KDD99 99% 99% 99%
NSL-KDD 100% 98% 100%

UGRansome 99% 44% 99%

Figure 37. Evaluation of the KDD99 dataset.

Figure 38 shows various features of the NSL-KDD dataset (src bytes, dst host diff
srv rate, count, dst host srv diff host rate, dst host same srv rate, protocol type, and
srv count.) predicted by the Decision Tree algorithm with the ICMP, TCP, and UDP
protocols as the most used in the corpus (Figure 38). However, this dataset suffers from
the lack of cyclostationary and zero-day threats. The cyclostationarity of zero-day threats
is then illustrated in Figure 39 with various network flags that have been predicted to be
anomalous due to the A and SS predictions. The AP flag demonstrates a strong prediction of
anomalous behaviours. For instance, a zero-day attack depicted in Figure 40 could exploit
a network connection state (flag) for malicious operation such as encryption of relevant
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files or relinquishment of synchronisation anomalies. These zero-day threats do not match
known signatures and this makes them difficult to be detected by traditional NIDSs.

Figure 38. Decision Tree results of the NSL-KDD dataset.

Figure 39. Cyclostationarity of zero-day threats in the UGRansome dataset.

Figure 40 demonstrates the proportionality and cyclostationarity of zero-day threats
behaviour detected in the UGRansome dataset. Globe is the zero-day threat that portrays
the most anomalous (A) behaviour, while EDA2 mimics the least synthetic signature (SS)
behaviour (Figure 40). EDA2 can be defined as the most abnormal and Advanced Persistent
Threat (APT) in the corpus. It is a cryptovirus that encrypts multivariate user data with
different formats, namely archive, video, audio, multimedia documents and much more.
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Figure 40. Evaluation of the UGRansome dataset.

Lastly, we have compared the experimental results obtained by [56–60] to ours because
of the Ensemble Learning approach that has been utilised on the fly of malware recognition.
The Accuracy of the Ensemble Learning models utilised in [56–60] is illustrated in Table 13
where the performance achieved by selected algorithms is similar to the one obtained
in this article. We can then argue that implementing the Ensemble Learning algorithms
applied to the UGRansome dataset can facilitate accurate results to improve zero-day
threats recognition for NIDSs.

Table 13. The Comparison with other research results in the field.

Research Algorithms Accuracy Dataset

[56] RandomTree & DecisionStump 99% NSL-KDD
[57] Network traffic anomalies detection 99% Legacy datasets
[58] AI4SAFE-IoT 100% IOT
[59] Boosting method of logistic model trees 99% DDoS traffic
[60] Logistic Regression 99% IOT & Netflow

5. Conclusions

There is a need for smart techniques to detect cyclostationary zero-day threats since
the current approaches are error-prone and tedious. This article introduced a novel dataset
for Anomaly Detection incorporating cyclostationary zero-day threats behaviours. The
Ensemble Learning approach has been used with the Random Forest and Decision Tree
algorithms to assess the Machine Learning model. Two existing datasets have been utilised
to retrieve salient features with a PCA and triangulate them in the created dataset using a
fuzzy merging technique. The experiments have been performed on the created dataset
and the results obtained demonstrate that the Random Forest achieved the most acceptable
Accuracy value for the prediction and recognition of zero-day threats behaviours. This
research focused on the fuzzy merging and Feature Engineering process to build the final
dataset. The advantage of the created dataset is the inclusion of normal and abnormal
netflow traffic patterns that are cyclostationary and threatening in nature. Thus, this dataset
can be used for zero-day attacks recognition. However, the created artefact is restricted
to supervised learning, which required the identification and labelling of various features
patterns. Some zero-day attacks may not be detected in a real-life setting, and thus the
Ensemble Learning cannot be trained to detect them. This increases the need for future
works in the NIDL. One can use the created artefact for real-world testing and interpret
results using Deep Learning algorithms. The authors also intend to create a real-world
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application of these research results and plan to continue researching the problem of
network traffic management for 0-day threats recognition using Anomaly Detection.
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57. Cvitić, I.; Peraković, D.; Periša, M.; Husnjak, S. An overview of distributed denial of service traffic detection approaches.
Promet-Traffic Transp. 2019, 31, 453–464. [CrossRef]

58. HaddadPajouh, H.; Khayami, R.; Dehghantanha, A.; Choo, K.K.R.; Parizi, R.M. AI4SAFE-IoT: An AI-powered secure architecture
for edge layer of Internet of things. Neural Comput. Appl. 2020, 32, 16119–16133. [CrossRef]
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